1
|
Almutaani M, Turki T, Taguchi YH. Novel large empirical study of deep transfer learning for COVID-19 classification based on CT and X-ray images. Sci Rep 2024; 14:26520. [PMID: 39489731 PMCID: PMC11532342 DOI: 10.1038/s41598-024-76498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
The early and highly accurate prediction of COVID-19 based on medical images can speed up the diagnostic process and thereby mitigate disease spread; therefore, developing AI-based models is an inevitable endeavor. The presented work, to our knowledge, is the first to expand the model space and identify a better performing model among 10,000 constructed deep transfer learning (DTL) models as follows. First, we downloaded and processed 4481 CT and X-ray images pertaining to COVID-19 and non-COVID-19 patients, obtained from the Kaggle repository. Second, we provide processed images as inputs to four pre-trained deep learning models (ConvNeXt, EfficientNetV2, DenseNet121, and ResNet34) on more than a million images from the ImageNet database, in which we froze the convolutional and pooling layers pertaining to the feature extraction part while unfreezing and training the densely connected classifier with the Adam optimizer. Third, we generate and take a majority vote of two, three, and four combinations from the four DTL models, resulting in [Formula: see text] DTL models. Then, we combine the 11 DTL models, followed by consecutively generating and taking the majority vote of [Formula: see text] DTL models. Finally, we select [Formula: see text] DTL models from [Formula: see text] Experimental results from the whole datasets using five-fold cross-validation demonstrate that the best generated DTL model, named HC, achieving the best AUC of 0.909 when applied to the CT dataset, while ConvNeXt yielded a higher marginal AUC of 0.933 compared to 0.93 for HX when considering the X-ray dataset. These promising results set the foundation for promoting the large generation of models (LGM) in AI.
Collapse
Affiliation(s)
- Mansour Almutaani
- Department of Computer Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Y-H Taguchi
- Department of Physics, Chuo University, Tokyo, 112-8551, Japan
| |
Collapse
|
2
|
Hassan SAZ. An AI healthcare ecosystem framework for Covid-19 detection and forecasting using CronaSona. Med Biol Eng Comput 2024; 62:1959-1979. [PMID: 38472600 PMCID: PMC11190005 DOI: 10.1007/s11517-024-03058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The primary purpose of this paper is to establish a healthcare ecosystem framework for COVID-19, CronaSona. Unlike some studies that focus solely on detection or forecasting, CronaSona aims to provide a holistic solution, for managing data and/or knowledge, incorporating detection, forecasting, expert advice, treatment recommendations, real-time tracking, and finally visualizing results. The innovation lies in creating a comprehensive healthcare ecosystem framework and an application that not only aids in COVID-19 diagnosis but also addresses broader health challenges. The main objective is to introduce a novel framework designed to simplify the development and construction of applications by standardizing essential components required for applications focused on addressing diseases. CronaSona includes two parts, which are stakeholders and shared components, and four subsystems: (1) the management information subsystem, (2) the expert subsystem, (3) the COVID-19 detection and forecasting subsystem, and (4) the mobile tracker subsystem. In the proposed framework, a CronaSona app. was built to try to put the virus under control. It is a reactive mobile application for all users, especially COVID-19 patients and doctors. It aims to provide a reliable diagnostic tool for COVID-19 using deep learning techniques, accelerating diagnosis and referral processes, and focuses on forecasting the transmission of COVID-19. It also includes a mobile tracker subsystem for monitoring potential carriers and minimizing the virus spread. It was built to compete with other applications and to help people face the COVID-19 virus. Upon receiving the proposed framework, an application was developed to validate and test the framework's functionalities. The main aim of the developed application, CronaSona app., is to develop and test a reliable diagnostic tool using deep learning techniques to avoid increasing the spread of the disease as much as possible and to accelerate the diagnosis and referral of patients by detecting COVID-19 features from their chest X-ray images. By using CronaSona, human health is saved and stress is reduced by knowing everything about the virus. It performs with the highest accuracy, F1-score, and precision, with consecutive values of 97%, 97.6%, and 96.6%.
Collapse
Affiliation(s)
- Samah A Z Hassan
- Information System Department, Faculty of Computers & Information, Suez University, Suez, Egypt.
| |
Collapse
|
3
|
Chen JX, Shen YC, Peng SL, Chen YW, Fang HY, Lan JL, Shih CT. Pattern classification of interstitial lung diseases from computed tomography images using a ResNet-based network with a split-transform-merge strategy and split attention. Phys Eng Sci Med 2024; 47:755-767. [PMID: 38436886 DOI: 10.1007/s13246-024-01404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
In patients with interstitial lung disease (ILD), accurate pattern assessment from their computed tomography (CT) images could help track lung abnormalities and evaluate treatment efficacy. Based on excellent image classification performance, convolutional neural networks (CNNs) have been massively investigated for classifying and labeling pathological patterns in the CT images of ILD patients. However, previous studies rarely considered the three-dimensional (3D) structure of the pathological patterns of ILD and used two-dimensional network input. In addition, ResNet-based networks such as SE-ResNet and ResNeXt with high classification performance have not been used for pattern classification of ILD. This study proposed a SE-ResNeXt-SA-18 for classifying pathological patterns of ILD. The SE-ResNeXt-SA-18 integrated the multipath design of the ResNeXt and the feature weighting of the squeeze-and-excitation network with split attention. The classification performance of the SE-ResNeXt-SA-18 was compared with the ResNet-18 and SE-ResNeXt-18. The influence of the input patch size on classification performance was also evaluated. Results show that the classification accuracy was increased with the increase of the patch size. With a 32 × 32 × 16 input, the SE-ResNeXt-SA-18 presented the highest performance with average accuracy, sensitivity, and specificity of 0.991, 0.979, and 0.994. High-weight regions in the class activation maps of the SE-ResNeXt-SA-18 also matched the specific pattern features. In comparison, the performance of the SE-ResNeXt-SA-18 is superior to the previously reported CNNs in classifying the ILD patterns. We concluded that the SE-ResNeXt-SA-18 could help track or monitor the progress of ILD through accuracy pattern classification.
Collapse
Affiliation(s)
- Jian-Xun Chen
- Department of Thoracic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Cheng Shen
- Department of Thoracic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Yi-Wen Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsin-Yuan Fang
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Joung-Liang Lan
- School of Medicine, China Medical University, Taichung, Taiwan
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Ting Shih
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Kosar A, Asif M, Ahmad MB, Akram W, Mahmood K, Kumari S. Towards classification and comprehensive analysis of AI-based COVID-19 diagnostic techniques: A survey. Artif Intell Med 2024; 151:102858. [PMID: 38583369 DOI: 10.1016/j.artmed.2024.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The unpredictable pandemic came to light at the end of December 2019, known as the novel coronavirus, also termed COVID-19, identified by the World Health Organization (WHO). The virus first originated in Wuhan (China) and rapidly affected most of the world's population. This outbreak's impact is experienced worldwide because it causes high mortality risk, many cases, and economic falls. Around the globe, the total number of cases and deaths reported till November 12, 2022, were >600 million and 6.6 million, respectively. During the period of COVID-19, several diverse diagnostic techniques have been proposed. This work presents a systematic review of COVID-19 diagnostic techniques in response to such acts. Initially, these techniques are classified into different categories based on their working principle and detection modalities, i.e. chest X-ray imaging, cough sound or respiratory patterns, RT-PCR, antigen testing, and antibody testing. After that, a comparative analysis is performed to evaluate these techniques' efficacy which may help to determine an optimum solution for a particular scenario. The findings of the proposed work show that Artificial Intelligence plays a vital role in developing COVID-19 diagnostic techniques which support the healthcare system. The related work can be a footprint for all the researchers, available under a single umbrella. Additionally, all the techniques are long-lasting and can be used for future pandemics.
Collapse
Affiliation(s)
- Amna Kosar
- Department of Computer Science, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Asif
- Department of Computer Science, Lahore Garrison University, Lahore, Pakistan
| | - Maaz Bin Ahmad
- College of Computing and Information Sciences, Karachi Institute of Economics and Technology (KIET), Karachi, Pakistan
| | - Waseem Akram
- Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Douliu, Taiwan, ROC
| | - Khalid Mahmood
- Graduate School of Intelligent Data Science, National Yunlin University of Science and Technology, Douliu, Taiwan, ROC.
| | - Saru Kumari
- Departement of Mathematics, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
5
|
Singh S, Kumar M, Kumar A, Verma BK, Abhishek K, Selvarajan S. Efficient pneumonia detection using Vision Transformers on chest X-rays. Sci Rep 2024; 14:2487. [PMID: 38291130 PMCID: PMC10827725 DOI: 10.1038/s41598-024-52703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Pneumonia is a widespread and acute respiratory infection that impacts people of all ages. Early detection and treatment of pneumonia are essential for avoiding complications and enhancing clinical results. We can reduce mortality, improve healthcare efficiency, and contribute to the global battle against a disease that has plagued humanity for centuries by devising and deploying effective detection methods. Detecting pneumonia is not only a medical necessity but also a humanitarian imperative and a technological frontier. Chest X-rays are a frequently used imaging modality for diagnosing pneumonia. This paper examines in detail a cutting-edge method for detecting pneumonia implemented on the Vision Transformer (ViT) architecture on a public dataset of chest X-rays available on Kaggle. To acquire global context and spatial relationships from chest X-ray images, the proposed framework deploys the ViT model, which integrates self-attention mechanisms and transformer architecture. According to our experimentation with the proposed Vision Transformer-based framework, it achieves a higher accuracy of 97.61%, sensitivity of 95%, and specificity of 98% in detecting pneumonia from chest X-rays. The ViT model is preferable for capturing global context, comprehending spatial relationships, and processing images that have different resolutions. The framework establishes its efficacy as a robust pneumonia detection solution by surpassing convolutional neural network (CNN) based architectures.
Collapse
Affiliation(s)
| | - Manoj Kumar
- JSS Academy of Technical Education, Noida, India
| | - Abhay Kumar
- National Institute of Technology Patna, Patna, India
| | | | | | - Shitharth Selvarajan
- School of Built Environment, Engineering and Computing, Leeds Beckett University, LS1 3HE, Leeds, UK.
| |
Collapse
|
6
|
Asif S, Zhao M, Chen X, Zhu Y. StoneNet: An Efficient Lightweight Model Based on Depthwise Separable Convolutions for Kidney Stone Detection from CT Images. Interdiscip Sci 2023; 15:633-652. [PMID: 37452930 DOI: 10.1007/s12539-023-00578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Kidney stone disease is one of the most common and serious health problems in much of the world, leading to many hospitalizations with severe pain. Detecting small stones is difficult and time-consuming, so an early diagnosis of kidney disease is needed to prevent the loss of kidney failure. Recent advances in artificial intelligence (AI) found to be very successful in the diagnosis of various diseases in the biomedical field. However, existing models using deep networks have several problems, such as high computational cost, long training time, and huge parameters. Providing a low-cost solution for diagnosing kidney stones in a medical decision support system is of paramount importance. Therefore, in this study, we propose "StoneNet", a lightweight and high-performance model for the detection of kidney stones based on MobileNet using depthwise separable convolution. The proposed model includes a combination of global average pooling (GAP), batch normalization, dropout layer, and dense layers. Our study shows that using GAP instead of flattening layers greatly improves the robustness of the model by significantly reducing the parameters. The developed model is benchmarked against four pre-trained models as well as the state-of-the-art heavy model. The results show that the proposed model can achieve the highest accuracy of 97.98%, and only requires training and testing time of 996.88 s and 14.62 s. Several parameters, such as different batch sizes and optimizers, were considered to validate the proposed model. The proposed model is computationally faster and provides optimal performance than other considered models. Experiments on a large kidney dataset of 1799 CT images show that StoneNet has superior performance in terms of higher accuracy and lower complexity. The proposed model can assist the radiologist in faster diagnosis of kidney stones and has great potential for deployment in real-time applications.
Collapse
Affiliation(s)
- Sohaib Asif
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Ming Zhao
- School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Xuehan Chen
- School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Yusen Zhu
- School of Mathematics, Hunan University, Changsha, China
| |
Collapse
|
7
|
Gürsoy E, Kaya Y. An overview of deep learning techniques for COVID-19 detection: methods, challenges, and future works. MULTIMEDIA SYSTEMS 2023; 29:1603-1627. [PMID: 37261262 PMCID: PMC10039775 DOI: 10.1007/s00530-023-01083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/20/2023] [Indexed: 06/02/2023]
Abstract
The World Health Organization (WHO) declared a pandemic in response to the coronavirus COVID-19 in 2020, which resulted in numerous deaths worldwide. Although the disease appears to have lost its impact, millions of people have been affected by this virus, and new infections still occur. Identifying COVID-19 requires a reverse transcription-polymerase chain reaction test (RT-PCR) or analysis of medical data. Due to the high cost and time required to scan and analyze medical data, researchers are focusing on using automated computer-aided methods. This review examines the applications of deep learning (DL) and machine learning (ML) in detecting COVID-19 using medical data such as CT scans, X-rays, cough sounds, MRIs, ultrasound, and clinical markers. First, the data preprocessing, the features used, and the current COVID-19 detection methods are divided into two subsections, and the studies are discussed. Second, the reported publicly available datasets, their characteristics, and the potential comparison materials mentioned in the literature are presented. Third, a comprehensive comparison is made by contrasting the similar and different aspects of the studies. Finally, the results, gaps, and limitations are summarized to stimulate the improvement of COVID-19 detection methods, and the study concludes by listing some future research directions for COVID-19 classification.
Collapse
Affiliation(s)
- Ercan Gürsoy
- Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey
| | - Yasin Kaya
- Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey
| |
Collapse
|