1
|
Kong H, Chen X, Lee W, Xie X, Tao Y, Li M. Dual-color fluorescence detection of tumor-derived extracellular vesicles using a specific and serum-stable membrane-fusion approach. Biosens Bioelectron 2025; 278:117302. [PMID: 40101657 DOI: 10.1016/j.bios.2025.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
Tumor-derived extracellular vesicles (tEVs), which are essential mediators for cell-to-cell communication during tumorigenesis and tumor development, have demonstrated significant diagnostic potential in cancer liquid biopsy, particularly through biomarkers like membrane proteins and inner microRNAs. However, traditional detection methods such as ELISA and qRT-PCR encounter challenges with low sensitivity and specificity, complex procedures, and high costs. Although emerging biosensors have been developed, these methods are limited to detecting a single type of tEV biomarker, which may result in misdiagnoses due to false-positive or false-negative signals. Herein, we introduce a specific and serum-stable membrane-fusion approach (SSMFA) capable of simultaneously detecting tEV proteins and microRNAs via dual-color fluorescence analysis. In this strategy, the established epithelial cell adhesion molecule (EpCAM) aptamer-modified serum-stable membrane-fusion liposome (AptSMFL) is labeled with fluorescence resonance energy transfer (FRET) dye pairs, which can specifically recognize EpCAM-overexpressed tEVs and induce serum-stable membrane fusion, allowing the quantification of EpCAM protein levels through red fluorescence changes resulting from FRET alterations. Meanwhile, SSMFA facilitates efficient transfection of the CRISPR/Cas13a probe into tEVs to analyze the levels of microRNA-21 (miR-21) in EpCAM-positive tEVs via green fluorescence detection. When tested on serum samples from hepatocellular carcinoma models, the SSMFA exhibited minimal sample volume requirement and rapid assay time (2 h) to effectively achieve accurate quantification of both tEV EpCAM protein and miR-21 levels. Additionally, this dual-biomarker detection method showed a strong correlation with tumor burden and significantly improved cancer diagnostic accuracy (AUC = 0.98), underscoring the potential of SSMFA as a promising tEV-based liquid biopsy assay for cancer diagnosis.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaodie Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Weijen Lee
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China.
| |
Collapse
|
2
|
Topiwala IS, Ramachandran A, A MS, Sengupta R, Dhar R, Devi A. Exosomes and tumor virus interlink: A complex side of cancer. Pathol Res Pract 2024; 266:155747. [PMID: 39647256 DOI: 10.1016/j.prp.2024.155747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Extracellular Vesicles (EVs) based cancer research reveals several complicated sides of cancer. EVs are classified as several subpopulations such as microvesicles, apoptotic bodies, and exosomes. In cancer, exosomes play a significant role as a cellular messenger in tumor development and progression. Tumor-derived exosomes (TEXs) are also a theranostic tool for cancer. Tumor virus-infected cell-derived EVs promote cancer development. Exosomes (a subpopulation of EVs) play a significant role in converting noninfecting cells to infected cells. It transports several biological active cargo (DNA, RNA, protein, and virions) towards the noninfected cells. This cellular transport enhances infection rates via reprogramming of noninfected cells. In this review, we explore tumor viruses, exosomes and tumor viruses interlink, the theranostic landscape of exosomes in tumor virus-associated cancer and the future orientation of exosomes-based virus oncology.
Collapse
Affiliation(s)
- Ibrahim S Topiwala
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Aparna Ramachandran
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Meghana Shakthi A
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Ranjini Sengupta
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India.
| |
Collapse
|
3
|
Liu Z, Jiang X, You H, Tang Z, Ma Y, Che N, Liu W, Ma C. Extracellular vesicles derived from bone marrow mesenchymal stem cells ameliorate liver fibrosis via micro-7045-5p. Mol Cell Biochem 2024:10.1007/s11010-024-05152-4. [PMID: 39516341 DOI: 10.1007/s11010-024-05152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Liver fibrosis is a crucial pathological factor in the persistence and progression of chronic liver disease. Increasing evidence has demonstrated the significant potential of extracellular vesicles (EVs) secreted by bone marrow mesenchymal stem cells (BMSCs) in the clinical treatment of liver fibrosis. This study aimed to mechanistically investigate the impact of BMSC-derived EVs (BMSC-EVs) containing miR-7045-5p on the autophagy of activated hepatic stellate cells (HSCs) during liver fibrosis. METHOD BMSCs were isolated from the bilateral femurs and tibiae of mice. Their identity was confirmed via immunofluorescence staining for the BMSC marker CD44. EVs were harvested from BMSC culture medium at passages 3-5 and then DiR-labeled. Labeled BMSC-EVs were co-cultured with the HSC-T6 cell line to determine their uptake and sub-cellular localization in HSCs. Various methods, such as western blotting, qRT-PCR, and ELISA, were employed to assess the effects of BMSC-EVs on the fibrotic activation (marked by COL1-A1 and α-SMA expression) and autophagy (p62, Atg16L1, Beclin-1, and LC3 expression) of HSC-T6 cells. Additionally, the BMSC-EV-induced changes in autophagy-related signaling pathways (PI3K, AKT, and mTOR pathways) in these cells were evaluated. Finally, the gene-chip detection technology was utilized to predict the involvement of BMSC-EV-derived miRNAs (BMSC-EV-miRs) in the observed effects, with a focus on miR-7045-5p, and our findings were validated in HSCs transfected with a miR-7045-5p mimic. RESULT The gene-chip detection results indicated that miR-7045-5p was enriched in BMSC-EVs compared with BMSCs and targeted Akt. In the CCl4-induced mouse model of liver fibrosis, BMSC-EV-miR-7045-5p ameliorated the fibrosis and enhanced liver function by suppressing the PI3K/Akt/mTOR signaling pathway. Additionally, miR-7045-5p inhibited TGF-β1-induced fibrotic activation of HSC-T6 cells. CONCLUSION BMSC-EVs promote autophagy in HSC-T6 cells and alleviate liver fibrosis by inhibiting the PI3K/Akt/mTOR signaling pathway at least in part by delivering anti-fibrotic miRNAs, such as miR-7045-5p.
Collapse
Affiliation(s)
- Zhejun Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaodan Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongjie You
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zuoqing Tang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yun Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Niancong Che
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| | - Chongyang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Chu YD, Chen MC, Yeh CT, Lai MW. Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects. J Biomed Sci 2024; 31:97. [PMID: 39369194 PMCID: PMC11453063 DOI: 10.1186/s12929-024-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 10/07/2024] Open
Abstract
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mi-Chi Chen
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Li X, Xiao W, Yang H, Zhang X. Exosome in renal cell carcinoma progression and implications for targeted therapy. Front Oncol 2024; 14:1458616. [PMID: 39296981 PMCID: PMC11408481 DOI: 10.3389/fonc.2024.1458616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Renal cell carcinoma is a urological malignancy with a high metastatic rate, while targeted therapy for renal cell carcinoma still has much room for improvement. Some cutting-edge researches have focused on exosome in cancer treatment and there are some breakthroughs in breast cancer, lung cancer, and pancreatic cancer. Up to now, exosome in renal cell carcinoma progression and implications for targeted therapy has been under research by scientists. In this review, we have summarized the structure, formation, uptake, functions, and detection of exosomes, classified the mechanisms of exosomes that cause renal cell carcinoma progression, and listed the promising utilization of exosomes in targeted therapy for renal cell carcinoma. In all, based on the mechanisms of exosomes causing renal cell carcinoma progression and borrowing the successful experience from renal cell carcinoma models and other cancers, exosomes will possibly be a promising target for therapy in renal cell carcinoma in the foreseeable future.
Collapse
Affiliation(s)
- Xinwei Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
6
|
Liang Y, Liu B, Xiao L, Ren S, Sheng X, Qi X, Zhang Z, Yuan N, Guo K, Wang X. Exosomes-mediated transmission of standard bovine viral diarrhea strain OregonC24Va in bovine trophoblast cells. J Reprod Immunol 2024; 164:104254. [PMID: 38761508 DOI: 10.1016/j.jri.2024.104254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/04/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Bovine viral diarrhoea virus (BVDV) can infect cows on days 30-110 of gestation and crossing the placental barrier, resulting in persistently infected (PI) and causing significant economic losses to dairy farming. Bovine placental trophoblast cells (BTCs) are the major cells in the early chorionic tissue of the placenta and play important roles in placental resistance to viral transmission. In this study, we have confirmed that BTCs is among a groups of cell types those could be infected by BVDV in vivo, and BVDV infection stimulates the autophagic responses in BTCs and promotes the release of exosomes. Meanwhile, the exosomes derived from BTCs can be used by BVDV to spread between placental trophoblast cells, and this mode of transmission cannot be blocked by antibodies against the BVDV E2 protein, whereas the replication and spread of BVDV in BTCs can be blocked by inhibiting autophagy and exosomogenesis. Our study provides a theoretical and practical basis for scientific prediction and intervention of reproductive disorders caused by BVDV infection in cows of different gestation periods from a novel perspective.
Collapse
Affiliation(s)
- Yixuan Liang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Bingying Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Siqi Ren
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhenhao Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Naihan Yuan
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kaijun Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
7
|
Adugna A, Muche Y, Melkamu A, Jemal M, Belew H, Amare GA. Current updates on the molecular and genetic signals as diagnostic and therapeutic targets for hepatitis B virus-associated hepatic malignancy. Heliyon 2024; 10:e34288. [PMID: 39100497 PMCID: PMC11295980 DOI: 10.1016/j.heliyon.2024.e34288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/28/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Liver cancer caused by the hepatitis B virus (HBV) is the third most common cancer-related cause of death worldwide. Early detection of HBV-caused hepatic tumors increases the likelihood of a successful cure. Molecular and genetic signals are becoming more and more recognized as possible indicators of HBV-associated hepatic malignancy and of how well a treatment is working. As a result, we have discussed the current literature on molecular and genetic sensors, including extracellular vesicle microRNAs (EV-miRNAs), long non-coding circulating RNAs (lncRNAs), extracellular vesicles (EVs), and cell free circulating DNA (cfDNA), for the diagnosis and forecasting of HBV-related hepatic cancer. Extracellular vesicle microRNAs such as miR-335-5p, miR-172-5p, miR-1285-5p, miR-497-5p, miR-636, miR-187-5p, miR-223-3p, miR-21, miR-324-3p, miR-210-3p, miR-718, miR-122, miR-522, miR-0308-3p, and miR-375 are essential for the posttranscriptional regulation of oncogenes in hepatic cells as well as the epigenetic modulation of many internal and external signaling pathways in HBV-induced hepatic carcinogenesis. LncRNAs like lnc01977, HULC (highly up-regulated in liver cancer), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), and HOTAIR (hox transcript antisense intergenic RNA) have been demonstrated to control hepatic-tumors cell growth, relocation, encroachment, and cell death resiliency. They are also becoming more and more involved in immune tracking, hepatic shifting, vasculature oversight, and genomic destabilization. EVs are critical mediators involved in multiple aspects of liver-tumors like angiogenesis, immunology, tumor formation, and the dissemination of malignant hepatocytes. Furthermore, cfDNA contributes to signals associated with tumors, including mutations and abnormal epigenetic changes during HBV-related hepatic tumorigenesis.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abateneh Melkamu
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
8
|
Mukerjee N, Maitra S, Ghosh A, Sengupta T, Alexiou A, Subramaniyan V, Anand K. Synergizing Proteolysis-Targeting Chimeras and Nanoscale Exosome-Based Delivery Mechanisms for HIV and Antiviral Therapeutics. ACS APPLIED NANO MATERIALS 2024; 7:3499-3514. [DOI: 10.1021/acsanm.3c04537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, West Bengal, Kolkata 700126, India
| | - Swastika Maitra
- Department of Microbiology, Adamas University, West Bengal, Kolkata 700126, India
| | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurasha Srimanta Sankaradeva Viswavidyalaya, Guwahati, Assam 781032, India
| | - Tapti Sengupta
- Department of Microbiology, West Bengal State University, West Bengal, Kolkata 700126, India
| | - Athanasios Alexiou
- Department of Health Sciences, Novel Global Community and Educational Foundation, Hebersham, New South Wales 2070, Australia
- AFNP Med, Wien 1030, Austria
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
9
|
Sun G, Kropp KA, Kirchner M, Plückebaum N, Selich A, Serrero M, Dhingra A, Cabrera JR, Ritter B, Bauerfeind R, Wyler E, Landthaler M, Schambach A, Sodeik B, Mertins P, Viejo-Borbolla A. Herpes simplex virus type 1 modifies the protein composition of extracellular vesicles to promote neurite outgrowth and neuroinfection. mBio 2024; 15:e0330823. [PMID: 38275838 PMCID: PMC10865794 DOI: 10.1128/mbio.03308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The highly prevalent herpes simplex virus type 1 (HSV-1) causes a range of diseases, including cold sores, blinding keratitis, and life-threatening encephalitis. HSV-1 initially replicates in epithelial cells, enters the peripheral nervous system via neurites, and establishes lifelong infection in the neuronal cell bodies. Neurites are highly dynamic structures that grow or retract in response to attractive or repulsive cues, respectively. Here, we show that infection with HSV-1, but not with a mutant virus lacking glycoprotein G (gG), reduced the repulsive effect of epithelial cells on neurite outgrowth and facilitated HSV-1 invasion of neurons. HSV-1 gG was required and sufficient to induce neurite outgrowth by modifying the protein composition of extracellular vesicles, increasing the amount of neurotrophic and neuroprotective proteins, including galectin-1. Antibodies directed against galectin-1 neutralized the capacity of extracellular vesicles released from HSV-1-infected cells to promote neurite outgrowth. Our study provides new insights into the neurotropism of HSV-1 and identifies a viral protein that modifies the protein composition of extracellular vesicles to stimulate neurite outgrowth and invasion of the nervous system.IMPORTANCEHerpes simplex virus type 1 (HSV-1) must infect neurites (or nerve endings) to establish a chronic infection in neurons. Neurites are highly dynamic structures that retract or grow in the presence of repulsive or attractive proteins. Some of these proteins are released by epithelial cells in extracellular vesicles and act upon interaction with their receptor present on neurites. We show here that HSV-1 infection of epithelial cells modulated their effect on neurites, increasing neurite growth. Mechanistically, HSV-1 glycoprotein G (gG) modifies the protein composition of extracellular vesicles released by epithelial cells, increasing the amount of attractive proteins that enhance neurite outgrowth and facilitate neuronal infection. These results could inform of therapeutic strategies to block HSV-1 induction of neurite outgrowth and, thereby, neuronal infection.
Collapse
Affiliation(s)
- Guorong Sun
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Marieluise Kirchner
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Manutea Serrero
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Akshay Dhingra
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jorge Rubén Cabrera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Research Core Unit for Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Philipp Mertins
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
11
|
Gheitasi H, Sabbaghian M, Shekarchi AA, Mirmazhary AA, Poortahmasebi V. Exosome-mediated regulation of inflammatory pathway during respiratory viral disease. Virol J 2024; 21:30. [PMID: 38273382 PMCID: PMC10811852 DOI: 10.1186/s12985-024-02297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Viruses have developed many mechanisms by which they can stimulate or inhibit inflammation and cause various diseases, including viral respiratory diseases that kill many people every year. One of the mechanisms that viruses use to induce or inhibit inflammation is exosomes. Exosomes are small membrane nanovesicles (30-150 nm) released from cells that contain proteins, DNA, and coding and non-coding RNA species. They are a group of extracellular vesicles that cells can take up to produce and mediate communication. Intercellular effect exosomes can deliver a broad confine of biological molecules, containing nucleic acids, proteins, and lipids, to the target cell, where they can convey therapeutic or pathogenic consequences through the modulation of inflammation and immune processes. Recent research has shown that exosomes can deliver entire virus genomes or virions to distant target cells, then the delivered viruses can escape the immune system and infect cells. Adenoviruses, orthomyxoviruses, paramyxoviruses, respiratory syncytial viruses, picornaviruses, coronaviruses, and rhinoviruses are mostly related to respiratory diseases. In this article, we will first discuss the current knowledge of exosomes. We will learn about the relationship between exosomes and viral infections, and We mention the inflammations caused by viruses in the airways, the role of exosomes in them, and finally, we examine the relationship between the viruses as mentioned earlier, and the regulation of inflammatory pathways that play a role in causing the disease.
Collapse
Affiliation(s)
- Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ali Mirmazhary
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Chakraborty A, Badhe RV, Abbas M, Chauhan A, Jaiswal A, Fareed R, Kumar V, Duan Y, Dutta N. Role of exosomal RNA in wound healing and tissue repair. EXOSOMAL RNA 2024:295-323. [DOI: 10.1016/b978-0-443-14008-2.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Teymouri S, Pourhajibagher M, Bahador A. Exosomes: Friends or Foes in Microbial Infections? Infect Disord Drug Targets 2024; 24:e170124225730. [PMID: 38317472 DOI: 10.2174/0118715265264388231128045954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 02/07/2024]
Abstract
The use of new approaches is necessary to address the global issue of infections caused by drug-resistant pathogens. Antimicrobial photodynamic therapy (aPDT) is a promising approach that reduces the emergence of drug resistance, and no resistance has been reported thus far. APDT involves using a photosensitizer (PS), a light source, and oxygen. The mechanism of aPDT is that a specific wavelength of light is directed at the PS in the presence of oxygen, which activates the PS and generates reactive oxygen species (ROS), consequently causing damage to microbial cells. However, due to the PS's poor stability, low solubility in water, and limited bioavailability, it is necessary to employ drug delivery platforms to enhance the effectiveness of PS in photodynamic therapy (PDT). Exosomes are considered a desirable carrier for PS due to their specific characteristics, such as low immunogenicity, innate stability, and high ability to penetrate cells, making them a promising platform for drug delivery. Additionally, exosomes also possess antimicrobial properties, although in some cases, they may enhance microbial pathogenicity. As there are limited studies on the use of exosomes for drug delivery in microbial infections, this review aims to present significant points that can provide accurate insights.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran
| |
Collapse
|
14
|
Yao Y, Chen D, Yue Z. The regulatory role and mechanism of exosomes in hepatic fibrosis. Front Pharmacol 2023; 14:1284742. [PMID: 38108065 PMCID: PMC10722150 DOI: 10.3389/fphar.2023.1284742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Globally, the prevalence and fatality rates of liver disorders are on the rise. Among chronic liver conditions, hepatic fibrosis stands out as a central pathological process. Despite this, approved treatments for hepatic fibrosis are currently lacking. Exosomes, small extracellular vesicles secreted by various cell types, play a significant role in intercellular communication and have emerged as essential mediators in liver fibrosis. In this regard, this review compiles the mechanisms through which exosomes regulate hepatic fibrosis, encompassing diverse targets and signaling pathways. Furthermore, it delves into the regulatory impact of exosomes modulated by natural plant-derived, endogenous, and synthetic compounds as potential therapeutic strategies for addressing hepatic fibrosis.
Collapse
Affiliation(s)
- Youli Yao
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Da Chen
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Zengchang Yue
- Department of Neurology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| |
Collapse
|
15
|
Wang M, Zheng L, Ma S, Lin R, Li J, Yang S. Biogenesis and function of exosome lncRNAs and their role in female pathological pregnancy. Front Endocrinol (Lausanne) 2023; 14:1191721. [PMID: 37745705 PMCID: PMC10515720 DOI: 10.3389/fendo.2023.1191721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Preeclampsia, gestational diabetes mellitus, and recurrent spontaneous abortion are common maternal pregnancy complications that seriously endanger women's lives and health, and their occurrence is increasing year after year with a rejuvenation trend. In contrast to biomarkers found freely in tissues or body fluids, exosomes exist in a relatively independent environment and provide a higher level of stability. As backbone molecules, guidance molecules, and signaling molecules in the nucleus, lncRNAs can regulate gene expression. In the cytoplasm, lncRNAs can influence gene expression levels by modifying mRNA stability, acting as competitive endogenous RNAs to bind miRNAs, and so on. Exosomal lncRNAs can exist indefinitely and are important in intercellular communication and signal transduction. Changes in maternal serum exosome lncRNA expression can accurately and timely reflect the progression and regression of pregnancy-related diseases. The purpose of this paper is to provide a reference for clinical research on the pathogenesis, diagnosis, and treatment methods of pregnancy-related diseases by reviewing the role of exosome lncRNAs in female pathological pregnancy and related molecular mechanisms.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ruixin Lin
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiahui Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuli Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Todorova VK, Byrum SD, Mackintosh SG, Jamshidi-Parsian A, Gies AJ, Washam CL, Jenkins SV, Spiva T, Bowman E, Reyna NS, Griffin RJ, Makhoul I. Exosomal MicroRNA and Protein Profiles of Hepatitis B Virus-Related Hepatocellular Carcinoma Cells. Int J Mol Sci 2023; 24:13098. [PMID: 37685904 PMCID: PMC10487651 DOI: 10.3390/ijms241713098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Infection with hepatitis B virus (HBV) is a main risk factor for hepatocellular carcinoma (HCC). Extracellular vesicles, such as exosomes, play an important role in tumor development and metastasis, including regulation of HBV-related HCC. In this study, we have characterized exosome microRNA and proteins released in vitro from hepatitis B virus (HBV)-related HCC cell lines SNU-423 and SNU-182 and immortalized normal hepatocyte cell lines (THLE2 and THLE3) using microRNA sequencing and mass spectrometry. Bioinformatics, including functional enrichment and network analysis, combined with survival analysis using data related to HCC in The Cancer Genome Atlas (TCGA) database, were applied to examine the prognostic significance of the results. More than 40 microRNAs and 200 proteins were significantly dysregulated (p < 0.05) in the exosomes released from HCC cells in comparison with the normal liver cells. The functional analysis of the differentially expressed exosomal miRNAs (i.e., mir-483, mir-133a, mir-34a, mir-155, mir-183, mir-182), their predicted targets, and exosomal differentially expressed proteins (i.e., POSTN, STAM, EXOC8, SNX9, COL1A2, IDH1, FN1) showed correlation with pathways associated with HBV, virus activity and invasion, exosome formation and adhesion, and exogenous protein binding. The results from this study may help in our understanding of the role of HBV infection in the development of HCC and in the development of new targets for treatment or non-invasive predictive biomarkers of HCC.
Collapse
Affiliation(s)
- Valentina K. Todorova
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Allen J. Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Timothy Spiva
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Emily Bowman
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Nathan S. Reyna
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Issam Makhoul
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
17
|
Jiang X, Wu S, Hu C. A narrative review of the role of exosomes and caveolin-1 in liver diseases and cancer. Int Immunopharmacol 2023; 120:110284. [PMID: 37196562 DOI: 10.1016/j.intimp.2023.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Exosomes are nanoscale (40-100 nm) vesicles secreted by different types of cells and have attracted extensive interest in recent years because of their unique role in disease development. It can carry related goods, such as lipids, proteins, and nucleic acids, to mediate intercellular communication. This review summarizes exosome biogenesis, release, uptake, and their role in mediating the development of liver diseases and cancer, such as viral hepatitis, drug-induced liver injury, alcohol-related liver disease, non-alcoholic fatty liver disease, hepatocellular carcinoma, and other tumors. Meanwhile, a fossa structural protein, caveolin-1(CAV-1), has also been proposed to be involved in the development of various diseases, especially liver diseases and tumors. In this review, we discuss the role of CAV-1 in liver diseases and different tumor stages (inhibition of early growth and promotion of late metastasis) and the underlying mechanisms by which CAV-1 regulates the process. In addition, CAV-1 has also been found to be a secreted protein that can be released directly through the exosome pathway or change the cargo composition of the exosomes, thus contributing to enhancing the metastasis and invasion of cancer cells during the late stage of tumor development. In conclusion, the role of CAV-1 and exosomes in disease development and the association between them remains to be one challenging uncharted area.
Collapse
Affiliation(s)
- Xiangfu Jiang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Shuai Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Chengmu Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
18
|
Wang M, Zheng L, Lin R, Ma S, Li J, Yang S. A comprehensive overview of exosome lncRNAs: emerging biomarkers and potential therapeutics in endometriosis. Front Endocrinol (Lausanne) 2023; 14:1199569. [PMID: 37455911 PMCID: PMC10338222 DOI: 10.3389/fendo.2023.1199569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Endometriosis is a gynecological condition that significantly impacting women's daily lives. In recent years, the incidence of endometriosis has been rising yearly and is now an essential contributor to female infertility. Exosomes are extracellular vesicles (EVs) that carry long noncoding RNA (lncRNA) and shield lncRNA from the outside environment thanks to their vesicle-like structure. The role of exosome-derived lncRNAs in endometriosis is also receiving more study as high-throughput sequencing technology develops. Several lncRNAs with variable expression may be crucial to the emergence and growth of endometriosis. The early diagnosis of endometriosis will be considerably improved by further high specificity and sensitivity Exosome lncRNA screening. Exosomes assist lncRNAs in carrying out their roles, offering a new target for creating endometriosis-specific medications. In order to serve as a reference for clinical research on the pathogenesis, diagnosis, and treatment options of endometriosis, this paper covers the role of exosome lncRNAs in endometriosis and related molecular mechanisms.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ruixin Lin
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Jiahui Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuli Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Mukerjee N, Chaudhari SY, Jha S, Sinha S, Jadhav SB, Dhar R, Rathod VD, Nanaware RB, Chakole RD, Sharma D, Sharma PP, Pawar SD, Ghosh A. Emerging hepatitis C virus and neuron-allied neuroviral intertwine and its therapeutic approaches. Int J Surg 2023; 109:1810-1812. [PMID: 36906766 PMCID: PMC10389473 DOI: 10.1097/js9.0000000000000074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/20/2022] [Indexed: 03/13/2023]
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Barasat, Kolkata, West Bengal, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Sydney, New South Wales, Australia
| | | | - Swastika Jha
- Symbiosis School of Biological Sciences, SIU, Pune, Maharashtra
| | - Shweta Sinha
- Manuh Solutions India Private Limited, Bangalore, Karnataka
| | | | - Rajib Dhar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu
| | - Vivek D. Rathod
- Department of Chemical Technology, Dr Babasaheb Ambedkar Marathwada University, Aurangabad
| | - Rajesh B. Nanaware
- School of Pharmacy, Dr. Vishwanath Karad MIT-World Peace University, Pune
| | | | - Devesh Sharma
- ICMR – National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh
| | - Prince Prashant Sharma
- Department of Pharmaceutical Sciences, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand
| | - Sonali D. Pawar
- MGV’s SPH College of Pharmacy, Loknete Vyankatrao Hiray Marg, Malegaon Camp, Malegaon, Nasik, Maharashtra
| | - Arabinda Ghosh
- Department of Botany, Microbiology Division, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
20
|
Yin KL, Li M, Song PP, Duan YX, Ye WT, Tang W, Kokudo N, Gao Q, Liao R. Unraveling the Emerging Niche Role of Hepatic Stellate Cell-derived Exosomes in Liver Diseases. J Clin Transl Hepatol 2023; 11:441-451. [PMID: 36643031 PMCID: PMC9817040 DOI: 10.14218/jcth.2022.00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cells (HSCs) play an essential role in various liver diseases, and exosomes are critical mediators of intercellular communication in local and distant microenvironments. Cellular crosstalk between HSCs and surrounding multiple tissue-resident cells promotes or inhibits the activation of HSCs. Substantial evidence has revealed that HSC-derived exosomes are involved in the occurrence and development of liver diseases through the regulation of retinoid metabolism, lipid metabolism, glucose metabolism, protein metabolism, and mitochondrial metabolism. HSC-derived exosomes are underpinned by vehicle molecules, such as mRNAs and microRNAs, that function in, and significantly affect, the processes of various liver diseases, such as acute liver injury, alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, fibrosis, and cancer. As such, numerous exosomes derived from HSCs or HSC-associated exosomes have attracted attention because of their biological roles and translational applications as potential targets for therapeutic targets. Herein, we review the pathophysiological and metabolic processes associated with HSC-derived exosomes, their roles in various liver diseases and their potential clinical application.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pei-Pei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Tao Ye
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kokudo
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Correspondence to: Qiang Gao, Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 180 Fenglin Road, Shanghai 200032, China. ORCID: https://orcid.org/0000-0002-6695-9906. ; Rui Liao, Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China. ORCID: https://orcid.org/0000-0002-0057-2792. E-mail:
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Correspondence to: Qiang Gao, Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 180 Fenglin Road, Shanghai 200032, China. ORCID: https://orcid.org/0000-0002-6695-9906. ; Rui Liao, Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China. ORCID: https://orcid.org/0000-0002-0057-2792. E-mail:
| |
Collapse
|
21
|
Peng Y, Yang Y, Li Y, Shi T, Luan Y, Yin C. Exosome and virus infection. Front Immunol 2023; 14:1154217. [PMID: 37063897 PMCID: PMC10098074 DOI: 10.3389/fimmu.2023.1154217] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Exosomes are messengers of intercellular communication in monolayer vesicles derived from cells. It affects the pathophysiological process of the body in various diseases, such as tumors, inflammation, and infection. It has been confirmed that exosomes are similar to viruses in biogenesis, and exosome cargo is widely involved in many viruses’ replication, transmission, and infection. Simultaneously, virus-associated exosomes can promote immune escape and activate the antiviral immune response of the body, which bidirectionally modulates the immune response. This review focuses on the role of exosomes in HIV, HBV, HCV, and SARS-CoV-2 infection and explores the prospects of exosome development. These insights may be translated into therapeutic measures for viral infections and reduce the disease burden.
Collapse
Affiliation(s)
| | | | | | | | - Yingyi Luan
- *Correspondence: Yingyi Luan, ; Chenghong Yin,
| | | |
Collapse
|
22
|
Zaiets I, Gunewardena S, Menne S, Weinman SA, Gudima SO. Sera of Individuals Chronically Infected with Hepatitis B Virus (HBV) Contain Diverse RNA Types Produced by HBV Replication or Derived from Integrated HBV DNA. J Virol 2023; 97:e0195022. [PMID: 36877036 PMCID: PMC10062156 DOI: 10.1128/jvi.01950-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/11/2023] [Indexed: 03/07/2023] Open
Abstract
This study aimed to better characterize the repertoire of serum hepatitis B virus (HBV) RNAs during chronic HBV infection in humans, which remains understudied. Using reverse transcription-PCR (RT-PCR), real-time quantitative PCR (RT-qPCR), RNA-sequencing, and immunoprecipitation, we found that (i) >50% of serum samples bore different amounts of HBV replication-derived RNAs (rd-RNAs); (ii) a few samples contained RNAs transcribed from integrated HBV DNA, including 5'-HBV-human-3' RNAs (integrant-derived RNAs [id-RNAs]) and 5'-human-HBV-3' transcripts, as a minority of serum HBV RNAs; (iii) spliced HBV RNAs were abundant in <50% of analyzed samples; (iv) most serum rd-RNAs were polyadenylated via conventional HBV polyadenylation signal; (v) pregenomic RNA (pgRNA) was the major component of the pool of serum RNAs; (vi) the area of HBV positions 1531 to 1739 had very high RNA read coverage and thus should be used as a target for detecting serum HBV RNAs; (vii) the vast majority of rd-RNAs and pgRNA were associated with HBV virions but not with unenveloped capsids, exosomes, classic microvesicles, or apoptotic vesicles and bodies; (viii) considerable rd-RNAs presence in the circulating immune complexes was found in a few samples; and (ix) serum relaxed circular DNA (rcDNA) and rd-RNAs should be quantified simultaneously to evaluate HBV replication status and efficacy of anti-HBV therapy with nucleos(t)ide analogs. In summary, sera contain various HBV RNA types of different origin, which are likely secreted via different mechanisms. In addition, since we previously showed that id-RNAs were abundant or predominant HBV RNAs in many of liver and hepatocellular carcinoma tissues as compared to rd-RNAs, there is likely a mechanism favoring the egress of replication-derived RNAs. IMPORTANCE The presence of integrant-derived RNAs (id-RNAs) and 5'-human-HBV-3' transcripts derived from integrated hepatitis B virus (HBV) DNA in sera was demonstrated for the first time. Thus, sera of individuals chronically infected with HBV contained both replication-derived and integrant-transcribed HBV RNAs. The majority of serum HBV RNAs were the transcripts produced by HBV genome replication, which were associated with HBV virions and not with other types of extracellular vesicles. These and other above-mentioned findings advanced our understanding of the HBV life cycle. In addition, the study suggested a promising target area on the HBV genome to increase sensitivity of the detection of serum HBV RNAs and supported the idea that simultaneous detection of replication-derived RNAs (rd-RNAs) and relaxed circular DNA (rcDNA) in serum provides more adequate evaluation of (i) the HBV genome replication status and (ii) the durability and efficiency of the therapy with anti-HBV nucleos(t)ide analogs, which could be useful for improvement of the diagnostics and treatment of HBV-infected individuals.
Collapse
Affiliation(s)
- Igor Zaiets
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Steven A. Weinman
- Department of Internal Medicine, Division of Gastroenterology, Liver Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Severin O. Gudima
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
23
|
Xu G, Yan H, Zhu Y, Xie Z, Zhang R, Jiang S. Duck hepatitis A virus type 1 transmission by exosomes establishes a productive infection in vivo and in vitro. Vet Microbiol 2023; 277:109621. [PMID: 36525908 DOI: 10.1016/j.vetmic.2022.109621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/11/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Duck hepatitis A virus type 1 (DHAV-1) infection causes an acute and highly fatal disease in young ducklings. Exosomes are nano-sized small extracellular vesicles secreted by various cells, which participate in intercellular communication and play a key role in the physiological and pathological processes. However, the role of exosomes in DHAV-1 transmission remains unknown. In this study, through RT-PCR, WB analysis and TEM observation, the complete DHAV-1 genomic RNA, partial viral proteins, and virions were respectively identified in the exosomes derived from DHAV-1-infected duck embryo fibroblasts (DEFs). The productive DHAV-1 infection was transmitted by exosomes in DEFs, duck embryos, and ducklings, and high titers of neutralizing antibodies completely blocked DHAV-1 infection but did not significantly neutralize exosome-mediated DHAV-1 infection. To the best of our knowledge, this is the first report that exosome-mediated DHAV-1 infection was resistant to antibody neutralization in vivo and in vitro, which might be an immune evasion mechanism of DHAV-1.
Collapse
Affiliation(s)
- Guige Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Hui Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Yanli Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Zhijing Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China.
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China.
| |
Collapse
|
24
|
Pordanjani PM, Bolhassani A, Milani A, Pouriayevali MH. Extracellular vesicles in vaccine development and therapeutic approaches for viral diseases. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
25
|
Basthi Mohan P, Rajpurohit S, Musunuri B, Bhat G, Lochan R, Shetty S. Exosomes in chronic liver disease. Clin Chim Acta 2023; 540:117215. [PMID: 36603656 DOI: 10.1016/j.cca.2022.117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Chronic liver disease (CLD) is the major cause of mortality and morbidity, particularly in developing countries. Although there has been a significant advancement in the identification and treatment of liver diseases over time, clinical results are not satisfactory in advanced liver disease. Thus, it is crucial to develop certain technology for early detection, and curative therapies and to investigate the molecular mechanisms behind CLD's pathogenesis. The study of exosomes in CLD is a rapidly developing field. They are structurally membrane-derived nano vesicles released by various cells. In CLD, exosomes released from injured hepatic cells affect intercellular communication, creating a microenvironment conducive to the illness's development. They also carry liver cell-specific proteins and miRNAs, which can be used as diagnostic biomarkers and treatment targets for various liver diseases. End-stage liver disease can only be treated by a liver transplant, however, the low availability of compatible organs, high expenses of treatment, and surgical complications significantly lower patient survival rates. Early diagnosis and therapeutic intervention of CLD positively affect the likelihood of curative treatment and high patient survival rates. Considering the possibility that exosomes could be employed as tools for disease diagnostics and clinical intervention, The current study briefly summarizes the roles of exosomes and their cargo in diagnosing and treating liver diseases.
Collapse
Affiliation(s)
- Pooja Basthi Mohan
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Siddheesh Rajpurohit
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Balaji Musunuri
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ganesh Bhat
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajiv Lochan
- Lead Consultant- Liver transplant Surgeon, Manipal Hospital, Old Airport Road, Bangalore, and Adjunct Professor Manipal Academy of Higher Education, India
| | - Shiran Shetty
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
26
|
Zhang Z, Shang J, Yang Q, Dai Z, Liang Y, Lai C, Feng T, Zhong D, Zou H, Sun L, Su Y, Yan S, Chen J, Yao Y, Shi Y, Huang X. Exosomes derived from human adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting PI3K/Akt/mTOR pathway and remodeling choline metabolism. J Nanobiotechnology 2023; 21:29. [PMID: 36698192 PMCID: PMC9878808 DOI: 10.1186/s12951-023-01788-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Liver fibrosis is a chronic liver disease with the presence of progressive wound healing response caused by liver injury. Currently, there are no approved therapies for liver fibrosis. Exosomes derived from human adipose mesenchymal stem cells (hADMSCs-Exo) have displayed a prominent therapeutic effect on liver diseases. However, few studies have evaluated therapeutic effect of hADMSCs-Exo in liver fibrosis and cirrhosis, and its precise mechanisms of action remain unclear. Herein, we investigated anti-fibrotic efficacy of hADMSCs-Exo in vitro and in vivo, and identified important metabolic changes and the detailed mechanism through transcriptomic and metabolomic profiling. We found hADMSCs-Exo could inhibit the proliferation of activated hepatic stellate cells through aggravating apoptosis and arresting G1 phase, effectively inhibiting the expression of profibrogenic proteins and epithelial-to-mesenchymal transition (EMT) in vitro. Moreover, it could significantly block collagen deposition and EMT process, improve liver function and reduce liver inflammation in liver cirrhosis mice model. The omics analysis revealed that the key mechanism of hADMSCs-Exo anti-hepatic fibrosis was the inhibition of PI3K/AKT/mTOR signaling pathway and affecting the changes of metabolites in lipid metabolism, and mainly regulating choline metabolism. CHPT1 activated by hADMSCs-Exo facilitated formation and maintenance of vesicular membranes. Thus, our study indicates that hADMSCs-Exo can attenuate hepatic stellate cell activation and suppress the progression of liver fibrosis, which holds the significant potential of hADMSCs-Exo for use as extracellular nanovesicles-based therapeutics in the treatment of liver fibrosis and possibly other intractable chronic liver diseases.
Collapse
Affiliation(s)
- Zilong Zhang
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Jin Shang
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Qinyan Yang
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Zonglin Dai
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Yuxin Liang
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Chunyou Lai
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Tianhang Feng
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Deyuan Zhong
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Haibo Zou
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Lelin Sun
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Yuhao Su
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Su Yan
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Jie Chen
- Department of Core laboratory, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Yutong Yao
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Ying Shi
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Xiaolun Huang
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| |
Collapse
|
27
|
Sridharan B, Lim HG. Exosomes and ultrasound: The future of theranostic applications. Mater Today Bio 2023; 19:100556. [PMID: 36756211 PMCID: PMC9900624 DOI: 10.1016/j.mtbio.2023.100556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Biomaterials and pertaining formulations have been very successful in various diagnostic and therapeutic applications because of its ability to overcome pharmacological limitations. Some of them have gained significant focus in the recent decade for their theranostic properties. Exosomes can be grouped as biomaterials, since they consist of various biological micro/macromolecules and possess all the properties of a stable biomaterial with size in nano range. Significant research has gone into isolation and exploitation of exosomes as potential theranostic agent. However, the limitations in terms of yield, efficacy, and target specificity are continuously being addressed. On the other hand, several nano/microformulations are responsive to physical or chemical alterations and were successfully stimulated by tweaking the physical characteristics of the surrounding environment they are in. Some of them are termed as photodynamic, sonodynamic or thermodynamic therapeutic systems. In this regard, ultrasound and acoustic systems were extensively studied for its ability towards altering the properties of the systems to which they were applied on. In this review, we have detailed about the diagnostic and therapeutic applications of exosomes and ultrasound separately, consisting of their conventional applications, drawbacks, and developments for addressing the challenges. The information were categorized into various sections that provide complete overview of the isolation strategies and theranostic applications of exosomes in various diseases. Then the ultrasound-based disease diagnosis and therapy were elaborated, with special interest towards the use of ultrasound in enhancing the efficacy of nanomedicines and nanodrug delivery systems, Finally, we discussed about the ability of ultrasound in enhancing the diagnostic and therapeutic properties of exosomes, which could be the future of theranostics.
Collapse
Affiliation(s)
| | - Hae Gyun Lim
- Corresponding author. Biomedical Ultrasound Lab, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
28
|
Many Ways to Communicate-Crosstalk between the HBV-Infected Cell and Its Environment. Pathogens 2022; 12:pathogens12010029. [PMID: 36678377 PMCID: PMC9866324 DOI: 10.3390/pathogens12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have direct carcinogenic effects, the majority of HBV infection-related disease is related to chronic inflammation resulting from disrupted antiviral responses and aberrant innate immune reactions. Like all cells, healthy and HBV-infected cells communicate with each other, as well as with other cell types, such as innate and adaptive immune cells. They do so by both interacting directly and by secreting factors into their environment. Such factors may be small molecules, such as metabolites, single viral proteins or host proteins, but can also be more complex, such as virions, protein complexes, and extracellular vesicles. The latter are small, membrane-enclosed vesicles that are exchanged between cells, and have recently gained a lot of attention for their potential to mediate complex communication and their potential for therapeutic repurposing. Here, we review how HBV infection affects the communication between HBV-infected cells and cells in their environment. We discuss the impact of these interactions on viral persistence in chronic infection, as well as their relation to HBV infection-related pathology.
Collapse
|
29
|
Mahmoudvand S, Shokri S, Nakhaie M, Jalilian FA, Mehri-Ghahfarrokhi A, Yarani R, Shojaeian A. Small extracellular vesicles as key players in cancer development caused by human oncogenic viruses. Infect Agent Cancer 2022; 17:58. [DOI: 10.1186/s13027-022-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Exosomes are the smallest group of extracellular vesicles in size from 30 to 150 nm, surrounded by a lipid bilayer membrane, and originate from multivesicular bodies secreted by different types of cells, such as virus-infected cells. The critical role of exosomes is information transfer among cells, representing a unique way for intercellular communication via a load of many kinds of molecules, including various signaling proteins and nucleic acids. In this review, we aimed to comprehensively investigate the role of exosomes in promoting human oncogenic viruses-associated cancers.
Methods
Our search was conducted for published researches between 2000 and 2022 by using several international databases includeing Scopus, PubMed, and Web of Science as well as Google scholar. We also reviewed additional evidence from relevant published articles.
Results
It has been shown that exosomes can create the conditions for viral spread in viral infections. Exosome secretion in a human tumor virus can switch on the cell signaling pathways by transferring exosome-encapsulated molecules, including viral oncoproteins, signal transduction molecules, and virus-encoded miRNAs, into various cells.
Conclusion
Given the role of exosomes in viruses-associated cancers, they can also be considered as molecular targets in diagnosis and treatment.
Collapse
|
30
|
Yamada R, Morikawa K, Hotta K, Iwami D, Tanabe T, Murai S, Shinohara N, Yoshida S, Hosoda S, Kubo A, Tokuchi Y, Kitagataya T, Kimura M, Yamamoto K, Nakai M, Sho T, Suda G, Natsuizaka M, Ogawa K, Sakamoto N. Incidence of post-transplant hepatitis B virus reactivation with the use of kidneys from donors with resolved hepatitis B virus infection. J Viral Hepat 2022; 29:976-985. [PMID: 36031873 DOI: 10.1111/jvh.13740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 12/09/2022]
Abstract
Donors with resolved hepatitis B virus (HBV) infection may be a solution for the organ shortage for kidney transplantation (KT). The purpose of this study was to clarify the current state of HBV markers after KT from donors with resolved HBV infection to HBV naïve recipients and the rate of HBV reactivation in recipients with resolved HBV infection. Furthermore, we investigated HBV covalently closed circular DNA (cccDNA) in transplanted organs from donors with resolved HBV infection and the capability of HBV replication in kidney cell lines. We retrospectively analysed the HBV status of 340 consecutive donors and recipients who underwent KT in a single centre. We prospectively measured cccDNA by real-time polymerase chain reaction in kidney biopsy specimens of 32 donors with resolved HBV infection. HBV reactivation was found in three recipients with resolved HBV infection (4.8%, 3/63) after KT. We analysed 45 cases of transplantation from donors with resolved HBV infection to HBV-naive recipients. One case (2.2%, 1/45) became seropositive for hepatitis B core antibody (anti-HBc) and in another case (2.2%, 1/45), HBV-DNA was detected qualitatively in an HBV naive recipient with a donor with resolved HBV infection. In the latter case, cccDNA was measured in the donor kidney during KT. HBV replication was observed in kidney cell lines with HBV plasmid transfection. In conclusion, the risk of reactivation in anti-HBc-positive donors is relatively low. However, post-transplant HBV monitoring should be conducted in all at-risk cases.
Collapse
Affiliation(s)
- Ren Yamada
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Kiyohiko Hotta
- Department of Renal and Genitourinary Surgery, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Daiki Iwami
- Department of Renal and Genitourinary Surgery, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan.,Surgical Branch, Institute of Kidney Diseases, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Tatsu Tanabe
- Department of Renal and Genitourinary Surgery, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Sachiyo Murai
- Department of Renal and Genitourinary Surgery, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Sonoe Yoshida
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Shunichi Hosoda
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Akinori Kubo
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Yoshimasa Tokuchi
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Takashi Kitagataya
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Megumi Kimura
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Koji Yamamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
31
|
Tang Q, Xiao X, Li R, He H, Li S, Ma C. Recent Advances in Detection for Breast-Cancer-Derived Exosomes. Molecules 2022; 27:molecules27196673. [PMID: 36235208 PMCID: PMC9571663 DOI: 10.3390/molecules27196673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer is the most common malignant tumor in women, its incidence is secret, and more than half of the patients are diagnosed in the middle and advanced stages, so it is necessary to develop simple and efficient detection methods for breast cancer diagnosis to improve the survival rate and quality of life of breast cancer patients. Exosomes are extracellular vesicles secreted by all kinds of living cells, and play an important role in the occurrence and development of breast cancer and the formation of the tumor microenvironment. Exosomes, as biomarkers, are an important part of breast cancer fluid biopsy and have become ideal targets for the early diagnosis, curative effect evaluation, and clinical treatment of breast cancer. In this paper, several traditional exosome detection methods, including differential centrifugation and immunoaffinity capture, were summarized, focusing on the latest research progress in breast cancer exosome detection. It was summarized from the aspects of optics, electrochemistry, electrochemiluminescence and other aspects. This review is expected to provide valuable guidance for exosome detection of clinical breast cancer and the establishment of more reliable, efficient, simple and innovative methods for exosome detection of breast cancer in the future.
Collapse
Affiliation(s)
- Qin Tang
- School of Life Sciences, Central South University, Changsha 410013, China
- Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Xinying Xiao
- School of Life Sciences, Central South University, Changsha 410013, China
- Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ranhao Li
- School of Life Sciences, Central South University, Changsha 410013, China
- Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Shanni Li
- School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.L.); (C.M.)
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.L.); (C.M.)
| |
Collapse
|
32
|
Xie D, Qian B, Li X. Nucleic acids and proteins carried by exosomes from various sources: Potential role in liver diseases. Front Physiol 2022; 13:957036. [PMID: 36213232 PMCID: PMC9538374 DOI: 10.3389/fphys.2022.957036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular membrane-encapsulated vesicles that are released into the extracellular space or biological fluids by many cell types through exocytosis. As a newly identified form of intercellular signal communication, exosomes mediate various pathological and physiological processes by exchanging various active substances between cells. The incidence and mortality of liver diseases is increasing worldwide. Therefore, we reviewed recent studies evaluating the role of exosomes from various sources in the diagnosis and treatment of liver diseases.
Collapse
Affiliation(s)
- Danna Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Baolin Qian
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Center for Cancer Prevention and Treatment, School of Medicine, Lanzhou University, Lanzhou, China
- Gansu Provincial Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- *Correspondence: Xun Li,
| |
Collapse
|
33
|
Li X, Wang W, Chen J, Xie B, Luo S, Chen D, Cai C, Li C, Li W. The potential role of exosomal miRNAs and membrane proteins in acute HIV-infected people. Front Immunol 2022; 13:939504. [PMID: 36032099 PMCID: PMC9411714 DOI: 10.3389/fimmu.2022.939504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Exosomes play an important role during human immunodeficiency virus (HIV) acute infection. Yet, information regarding its cargo and its association with HIV rapid progressors (RPs) and typical progressors (TPs) remain largely unknown. In this study, exosomal miRNAs sequencing and mass cytometry were used to identify differential exosomal miRNAs and membrane proteins that participate in the pathogenesis of TPs and RPs. We discovered that miR-144-5p, miR-1180-3p, miR-451a, miR-362-5p, and miR-625-5p are associated with the TPs and miR-362-5p with the RPs. Decreased autophagy, amino acid metabolism, immune response, and IL-6 are closely related to RPs. In addition, SP1 was selected as the most significant transcription factor (TF) associated with disease progression. CD49D, CD5, CCR5, CD40, CD14, and CD86 were selected as the differential exosomal membrane proteins between TPs and RPs. This study provides valuable information for clarifying the mechanism in people with acute HIV infection.
Collapse
Affiliation(s)
- Xin Li
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- General Surgery Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jing Chen
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chao Cai
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weihua Li, ; Chao Cai, ; Chuanyun Li,
| | - Chuanyun Li
- General Surgery Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weihua Li, ; Chao Cai, ; Chuanyun Li,
| | - Weihua Li
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weihua Li, ; Chao Cai, ; Chuanyun Li,
| |
Collapse
|
34
|
Chen YH, Zhang LL, Wang LJ, Yue XT, Wu QF, Jiang Y, Zhang KQ, Niu XM. Acetylation of Sesquiterpenyl Epoxy-Cyclohexenoids Regulates Fungal Growth, Stress Resistance, Endocytosis, and Pathogenicity of Nematode-Trapping Fungus Arthrobotrys oligospora via Metabolism and Transcription. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6145-6155. [PMID: 35562189 DOI: 10.1021/acs.jafc.2c01914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sesquiterpenyl epoxy-cyclohexenoids (SECs) that depend on a polyketide synthase-terpenoid synthase (PKS-TPS) pathway are widely distributed in plant pathogenic fungi. However, the biosynthesis and function of the acetylated SECs still remained cryptic. Here, we identified that AOL_s00215g 273 (273) was responsible for the acetylation of SECs in Arthrobotrys oligospora via the construction of Δ273, in which the acetylated SECs were absent and major antibacterial nonacetylated SECs accumulated. Mutant Δ273 displayed increased trap formation, and nematicidal and antibacterial activities but decreased fungal growth and soil colonization. Glutamine, a key precursor for NH3 as a trap inducer, was highly accumulated, and biologically active phenylpropanoids and antibiotics were highly enriched in Δ273. The decreased endocytosis and increased autophagosomes, with the most upregulated genes involved in maintaining DNA and transcriptional stability and pathways related to coronavirus disease and exosome, suggested that lack of 273 might result in increased virus infection and the acetylation of SECs played a key role in fungal diverse antagonistic ability.
Collapse
Affiliation(s)
- Yong-Hong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Long-Long Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Li-Jun Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xu-Tong Yue
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Qun-Fu Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Yang Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xue-Mei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
35
|
Tang Y, Wu P, Li L, Xu W, Jiang J. Mesenchymal Stem Cells and Their Small Extracellular Vesicles as Crucial Immunological Efficacy for Hepatic Diseases. Front Immunol 2022; 13:880523. [PMID: 35603168 PMCID: PMC9121380 DOI: 10.3389/fimmu.2022.880523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell small extracellular vesicles (MSC-sEVs) are a priority for researchers because of their role in tissue regeneration. sEVs act as paracrine factors and carry various cargos, revealing the state of the parent cells and contributing to cell–cell communication during both physiological and pathological circumstances. Hepatic diseases are mainly characterized by inflammatory cell infiltration and hepatocyte necrosis and fibrosis, bringing the focus onto immune regulation and other regulatory mechanisms of MSCs/MSC-sEVs. Increasing evidence suggests that MSCs and their sEVs protect against acute and chronic liver injury by inducing macrophages (MΦ) to transform into the M2 subtype, accelerating regulatory T/B (Treg/Breg) cell activation and promoting immunosuppression. MSCs/MSC-sEVs also prevent the proliferation and differentiation of T cells, B cells, dendritic cells (DCs), and natural killer (NK) cells. This review summarizes the potential roles for MSCs/MSC-sEVs, including immunomodulation and tissue regeneration, in various liver diseases. There is also a specific focus on the use of MSC-sEVs for targeted drug delivery to treat hepatitis.
Collapse
Affiliation(s)
- Yuting Tang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peipei Wu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Linli Li
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| |
Collapse
|
36
|
Oh SJ, Lee EN, Park JH, Lee JK, Cho GJ, Park IH, Shin OS. Anti-Viral Activities of Umbilical Cord Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Against Human Respiratory Viruses. Front Cell Infect Microbiol 2022; 12:850744. [PMID: 35558099 PMCID: PMC9085650 DOI: 10.3389/fcimb.2022.850744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The endemic and pandemic caused by respiratory virus infection are a major cause of mortality and morbidity globally. Thus, broadly effective antiviral drugs are needed to treat respiratory viral diseases. Small extracellular vesicles derived from human umbilical cord mesenchymal stem cells (U-exo) have recently gained attention as a cell-free therapeutic strategy due to their potential for safety and efficacy. Anti-viral activities of U-exo to countermeasure respiratory virus-associated diseases are currently unknown. Here, we tested the antiviral activities of U-exo following influenza A/B virus (IFV) and human seasonal coronavirus (HCoV) infections in vitro. Cells were subject to IFV or HCoV infection followed by U-exo treatment. U-exo treatment significantly reduced IFV or HCoV replication and combined treatment with recombinant human interferon-alpha protein (IFN-α) exerted synergistically enhanced antiviral effects against IFV or HCoV. Interestingly, microRNA (miR)-125b, which is one of the most abundantly expressed small RNAs in U-exo, was found to suppress IFV replication possibly via the induction of IFN-stimulated genes (ISGs). Furthermore, U-exo markedly enhanced RNA virus-triggered IFN signaling and ISGs production. Similarly, human nasal epithelial cells cultured at the air-liquid interface (ALI) studies broadly effective anti-viral and anti-inflammatory activities of U-exo against IFV and HCoV, suggesting the potential role of U-exo as a promising intervention for respiratory virus-associated diseases.
Collapse
Affiliation(s)
- Soo-Jin Oh
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Eun-Na Lee
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Joo-Hoo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, Seoul, South Korea
| | - Jae Kyung Lee
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, Seoul, South Korea
- *Correspondence: Il-Ho Park, ; Ok Sarah Shin,
| | - Ok Sarah Shin
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
- *Correspondence: Il-Ho Park, ; Ok Sarah Shin,
| |
Collapse
|
37
|
Keshtkar S, Kaviani M, Soleimanian S, Azarpira N, Asvar Z, Pakbaz S. Stem Cell-Derived Exosome as Potential Therapeutics for Microbial Diseases. Front Microbiol 2022; 12:786111. [PMID: 35237239 PMCID: PMC8882917 DOI: 10.3389/fmicb.2021.786111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes, as the smallest extracellular vesicles that carry a cargo of nucleic acids, lipids, and proteins and mediate intercellular communication, have attracted much attention in diagnosis and treatment in the field of medicine. The contents of exosomes vary depending on the cell type and physiological conditions. Among exosomes derived from several cell types, stem cell-derived exosomes (stem cell-Exo) are increasingly being explored due to their immunomodulatory properties, regenerative capacity, anti-inflammatory and anti-microbial functions. Administration of stem cell-Exo, as a cell-free therapy for various diseases, has gained great promise. Indeed, the advantages of exosomes secreted from stem cells outweigh those of their parent cells owing to their small size, high stability, less immunogenicity, no risk of tumorigenesis, and easier condition for storage. Recently, the use of stem cell-Exo has been proposed in the field of microbial diseases. Pathogens including bacteria, viruses, fungi, and parasites can cause various diseases in humans with acute and chronic complications, sometimes resulting in mortality. On the other hand, treatments based on antibiotics and other chemical compounds have many side effects and the strains become resistant to drugs in some cases. Hence, this review aimed to highlight the effect of stem cell-derived extracellular vesicles including stem cell-Exo on microbial diseases. Although most published studies are preclinical, the avenue of clinical application of stem cell-Exo is under way to reach clinical applications. The challenges ahead of this cell-free treatment that might be applied as a therapeutic alternative to stem cells for translation from bench to bed were emphasized, as well.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
38
|
Chen W, Li Z, Cheng W, Wu T, Li J, Li X, Liu L, Bai H, Ding S, Li X, Yu X. Surface plasmon resonance biosensor for exosome detection based on reformative tyramine signal amplification activated by molecular aptamer beacon. J Nanobiotechnology 2021; 19:450. [PMID: 34952586 PMCID: PMC8709980 DOI: 10.1186/s12951-021-01210-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive exosomes play an extremely important role in the diagnosis and treatment options of breast cancers. Herein, based on the reformative tyramine signal amplification (TSA) enabled by molecular aptamer beacon (MAB) conversion, a label-free surface plasmon resonance (SPR) biosensor was proposed for highly sensitive and specific detection of HER2-positive exosomes. The exosomes were captured by the HER2 aptamer region of MAB immobilized on the chip surface, which enabled the exposure of the G-quadruplex DNA (G4 DNA) that could form peroxidase-like G4-hemin. In turn, the formed G4-hemin catalyzed the deposition of plentiful tyramine-coated gold nanoparticles (AuNPs-Ty) on the exosome membrane with the help of H2O2, generating a significantly enhanced SPR signal. In the reformative TSA system, the horseradish peroxidase (HRP) as a major component was replaced with nonenzymic G4-hemin, bypassing the defects of natural enzymes. Moreover, the dual-recognition of the surface proteins and lipid membrane of the desired exosomes endowed the sensing strategy with high specificity without the interruption of free proteins. As a result, this developed SPR biosensor exhibited a wide linear range from 1.0 × 104 to 1.0 × 107 particles/mL. Importantly, this strategy was able to accurately distinguish HER2-positive breast cancer patients from healthy individuals, exhibiting great potential clinical application. ![]()
Collapse
Affiliation(s)
- Wenqin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.,Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenqian Cheng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Tao Wu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, China
| | - Jia Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Liu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, China
| | - Huijie Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xinmin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Xiaolin Yu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, China.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The exosomes play a critical role in HIV infection, which constitute a pathway to release intracellular material and exchange material and information between cells. Exosomes have become a hotspot in the field of AIDS research. This review introduces the formation process of HIV particles and exosomes, and summarizes the role of exosomes in the progression of HIV disease from multiple aspects. RECENT FINDINGS Many components of the exosomes involved in HIV transfer and replication affect the occurrence, development, and outcome of AIDS, and are closely related to HIV infection. Exosomes can have a dual impact on HIV infection, and play an important role in activating the latent reservoir of HIV and affecting the chronic inflammation of HIV. The biological information carried by exosomes is also of great significance for the prediction of HIV disease. SUMMARY The present review summarizes the role of exosomes in HIV disease progression in various aspects in order to further understand the underlying mechanism affecting the infection and providing a new idea for the clinical diagnosis and treatment of AIDS.
Collapse
Affiliation(s)
| | - Chuanyun Li
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Rong Li
- Beijing Institute of Hepatology
| | | | | | | |
Collapse
|