1
|
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, Feng Y, Chen ZS, Wang N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer 2024; 23:189. [PMID: 39242496 PMCID: PMC11378508 DOI: 10.1186/s12943-024-02101-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pengde Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhe-Sheng Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
2
|
Hu L, Ji YY, Zhu P, Lu RQ. Mutation-Selected Amplification droplet digital PCR: A new single nucleotide variant detection assay for TP53 R249S mutant in tumor and plasma samples. Anal Chim Acta 2024; 1318:342929. [PMID: 39067934 DOI: 10.1016/j.aca.2024.342929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
The early detection of gene mutations in physiological and pathological processes is a powerful approach to guide decisions in precision medicine. However, detecting low-copy mutant DNA from clinical samples poses a challenge due to the enrichment of wild-type DNA backgrounds. In this study, we devised a novel strategy, named Mutation-Selected Amplification droplet digital PCR (MSA-ddPCR), to quantitatively analyze single nucleotide variants (SNVs) at low variant allele frequencies (VAFs). Using TP53R249S (a hotspot mutation associated with hepatocellular carcinoma) as a model, we optimized the concentration ratio of primers, the annealing temperature and nucleic acid amplification modifiers. Subsequently, we evaluated the linear range and precision of MSA-ddPCR by detecting TP53R249S and TP53wild-type (TP53WT) plasmid DNA, respectively. MSA-ddPCR demonstrated superior ability to discriminate between mutant DNA and wild-type DNA compared to traditional TaqMan-MGB PCR. We further applied MSA-ddPCR to analyze the TP53R249S mutation in 20 plasma samples and 15 formalin-fixed paraffin-embedded (FFPE) tissue samples, and assessed the agreement rates between MSA-ddPCR and amplicon high-throughput sequencing. The results showed that the limit of blanks of MSA-ddPCR are 0.449 copies μL-1 in the FAM channel and 0.452 copies μL-1 in the VIC channel. MSA-ddPCR could accurately quantify VAFs as low as 0.01 %, surpassing existing PCR and next-generation sequencing (NGS) methods. In the detection of clinical samples, a high correlation was found between MSA-ddPCR and amplicon high-throughput sequencing. Additionally, MSA-ddPCR outperformed sequencing methods in terms of detection time and simplicity of data analysis. MSA-ddPCR can be easily implemented into clinical practice and serve as a robust tool for detecting mutant genes due to its high sensitivity and accuracy.
Collapse
Affiliation(s)
- Ling Hu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 20032, China
| | - Yuan-Ye Ji
- Department of Medical Laboratory, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Peng Zhu
- Department of Medical Laboratory, Ningbo No.2 Hospital, Ningbo, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China.
| | - Ren-Quan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 20032, China.
| |
Collapse
|
3
|
Beaufrère A, Paisley S, Ba I, Laouirem S, Priori V, Cazier H, Favre L, Cauchy F, Lesurtel M, Calderaro J, Kannengiesser C, Paradis V. Differential diagnosis of small hepatocellular nodules in cirrhosis: surrogate histological criteria of TERT promoter mutations. Histopathology 2024; 84:473-481. [PMID: 37903649 DOI: 10.1111/his.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/01/2023]
Abstract
AIMS The differential diagnosis of small hepatocellular nodules in cirrhosis between dysplastic nodules and hepatocellular carcinoma (HCC) remains challenging on biopsy. As TERT promoter (pTERT) mutations may indicate the nodules already engaged in the malignant process, the aim of this study was to identify histological criteria associated with pTERT mutations by detecting these mutations by ddPCR in small formalin-fixed paraffin-embedded (FFPE) hepatocellular nodules arising in cirrhosis. METHODS AND RESULTS We built a bicentric cohort data set of 339 hepatocellular nodules < 2 cm from cirrhotic samples, divided into a test cohort of 299 resected samples and a validation cohort of 40 biopsies. Pathological review, based on the evaluation of 14 histological criteria, classified all nodules. pTERT mutations were identified by ddPCR in FFPE samples. Among the 339 nodules, ddPCR revealed pTERT mutations in 105 cases (31%), including 90 and 15 cases in the test and validation cohorts, respectively. On multivariate analysis, three histological criteria were associated with pTERT mutations in the test cohort: increased cell density (P = 0.003), stromal invasion (P = 0.036) and plate-thickening anomalies (P < 0.001). With the combination of at least two of these major criteria, the AUC for predicting pTERT mutations was 0.84 in the test cohort (sensitivity: 86%, specificity: 83%) and 0.81 in the validation cohort (sensitivity: 87%, specificity: 76%). CONCLUSIONS We identified three histological criteria as surrogate markers of pTERT mutations that may be used in routine biopsy to more clearly classify small hepatocellular nodules arising in cirrhosis.
Collapse
Affiliation(s)
- Aurélie Beaufrère
- Université Paris Cité, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, Beaujon Hospital, Clichy, France
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Sarah Paisley
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, Beaujon Hospital, Clichy, France
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Ibrahima Ba
- AP-HP.Nord, Department of Molecular Genetics, Bichat Hospital, Paris, France
| | - Samira Laouirem
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Victoria Priori
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Hélène Cazier
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Loëtitia Favre
- AP-HP, Department of Pathology, Henri Mondor Hospital, Créteil, France
| | - François Cauchy
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Mickael Lesurtel
- Université Paris Cité, Paris, France
- AP-HP.Nord, Department of HPB Surgery an d Liver Transplantation, Beaujon Hospital, Clichy, France
| | - Julien Calderaro
- AP-HP, Department of Pathology, Henri Mondor Hospital, Créteil, France
| | | | - Valérie Paradis
- Université Paris Cité, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, Beaujon Hospital, Clichy, France
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| |
Collapse
|
4
|
Aalami AH, Aalami F, Aliabadi EK, Amirabadi A, Sahebkar A. Detection of Circulating Cell-free DNA to Diagnose Hepatocellular Carcinoma in Chinese Population: A Systematic Review and Meta-analysis. Curr Med Chem 2024; 31:3345-3359. [PMID: 37349993 DOI: 10.2174/0929867330666230622114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Cell-free circulating DNA has been known for many years, but this knowledge has not been beneficial for diagnosis. In this meta-analysis, we examine the diagnostic role of circulating cell-free DNA in HCC patients to find a reliable biomarker for the early detection of HCC. MATERIALS AND METHODS We performed a systematic literature search using Science Direct, Web of Science, PubMed/Medline, Scopus, Google Scholar, and Embase, up to April 1st, 2022. Meta-Disc V.1.4 and Comprehensive Meta-Analysis V.3.3 software calculated the pooled specificity, sensitivity, area under the curve (AUC), diagnostic odds ratio (DOR), positive likelihood ratio (PLR), negative likelihood ratio (NLR) Q*index, and summary receiver-- operating characteristic (SROC) for the role of cfDNA as a biomarker for HCC patients. Moreover, the subgroup analyses have been performed based on sample types (serum/plasma) and detection methods (MS-PCR/methylation). RESULTS A total of 7 articles (9 studies) included 697 participants (485 cases and 212 controls). The overall pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were 0.706 (95% CI: 0.671 - 0.739), 0.905 (95% CI: 0.865 - 0.937), 6.66 (95% CI: 4.36 - 10.18), 0.287 (95% CI: 0.185 - 0.445), 28.40 (95% CI: 13.01 - 62.0), and 0.93, respectively. We conducted a subgroup analysis of diagnostic value, which showed that the plasma sample had a better diagnostic value compared to the serum. CONCLUSION This meta-analysis showed that cfDNA could be a fair biomarker for diagnosing HCC patients.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Farnoosh Aalami
- Student Research Committee, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ehsan Kargar Aliabadi
- Department of Chemistry, Faculty of Science, Biochemical Research Center, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Amirabadi
- Department of Internal Medicine, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
van der Meeren PE, de Wilde RF, Sprengers D, IJzermans JNM. Benefit and harm of waiting time in liver transplantation for HCC. Hepatology 2023:01515467-990000000-00646. [PMID: 37972979 DOI: 10.1097/hep.0000000000000668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Liver transplantation is the most successful treatment for limited-stage HCC. The waiting time for liver transplantation (LT) can be a critical factor affecting the oncological prognosis and outcome of patients with HCC. Efficient strategies to optimize waiting time are essential to maximize the benefits of LT and to reduce the harm of delay in transplantation. The ever-increasing demand for donor livers emphasizes the need to improve the organization of the waiting list for transplantation and to optimize organ availability for patients with and without HCC. Current progress in innovations to expand the donor pool includes the implementation of living donor LT and the use of grafts from extended donors. By expanding selection criteria, an increased number of patients are eligible for transplantation, which necessitates criteria to prevent futile transplantations. Thus, the selection criteria for LT have evolved to include not only tumor characteristics but biomarkers as well. Enhancing our understanding of HCC tumor biology through the analysis of subtypes and molecular genetics holds significant promise in advancing the personalized approach for patients. In this review, the effect of waiting time duration on outcome in patients with HCC enlisted for LT is discussed.
Collapse
Affiliation(s)
- Pam Elisabeth van der Meeren
- Department of Surgery, Division of HPB & Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Roeland Frederik de Wilde
- Department of Surgery, Division of HPB & Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dave Sprengers
- Department of Gastroenterology & Hepatology, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jan Nicolaas Maria IJzermans
- Department of Surgery, Division of HPB & Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Saeki I, Suehiro Y, Yamauchi Y, Hoshida T, Tanabe N, Oono T, Kawamoto D, Nishimura T, Matsumoto T, Ishikawa T, Shimokawa M, Tamori A, Kawada N, Tamai Y, Iwasa M, Nakagawa H, Nagano H, Takami T, Yamasaki T. Methylated SEPT9 assay-based liquid biopsy as a biomarker in molecular targeted agent-treated hepatocellular carcinoma. Hepatol Int 2023; 17:1289-1299. [PMID: 37186217 DOI: 10.1007/s12072-023-10488-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND The development of molecular targeted agents (MTAs) has changed the treatment strategy for hepatocellular carcinoma (HCC). However, currently, there are no established predictive biomarkers for the treatment efficacy of MTAs. Previously, we developed a novel liquid biopsy test for HCC screening using sensitive methylated DNA testing of septin 9 gene (SEPT9). Here, we hypothesized that SEPT9 could be used as a biomarker for MTA treatment efficacy. METHODS We enrolled 157 patients receiving sorafenib or lenvatinib as a first-line therapy and allocated 85 and 72 patients to the training and validation cohorts, respectively. For the methylation assay, DNA was treated with methylation-sensitive restriction enzymes, followed by multiplex droplet digital PCR. Various clinical parameters were compared with clinical outcomes. RESULTS The multivariate analysis revealed Eastern Cooperative Oncology Group performance status (≥ 1; p = 0.048), alpha-fetoprotein (AFP) (≥ 400 ng/mL; p < 0.001), and methylated-septin-9 (m-SEPT9) (≥ 205 copies/mL; p = 0.018) as significant predictors of poor overall survival (OS) in the training cohort. m-SEPT9 was identified as a predictor of poor OS in the validation cohort. We developed a predictive score, called the MTA score, consisting of these three significant OS parameters (two points were added for AFP and one point for each of the other predictors). Patients with MTA scores ≥ 2 showed a significantly poor prognosis compared to those with MTA scores ≤ 1 in both the training and validation cohorts. CONCLUSIONS m-SEPT9 could be a potential predictive biomarker for survival in patients with HCC treated with MTAs.
Collapse
Affiliation(s)
- Issei Saeki
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Yurika Yamauchi
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Tomomi Hoshida
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Norikazu Tanabe
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
- Division of Laboratory, Yamaguchi University Hospital, Ube, Yamaguchi, 755-8505, Japan
| | - Takashi Oono
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Daiki Kawamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Tatsuro Nishimura
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Tsuyoshi Ishikawa
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Akihiro Tamori
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Abeno-ku, Osaka, 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Abeno-ku, Osaka, 545-8585, Japan
| | - Yasuyuki Tamai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Mie, 514-8507, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Mie, 514-8507, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Mie, 514-8507, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
7
|
Jeepalyam S, Sheel A, Ejaz A, Miller E, Manne A. Is Cell-Free DNA Testing in Hepatocellular Carcinoma Ready for Prime Time? Int J Mol Sci 2023; 24:14231. [PMID: 37762533 PMCID: PMC10531802 DOI: 10.3390/ijms241814231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Revamping the current biomarker landscape of hepatocellular carcinoma (HCC) with cell-free DNA (cfDNA) could improve overall outcomes. The use of commercially available cfDNA testing (also known as liquid biopsy) is limited by the low prevalence of targetable mutations and does not have any prognostic or predictive value. Thus, current cfDNA testing cannot be relied upon for perioperative risk stratification (POR), including early detection of recurrence, long-term surveillance, predicting outcomes, and treatment response. Prior evidence on cfDNA mutation profiling (non-specific detection or gene panel testing) suggests that it can be a reliable tool for POR and prognostication, but it still requires significant improvements. cfDNA methylation changes or epigenetic markers have not been explored extensively, but early studies have shown potential for it to be a prognostic biomarker tool. The predictive value of cfDNA (mutations and EM) to assist treatment selection (systemic therapy, immune-checkpoint inhibitor vs. tyrosine kinase inhibitor) and to monitor response to systemic and locoregional therapies should be a future area of focus. We highlighted the unmet needs in the HCC management and the current role of cfDNA testing in HCC in addressing them.
Collapse
Affiliation(s)
- Sravan Jeepalyam
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Ankur Sheel
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Aslam Ejaz
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, 320 W. 10th Ave., M-260 Starling-Loving Hall, Columbus, OH 43210, USA
| | - Eric Miller
- Department of Radiation Oncology, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Watanabe T, Suzuki Y, Kuroda H, Hiraki H, Suzuki A, Tamura A, Ieko Y, Nishizuka SS, Matsumoto T. Circulating Cell-Free DNA as a Biomarker for Prognosis and Response to Systemic Therapy in Patients with Unresectable Hepatocellular Carcinoma. Oncology 2023; 101:714-722. [PMID: 37369179 DOI: 10.1159/000531671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Systemic therapy provides clinical benefits to a subset of patients with advanced unresectable hepatocellular carcinoma (HCC). However, few biomarkers are available for predicting prognosis and treatment response in patients with advanced HCC undergoing treatment with systemic therapies. This study aimed to examine whether circulating cell-free DNA (cfDNA) containing circulating tumor DNA can act as a therapeutic response and prognostic biomarker in patients with advanced HCC. METHODS We analyzed longitudinally collected plasma cfDNA of patients with advanced HCC who were naïve to systemic therapy, and assessed their prognostic and predictive values to determine treatment responses. RESULTS cfDNA concentration positively correlated with entire tumor volume on computed tomography before (p = 0.0231) and at the end (p < 0.0001) of the first-line systemic therapy. The overall survival rate was higher in patients with cfDNA concentrations lower than the median cfDNA level at baseline compared to patients with higher cfDNA concentrations (hazard ratio, 0.2765; 95% confidence interval, 0.08-0.81; p = 0.0197). The ratio of cfDNA at 4 weeks to that at baseline was predictive of radiographic disease response. In patients with progressive disease, cfDNA concentration at 4 weeks increased significantly (p = 0.0245), whereas the concentration remained unchanged in patients with other disease courses (p = 0.9375). CONCLUSION The baseline plasma cfDNA concentration can be used as a prognostic biomarker in patients with advanced HCC. cfDNA kinetics may also predict the tumor response to therapy and disease progression.
Collapse
Affiliation(s)
- Takuya Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan,
| | - Yuji Suzuki
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Yahaba, Japan
- Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Hidekatsu Kuroda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Hayato Hiraki
- Division of Biomedical Research and Development, Institute of Biomedical Sciences, Iwate Medical University, Yahaba, Japan
| | - Akiko Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Akio Tamura
- Department of Radiology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Yoshiro Ieko
- Department of Radiology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Satoshi S Nishizuka
- Division of Biomedical Research and Development, Institute of Biomedical Sciences, Iwate Medical University, Yahaba, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| |
Collapse
|
9
|
Campani C, Zucman-Rossi J, Nault JC. Genetics of Hepatocellular Carcinoma: From Tumor to Circulating DNA. Cancers (Basel) 2023; 15:cancers15030817. [PMID: 36765775 PMCID: PMC9913369 DOI: 10.3390/cancers15030817] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary hepatic malignancies and is one of the major causes of cancer-related death. Over the last 15 years, the molecular landscape of HCC has been deciphered, with the identification of the main driver genes of liver carcinogenesis that belong to six major biological pathways, such as telomere maintenance, Wnt/b-catenin, P53/cell cycle regulation, oxidative stress, epigenetic modifiers, AKT/mTOR and MAP kinase. The combination of genetic and transcriptomic data composed various HCC subclasses strongly related to risk factors, pathological features and prognosis. However, translation into clinical practice is not achieved, mainly because the most frequently mutated genes are undruggable. Moreover, the results derived from the analysis of a single tissue sample may not adequately catch the intra- and intertumor heterogeneity. The analysis of circulating tumor DNA (ctDNA) is broadly developed in other types of cancer for early diagnosis, prognosis and monitoring under systemic treatment in order to identify primary and secondary mechanisms of resistance. The aim of this review is to describe recent data about the HCC molecular landscape and to discuss how ctDNA could be used in the future for HCC detection and management.
Collapse
Affiliation(s)
- Claudia Campani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Internal Medicine and Hepatology Unit, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Hôpital Européen Georges Pompidou, APHP, 75015 Paris, France
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Liver Unit, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, 93000 Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris Nord, 93000 Bobigny, France
- Correspondence: ; Tel.: +33-6-1067-9461
| |
Collapse
|
10
|
He P, Wan H, Wan J, Jiang H, Yang Y, Xie K, Wu H. Systemic therapies in hepatocellular carcinoma: Existing and emerging biomarkers for treatment response. Front Oncol 2022; 12:1015527. [PMID: 36483039 PMCID: PMC9723250 DOI: 10.3389/fonc.2022.1015527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/28/2022] [Indexed: 07/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third most common cause of cancer-related death worldwide. Due to asymptomatic patients in the early stage, most patients are diagnosed at an advanced stage and lose the opportunity for radical resection. In addition, for patients who underwent procedures with curative intent for early-stage HCC, up to 70% of patients may have disease recurrence within 5 years. With the advent of an increasing number of systemic therapy medications, we now have more options for the treatment of HCC. However, data from clinical studies show that with different combinations of regimens, the objective response rate is approximately 40%, and most patients will not respond to treatment. In this setting, biomarkers for predicting treatment response are of great significance for precise treatment, reducing drug side effects and saving medical resources. In this review, we summarized the existing and emerging biomarkers in the literature, with special emphasis on the pathways and mechanism underlying the prediction value of those biomarkers for systemic treatment response.
Collapse
Affiliation(s)
- Penghui He
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haifeng Wan
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juan Wan
- Department of Pancreatitis Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Yang
- Department of Abdominal Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Kunlin Xie
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Wu
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Circulating Cell-Free DNA Profiling Predicts the Therapeutic Outcome in Advanced Hepatocellular Carcinoma Patients Treated with Combination Immunotherapy. Cancers (Basel) 2022; 14:cancers14143367. [PMID: 35884434 PMCID: PMC9320668 DOI: 10.3390/cancers14143367] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Atezolizumab/bevacizumab (Atezo/Bev) combination immunotherapy has become a front-line therapy for unresectable hepatocellular carcinoma (u-HCC), but some patients are initially nonresponders. We investigated the potential of cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) as biomarkers for predicting the therapeutic outcome of u-HCC patients treated with anti-programmed cell death1-ligand1 (PD-L1)/vascular endothelial growth factor (VEGF) therapy. Patients with high levels of cfDNA showed a significantly lower overall response rate and shorter progression-free survival and overall survival (OS) than those with low levels of cfDNA. Ultradeep sequencing of cfDNA showed that the telomerase reverse transcriptase (TERT) promoter, tumor protein 53 (TP53) and catenin beta 1 (CTNNB1) were the most frequently mutated genes in ctDNA. Lastly, a TERT ctDNA mutation and a high alpha-fetoprotein (AFP) level were independent predictors of shorter OS in u-HCC patients treated with Atezo/Bev therapy and could stratify their prognoses. Collectively, cfDNA/ctDNA profiling may be useful to predict therapeutic outcome in u-HCC patients treated with Atezo/Bev therapy. Abstract Combination immunotherapy with anti-programmed cell death1-ligand1 (PD-L1) and anti-vascular endothelial growth factor (VEGF) antibodies has become the standard treatment for patients with unresectable HCC (u-HCC). However, limited patients obtain clinical benefits. Cell-free DNA (cfDNA) in peripheral blood contains circulating tumor DNA (ctDNA) that reflects molecular abnormalities in tumor tissue. We investigated the potential of cfDNA/ctDNA as biomarkers for predicting the therapeutic outcome in u-HCC patients treated with anti-PD-L1/VEGF therapy. We enrolled a multicenter cohort of 85 HCC patients treated with atezolizumab and bevacizumab (Atezo/Bev) between 2020 and 2021. Pretreatment plasma was collected, and cfDNA levels were quantified. Ultradeep sequencing of cfDNA was performed with a custom-made panel for detecting mutations in 25 HCC-related cancer genes. We evaluated the association of cfDNA/ctDNA profiles and clinical outcomes. Patients with high plasma cfDNA levels showed a significantly lower response rate and shorter progression-free survival and overall survival (OS) than those with low cfDNA levels. ctDNA detected in 55% of HCC patients included the telomerase reverse transcriptase (TERT) promoter in 31% of these patients, tumor protein 53 (TP53) in 21%, catenin beta 1 (CTNNB1) in 13% and phosphatase and tensin homolog (PTEN) in 7%. The presence or absence of ctDNA did not predict the efficacy of Atezo/Bev therapy. Twenty-six patients with a TERT mutation had significantly shorter OS than those without. The presence of a TERT mutation and alpha-fetoprotein (AFP) ≥ 400 ng/mL were independent predictors of poor OS according to multivariate Cox proportional hazard analysis and could be used to stratify patients treated with Atezo/Bev therapy based on prognosis. In conclusion, pretreatment cfDNA/ctDNA profiling may be useful for predicting the therapeutic outcome in u-HCC patients treated with anti-PD-L1/VEGF therapy.
Collapse
|
12
|
Grinspan LT, Villanueva A. Biomarker Development Using Liquid Biopsy in Hepatocellular Carcinoma. Semin Liver Dis 2022; 42:188-201. [PMID: 35738257 DOI: 10.1055/s-0042-1748924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liver cancer incidence rate continues to increase and currently ranks third in the total number of annual deaths, behind only lung and colorectal cancer. Most patients with hepatocellular carcinoma (HCC) are diagnosed at advanced stages, and they live for less than 2 years after diagnosis on average. This contrasts with those diagnosed at an early stage, who can be cured with surgery. However, even after curative resection, there remains a risk of up to 70% of postoperative HCC recurrence. There have been major changes in the management of HCC in the past 5 years, particularly for patients at advanced stages. Despite this multitude of new therapies, there is a lack of clear biomarkers to guide providers on the best approach to sequence therapies, which would maximize efficacy while minimizing toxicity. There are several areas in clinical management of HCC that are particularly challenging, and would benefit from development and implementation of new biomarkers to improve patient overall survival. Here, we review the major advances in liquid biopsy biomarkers for early detection of HCC, minimum residual disease, and predicting response to treatment.
Collapse
Affiliation(s)
- Lauren Tal Grinspan
- Division of Liver Diseases, Recanati/Miller Transplantation Institute, The Mount Sinai Hospital, New York, New York
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
13
|
Postoperative Circulating Tumor DNA Can Predict High Risk Patients with Colorectal Cancer Based on Next-Generation Sequencing. Cancers (Basel) 2021; 13:cancers13164190. [PMID: 34439344 PMCID: PMC8391973 DOI: 10.3390/cancers13164190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Circulating tumor DNA (ctDNA) is a minimally invasive biomarker useful for monitoring minimum residual disease, recurrence, and treatment response in colorectal cancer (CRC). We analyzed circulating tumor DNA from patients with CRC to evaluate analytical and clinical performances using next-generation sequencing (NGS). It is clear that postoperative circulating tumor DNA detection provides valuable information to determine whether a patient might at high risk of disease recurrence or have a persistent tumor lesion. The NGS assay not only showed excellent analytical performance, but also shows a state-of-art diagnostic option in patient-oriented precision medicine. Abstract The objective of this study was to characterize circulating tumor DNA (ctDNA) mutations in colorectal cancer (CRC) patients and evaluate their prognostic values during treatment. Forty-nine patients with CRC planned for operation were enrolled. A total of 115 plasma samples were collected pre-operation, post-operation, and post-chemotherapy. ctDNA analysis was performed using next-generation sequencing (NGS) including 14 genes. In 22 (44.9%) out of 49 patients, at least one mutation (40 total mutations) was detected in the initial plasma sample. The median sum of variant allele frequency was 0.74% (range: 0.10–29.57%). TP53 mutations were the most frequent (17 of 49 patients, 34.7%), followed by APC (18.4%), KRAS (12.2%), FBXW7 (8.2%), NRAS (2.0%), PIK3CA (2.0%), and SMAD4 (2.0%). After surgery, five (14.3%) out of 35 patients harbored ctDNA mutation. All five patients experienced relapse or metastasis during follow-up. It was noteworthy that all three patients with persistent ctDNA relapsed after R0 resection. After chemotherapy, ctDNA analysis was performed for 31 patients, all of which were ctDNA-negative. Analytical and clinical performances of NGS to utilize ctDNA in CRC were determined. Results revealed that postoperative ctDNA might serve as a marker for identifying risk of recurrence, thus contributing to patient-oriented treatment strategies.
Collapse
|
14
|
Moldogazieva NT, Zavadskiy SP, Terentiev AA. Genomic Landscape of Liquid Biopsy for Hepatocellular Carcinoma Personalized Medicine. Cancer Genomics Proteomics 2021; 18:369-383. [PMID: 33994362 DOI: 10.21873/cgp.20266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most frequently diagnosed cancer and the third leading cause of cancer-related deaths worldwide. Advanced-stage HCC patients have poor survival rates and this requires the discovery of novel clear biomarkers for HCC early diagnosis and prognosis, identifying risk factors, distinguishing HCC from non-HCC liver diseases, and assessment of treatment response. Liquid biopsy has emerged as a novel minimally invasive approach to enable monitoring tumor progression, metastasis, and recurrence. Since the liquid biopsy analysis has relatively high specificity and low sensitivity in cancer early detection, there is a risk of bias. Next-generation sequencing (NGS) technologies provide accurate and comprehensive gene expression and mutational profiling of liquid biopsies including cell-free circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and genomic components of extracellular vesicles (EVs) including micro-RNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). Since HCC is a highly heterogeneous cancer, HCC patients can display various genomic, epigenomic, and transcriptomic patterns and exhibit varying sensitivity to treatment options. Identification of individual variabilities in genomic signatures in liquid biopsy has the potential to greatly enhance precision oncology capabilities. In this review, we highlight and critically discuss the latest progress in characterizing the genomic landscape of liquid biopsy, which can advance HCC personalized medicine.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
| | - Sergey P Zavadskiy
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|