1
|
Ectomycorrhizal Fungal Strains Facilitate Cd 2+ Enrichment in a Woody Hyperaccumulator under Co-Existing Stress of Cadmium and Salt. Int J Mol Sci 2021; 22:ijms222111651. [PMID: 34769083 PMCID: PMC8583747 DOI: 10.3390/ijms222111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd2+) pollution occurring in salt-affected soils has become an increasing environmental concern in the world. Fast-growing poplars have been widely utilized for phytoremediation of soil contaminating heavy metals (HMs). However, the woody Cd2+-hyperaccumulator, Populus × canescens, is relatively salt-sensitive and therefore cannot be directly used to remediate HMs from salt-affected soils. The aim of the present study was to testify whether colonization of P. × canescens with ectomycorrhizal (EM) fungi, a strategy known to enhance salt tolerance, provides an opportunity for affordable remediation of Cd2+-polluted saline soils. Ectomycorrhization with Paxillus involutus strains facilitated Cd2+ enrichment in P. × canescens upon CdCl2 exposures (50 μM, 30 min to 24 h). The fungus-stimulated Cd2+ in roots was significantly restricted by inhibitors of plasmalemma H+-ATPases and Ca2+-permeable channels (CaPCs), but stimulated by an activator of plasmalemma H+-ATPases. NaCl (100 mM) lowered the transient and steady-state Cd2+ influx in roots and fungal mycelia. Noteworthy, P. involutus colonization partly reverted the salt suppression of Cd2+ uptake in poplar roots. EM fungus colonization upregulated transcription of plasmalemma H+-ATPases (PcHA4, 8, 11) and annexins (PcANN1, 2, 4), which might mediate Cd2+ conductance through CaPCs. EM roots retained relatively highly expressed PcHAs and PcANNs, thus facilitating Cd2+ enrichment under co-occurring stress of cadmium and salinity. We conclude that ectomycorrhization of woody hyperaccumulator species such as poplar could improve phytoremediation of Cd2+ in salt-affected areas.
Collapse
|
2
|
Plasma Membrane H +-ATPase SmPHA4 Negatively Regulates the Biosynthesis of Tanshinones in Salvia miltiorrhiza. Int J Mol Sci 2021; 22:ijms22073353. [PMID: 33805926 PMCID: PMC8037235 DOI: 10.3390/ijms22073353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 11/17/2022] Open
Abstract
Salvia miltiorrhiza Bunge has been widely used in the treatment of cardiovascular and cerebrovascular diseases, due to the pharmacological action of its active components such as the tanshinones. Plasma membrane (PM) H+-ATPase plays key roles in numerous physiological processes in plants. However, little is known about the PM H+-ATPase gene family in S. miltiorrhiza (Sm). Here, nine PM H+-ATPase isoforms were identified and named SmPHA1-SmPHA9. Phylogenetic tree analysis showed that the genetic distance of SmPHAs was relatively far in the S. miltiorrhiza PM H+-ATPase family. Moreover, the transmembrane structures were rich in SmPHA protein. In addition, SmPHA4 was found to be highly expressed in roots and flowers. HPLC revealed that accumulation of dihydrotanshinone (DT), cryptotanshinone (CT), and tanshinone I (TI) was significantly reduced in the SmPHA4-OE lines but was increased in the SmPHA4-RNAi lines, ranging from 2.54 to 3.52, 3.77 to 6.33, and 0.35 to 0.74 mg/g, respectively, suggesting that SmPHA4 is a candidate regulator of tanshinone metabolites. Moreover, qRT-PCR confirmed that the expression of tanshinone biosynthetic-related key enzymes was also upregulated in the SmPHA4-RNAi lines. In summary, this study highlighted PM H+-ATPase function and provided new insights into regulatory candidate genes for modulating secondary metabolism biosynthesis in S. miltiorrhiza.
Collapse
|
3
|
Cheng HQ, Zou YN, Wu QS, Kuča K. Arbuscular Mycorrhizal Fungi Alleviate Drought Stress in Trifoliate Orange by Regulating H +-ATPase Activity and Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:659694. [PMID: 33841484 PMCID: PMC8027329 DOI: 10.3389/fpls.2021.659694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 05/05/2023]
Abstract
A feature of arbuscular mycorrhiza is enhanced drought tolerance of host plants, although it is unclear whether host H+-ATPase activity and gene expression are involved in the physiological process. The present study aimed to investigate the effects of an arbuscular mycorrhizal fungus (AMF), Funneliformis mosseae, on H+-ATPase activity, and gene expression of trifoliate orange (Poncirus trifoliata) seedlings subjected to well-watered (WW) and drought stress (DS), together with the changes in leaf gas exchange, root morphology, soil pH value, and ammonium content. Soil drought treatment dramatically increased H+-ATPase activity of leaf and root, and AMF inoculation further strengthened the increased effect. A plasma membrane (PM) H+-ATPase gene of trifoliate orange, PtAHA2 (MW239123), was cloned. The PtAHA2 expression was induced by mycorrhization in leaves and roots and also up-regulated by drought treatment in leaves of AMF-inoculated seedlings and in roots of AMF- and non-AMF-inoculated seedlings. And, the induced expression of PtAHA2 under mycorrhization was more prominent under DS than under WW. Mycorrhizal plants also showed greater photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate and better root volume and diameter than non-mycorrhizal plants under DS. AMF inoculation significantly increased leaf and root ammonium content, especially under DS, whereas it dramatically reduced soil pH value. In addition, H+-ATPase activity was significantly positively correlated with ammonium contents in leaves and roots, and root H+-ATPase activity was significantly negatively correlated with soil pH value. Our results concluded that AMF stimulated H+-ATPase activity and PtAHA2 gene expression in response to DS, which resulted in great nutrient (e.g., ammonium) uptake and root growth, as well as low soil pH microenvironment.
Collapse
Affiliation(s)
- Hui-Qian Cheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ying-Ning Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
- *Correspondence: Qiang-Sheng Wu,
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
- Kamil Kuča,
| |
Collapse
|
4
|
Martin FM, Dickie I, Lindahl BD, Lennon S, Öpik M, Polle A, Requena N, Selosse MA, Koide RT, Jakobsen I, Watts-Williams SJ, Cavagnaro TR. A tribute to Sally E. Smith. THE NEW PHYTOLOGIST 2020; 228:397-402. [PMID: 33460160 DOI: 10.1111/nph.16895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Francis M Martin
- Lab of Excellence ARBRE, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Micro-organismes', INRAE, 54280, Champenoux, France
| | - Ian Dickie
- College of Science, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 750 07, Uppsala, Sweden
| | - Sarah Lennon
- New Phytologist Central Office, Bailrigg House, Lancaster University, Lancaster, LA1 4YE, UK
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Andrea Polle
- Department of Forest Botany and Tree Physiology, Buesgen-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology, Fritz Haber-Weg 4, Geb. 30.43, 2. OG, D-76131, Karlsruhe, Germany
| | - Marc-André Selosse
- Département Systématique et Evolution, UMR 7205 ISYEB CP 50, Muséum national d'Histoire naturelle, 45 rue Buffon, Paris, 75005, France
- Faculty of Biology, University of Gdansk, ul. Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Roger T Koide
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Iver Jakobsen
- Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Stephanie J Watts-Williams
- School of Agriculture, Food & Wine and the Waite Research Institute, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Timothy R Cavagnaro
- School of Agriculture, Food & Wine and the Waite Research Institute, The University of Adelaide, Urrbrae, SA, 5064, Australia
| |
Collapse
|
5
|
Casarrubias-Castillo K, Montero-Vargas JM, Dabdoub-González N, Winkler R, Martinez-Gallardo NA, Zañudo-Hernández J, Avilés-Arnaut H, Délano-Frier JP. Distinct gene expression and secondary metabolite profiles in suppressor of prosystemin-mediated responses2 (spr2) tomato mutants having impaired mycorrhizal colonization. PeerJ 2020; 8:e8888. [PMID: 32337100 PMCID: PMC7167247 DOI: 10.7717/peerj.8888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/11/2020] [Indexed: 11/20/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) colonization, sampled at 32-50 days post-inoculation (dpi), was significantly reduced in suppressor of prosystemin-mediated responses2 (spr2) mutant tomato plants impaired in the ω-3 FATTY ACID DESATURASE7 (FAD7) gene that limits the generation of linolenic acid and, consequently, the wound-responsive jasmonic acid (JA) burst. Contrary to wild-type (WT) plants, JA levels in root and leaves of spr2 mutants remained unchanged in response to AMF colonization, further supporting its regulatory role in the AM symbiosis. Decreased AMF colonization in spr2 plants was also linked to alterations associated with a disrupted FAD7 function, such as enhanced salicylic acid (SA) levels and SA-related defense gene expression and a reduction in fatty acid content in both mycorrhizal spr2 roots and leaves. Transcriptomic data revealed that lower mycorrhizal colonization efficiency in spr2 mutants coincided with the modified expression of key genes controlling gibberellin and ethylene signaling, brassinosteroid, ethylene, apocarotenoid and phenylpropanoid synthesis, and the wound response. Targeted metabolomic analysis, performed at 45 dpi, revealed augmented contents of L-threonic acid and DL-malic acid in colonized spr2 roots which suggested unfavorable conditions for AMF colonization. Additionally, time- and genotype-dependent changes in root steroid glycoalkaloid levels, including tomatine, suggested that these metabolites might positively regulate the AM symbiosis in tomato. Untargeted metabolomic analysis demonstrated that the tomato root metabolomes were distinctly affected by genotype, mycorrhizal colonization and colonization time. In conclusion, reduced AMF colonization efficiency in spr2 mutants is probably caused by multiple and interconnected JA-dependent and independent gene expression and metabolomic alterations.
Collapse
Affiliation(s)
- Kena Casarrubias-Castillo
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Josaphat M. Montero-Vargas
- Departamento de Investigación en Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Nicole Dabdoub-González
- Instituto de Biotecnología de la Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nicolas de los Garza, Nuevo Leon, Mexico
| | - Robert Winkler
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| | - Norma A. Martinez-Gallardo
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| | - Julia Zañudo-Hernández
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Hamlet Avilés-Arnaut
- Instituto de Biotecnología de la Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nicolas de los Garza, Nuevo Leon, Mexico
| | - John P. Délano-Frier
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| |
Collapse
|
6
|
Sa G, Yao J, Deng C, Liu J, Zhang Y, Zhu Z, Zhang Y, Ma X, Zhao R, Lin S, Lu C, Polle A, Chen S. Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net. THE NEW PHYTOLOGIST 2019; 222:1951-1964. [PMID: 30756398 PMCID: PMC6594093 DOI: 10.1111/nph.15740] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/01/2019] [Indexed: 05/13/2023]
Abstract
Salt stress is an important environmental cue impeding poplar nitrogen nutrition. Here, we characterized the impact of salinity on proton-driven nitrate fluxes in ectomycorrhizal roots and the importance of a Hartig net for nitrate uptake. We employed two Paxillus involutus strains for root colonization: MAJ, which forms typical ectomycorrhizal structures (mantle and Hartig net), and NAU, colonizing roots with a thin, loose hyphal sheath. Fungus-colonized and noncolonized Populus × canescens were exposed to sodium chloride and used to measure root surface pH, nitrate (NO3- ) flux and transcription of NO3- transporters (NRTs; PcNRT1.1, -1.2, -2.1), and plasmalemma proton ATPases (HAs; PcHA4, -8, -11). Paxillus colonization enhanced root NO3- uptake, decreased surface pH, and stimulated NRTs and HA4 of the host regardless the presence or absence of a Hartig net. Under salt stress, noncolonized roots exhibited strong net NO3- efflux, whereas beneficial effects of fungal colonization on surface pH and HAs prevented NO3- loss. Inhibition of HAs abolished NO3- influx under all conditions. We found that stimulation of HAs was crucial for the beneficial influence of ectomycorrhiza on NO3- uptake, whereas the presence of a Hartig net was not required for improved NO3- translocation. Mycorrhizas may contribute to host adaptation to salt-affected environments by keeping up NO3- nutrition.
Collapse
Affiliation(s)
- Gang Sa
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
- Gansu Provincial Key Laboratory of Aridland Crop SciencesGansu Agricultural UniversityLanzhou730070China
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Jian Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Zhimei Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Yuhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Xujun Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
- Urat Desert‐Grassland Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of ScienceLanzhou730000China
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Cunfu Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
- Forest Botany and Tree PhysiologyUniversity of GoettingenGöttingen37077Germany
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBox 162Beijing100083China
| |
Collapse
|
7
|
Zhang Y, Sa G, Zhang Y, Zhu Z, Deng S, Sun J, Li N, Li J, Yao J, Zhao N, Zhao R, Ma X, Polle A, Chen S. Paxillus involutus-Facilitated Cd 2+ Influx through Plasma Membrane Ca 2+-Permeable Channels Is Stimulated by H 2O 2 and H +-ATPase in Ectomycorrhizal Populus × canescens under Cadmium Stress. FRONTIERS IN PLANT SCIENCE 2017; 7:1975. [PMID: 28111579 PMCID: PMC5216326 DOI: 10.3389/fpls.2016.01975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/13/2016] [Indexed: 05/13/2023]
Abstract
Using a Non-invasive Micro-test Technique, flux profiles of Cd2+, Ca2+, and H+ were investigated in axenically grown cultures of two strains of Paxillus involutus (MAJ and NAU), ectomycorrhizae formed by these fungi with the woody Cd2+-hyperaccumulator, Populus × canescens, and non-mycorrhizal (NM) roots. The influx of Cd2+ increased in fungal mycelia, NM and ectomycorrhizal (EM) roots upon a 40-min shock, after short-term (ST, 24 h), or long-term (LT, 7 days) exposure to a hydroponic environment of 50 μM CdCl2. Cd2+ treatments (shock, ST, and LT) decreased Ca2+ influx in NM and EM roots but led to an enhanced influx of Ca2+ in axenically grown EM cultures of the two P. involutus isolates. The susceptibility of Cd2+ flux to typical Ca2+ channel blockers (LaCl3, GdCl3, verapamil, and TEA) in fungal mycelia and poplar roots indicated that the Cd2+ entry occurred mainly through Ca2+-permeable channels in the plasma membrane (PM). Cd2+ treatment resulted in H2O2 production. H2O2 exposure accelerated the entry of Cd2+ and Ca2+ in NM and EM roots. Cd2+ further stimulated H+ pumping activity benefiting NM and EM roots to maintain an acidic environment, which favored the entry of Cd2+ across the PM. A scavenger of reactive oxygen species, DMTU, and an inhibitor of PM H+-ATPase, orthovanadate, decreased Ca2+ and Cd2+ influx in NM and EM roots, suggesting that the entry of Cd2+ through Ca2+-permeable channels is stimulated by H2O2 and H+ pumps. Compared to NM roots, EM roots exhibited higher Cd2+-fluxes under shock, ST, and LT Cd2+ treatments. We conclude that ectomycorrhizal P. × canescens roots retained a pronounced H2O2 production and a high H+-pumping activity, which activated PM Ca2+ channels and thus facilitated a high influx of Cd2+ under Cd2+ stress.
Collapse
Affiliation(s)
- Yuhong Zhang
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Gang Sa
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Yinan Zhang
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Zhimei Zhu
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Shurong Deng
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Jian Sun
- College of Life Science, Jiangsu Normal UniversityXuzhou, China
| | - Nianfei Li
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Jing Li
- School of Computer Science and Technology, Henan Polytechnic UniversityJiaozuo, China
| | - Jun Yao
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Nan Zhao
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Rui Zhao
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Xujun Ma
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Andrea Polle
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August-Universität GöttingenGöttingen, Germany
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| |
Collapse
|
8
|
Liu J, Liu J, Chen A, Ji M, Chen J, Yang X, Gu M, Qu H, Xu G. Analysis of tomato plasma membrane H(+)-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species. MYCORRHIZA 2016; 26:645-56. [PMID: 27103309 DOI: 10.1007/s00572-016-0700-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/11/2016] [Indexed: 05/21/2023]
Abstract
In plants, the plasma membrane H(+)-ATPase (HA) is considered to play a crucial role in regulating plant growth and respoding to environment stresses. Multiple paralogous genes encoding different isozymes of HA have been identified and characterized in several model plants, while limited information of the HA gene family is available to date for tomato. Here, we describe the molecular and expression features of eight HA-encoding genes (SlHA1-8) from tomato. All these genes are interrupted by multiple introns with conserved positions. SlHA1, 2, and 4 were widely expressed in all tissues, while SlHA5, 6, and 7 were almost only expressed in flowers. SlHA8, the transcripts of which were barely detectable under normal or nutrient-/salt-stress growth conditions, was strongly activated in arbuscular mycorrhizal (AM) fungal-colonized roots. Extreme lack of SlHA8 expression in M161, a mutant defective to AM fungal colonization, provided genetic evidence towards the dependence of its expression on AM symbiosis. A 1521-bp SlHA8 promoter could direct the GUS reporter expression specifically in colonized cells of transgenic tobacco, soybean, and rice mycorrhizal roots. Promoter deletion assay revealed a 223-bp promoter fragment of SlHA8 containing a variant of AM-specific cis-element MYCS (vMYCS) sufficient to confer the AM-induced activity. Targeted deletion of this motif in the corresponding promoter region causes complete abolishment of GUS staining in mycorrhizal roots. Together, these results lend cogent evidence towards the evolutionary conservation of a potential regulatory mechanism mediating the activation of AM-responsive HA genes in diverse mycorrhizal plant species.
Collapse
Affiliation(s)
- Junli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianjian Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Minjie Ji
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiadong Chen
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaofeng Yang
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mian Gu
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
9
|
Liu A, Chen S, Chang R, Liu D, Chen H, Ahammed GJ, Lin X, He C. Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity. JOURNAL OF PLANT RESEARCH 2014; 127:775-785. [PMID: 25160659 DOI: 10.1007/s10265-014-0657-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
The combined effects of arbuscular mycorrhizal fungi (AMF) and low temperature (LT) on cucumber plants were investigated with respect to biomass production, H2O2 accumulation, NADPH oxidase, ATPase activity and related gene expression. Mycorrhizal colonization ratio was gradually increased after AMF-inoculation. However, LT significantly decreased mycorrhizal colonization ability and mycorrhizal dependency. Regardless of temperature, the total fresh and dry mass, and root activity of AMF-inoculated plants were significantly higher than that of the non-AMF control. The H2O2 accumulation in AMF-inoculated roots was decreased by 42.44% compared with the control under LT. H2O2 predominantly accumulated on the cell walls of apoplast but was hardly detectable in the cytosol or organelles of roots. Again, NADPH oxidase activity involved in H2O2 production was significantly reduced by AMF inoculation under LT. AMF-inoculation remarkably increased the activities of P-type H(+)-ATPase, P-Ca(2+)-ATPase, V-type H(+)-ATPase, total ATPase activity, ATP concentration and plasma membrane protein content in the roots under LT. Additionally, ATP concentration and expression of plasma membrane ATPase genes were increased by AMF-inoculation. These results indicate that NADPH oxidase and ATPase might play an important role in AMF-mediated tolerance to chilling stress, thereby maintaining a lower H2O2 accumulation in the roots of cucumber.
Collapse
Affiliation(s)
- Airong Liu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abdallah C, Valot B, Guillier C, Mounier A, Balliau T, Zivy M, van Tuinen D, Renaut J, Wipf D, Dumas-Gaudot E, Recorbet G. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. J Proteomics 2014; 108:354-68. [PMID: 24925269 DOI: 10.1016/j.jprot.2014.05.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/07/2014] [Accepted: 05/12/2014] [Indexed: 11/25/2022]
Abstract
UNLABELLED Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in depth analysis by GeLC-MS/MS. The results obtained highlighted the identification of 1226 root membrane protein candidates whose cellular and functional classifications predispose plastids and protein synthesis as prevalent organelle and function, respectively. Changes at the protein abundance level between the membrane proteomes of mycorrhizal and nonmycorrhizal roots were further monitored by spectral counting, which retrieved a total of 96 proteins that displayed a differential accumulation upon AM symbiosis. Besides the canonical markers of the periarbuscular membrane, new candidates supporting the importance of membrane trafficking events during mycorrhiza establishment/functioning were identified, including flotillin-like proteins. The data have been deposited to the ProteomeXchange with identifier PXD000875. BIOLOGICAL SIGNIFICANCE During arbuscular mycorrhizal symbiosis, one of the most widespread mutualistic associations in nature, the endomembrane system of plant roots is believed to undergo qualitative and quantitative changes in order to sustain both the accommodation process of the AM fungus within cortical cells and the exchange of nutrients between symbionts. Large-scale GeLC-MS/MS proteomic analysis of the membrane fractions from mycorrhizal and nonmycorrhizal roots of M. truncatula coupled to spectral counting retrieved around one hundred proteins that displayed changes in abundance upon mycorrhizal establishment. The symbiosis-related membrane proteins that were identified mostly function in signaling/membrane trafficking and nutrient uptake regulation. Besides extending the coverage of the root membrane proteome of M. truncatula, new candidates involved in the symbiotic program emerged from the current study, which pointed out a dynamic reorganization of microsomal proteins during the accommodation of AM fungi within cortical cells.
Collapse
Affiliation(s)
- Cosette Abdallah
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France; Environmental and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, Belvaux L-4422, Luxembourg.
| | - Benoit Valot
- UMR de Génétique Végétale, PAPPSO, Ferme du Moulon, 91190 Gif sur Yvette, France.
| | - Christelle Guillier
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Arnaud Mounier
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Thierry Balliau
- UMR de Génétique Végétale, PAPPSO, Ferme du Moulon, 91190 Gif sur Yvette, France.
| | - Michel Zivy
- UMR de Génétique Végétale, PAPPSO, Ferme du Moulon, 91190 Gif sur Yvette, France.
| | - Diederik van Tuinen
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Jenny Renaut
- Environmental and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, Belvaux L-4422, Luxembourg.
| | - Daniel Wipf
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Eliane Dumas-Gaudot
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Ghislaine Recorbet
- Environmental and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, Belvaux L-4422, Luxembourg.
| |
Collapse
|
11
|
Li J, Bao S, Zhang Y, Ma X, Mishra-Knyrim M, Sun J, Sa G, Shen X, Polle A, Chen S. Paxillus involutus strains MAJ and NAU mediate K(+)/Na(+) homeostasis in ectomycorrhizal Populus x canescens under sodium chloride stress. PLANT PHYSIOLOGY 2012; 159:1771-86. [PMID: 22652127 PMCID: PMC3425212 DOI: 10.1104/pp.112.195370] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/28/2012] [Indexed: 05/20/2023]
Abstract
Salt-induced fluxes of H(+), Na(+), K(+), and Ca(2+) were investigated in ectomycorrhizal (EM) associations formed by Paxillus involutus (strains MAJ and NAU) with the salt-sensitive poplar hybrid Populus × canescens. A scanning ion-selective electrode technique was used to measure flux profiles in non-EM roots and axenically grown EM cultures of the two P. involutus isolates to identify whether the major alterations detected in EM roots were promoted by the fungal partner. EM plants exhibited a more pronounced ability to maintain K(+)/Na(+) homeostasis under salt stress. The influx of Na(+) was reduced after short-term (50 mm NaCl, 24 h) and long-term (50 mm NaCl, 7 d) exposure to salt stress in mycorrhizal roots, especially in NAU associations. Flux data for P. involutus and susceptibility to Na(+)-transport inhibitors indicated that fungal colonization contributed to active Na(+) extrusion and H(+) uptake in the salinized roots of P. × canescens. Moreover, EM plants retained the ability to reduce the salt-induced K(+) efflux, especially under long-term salinity. Our study suggests that P. involutus assists in maintaining K(+) homeostasis by delivering this nutrient to host plants and slowing the loss of K(+) under salt stress. EM P. × canescens plants exhibited an enhanced Ca(2+) uptake ability, whereas short-term and long-term treatments caused a marked Ca(2+) efflux from mycorrhizal roots, especially from NAU-colonized roots. We suggest that the release of additional Ca(2+) mediated K(+)/Na(+) homeostasis in EM plants under salt stress.
Collapse
Affiliation(s)
| | | | | | - Xujun Ma
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China (J.L., S.B., Y.Z., X.M., J.S., G.S., X.S., S.C.)
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, People’s Republic of China (J.L.); and
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Gottingen, Germany (M.M.-K., A.P.)
| | - Manika Mishra-Knyrim
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China (J.L., S.B., Y.Z., X.M., J.S., G.S., X.S., S.C.)
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, People’s Republic of China (J.L.); and
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Gottingen, Germany (M.M.-K., A.P.)
| | - Jian Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China (J.L., S.B., Y.Z., X.M., J.S., G.S., X.S., S.C.)
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, People’s Republic of China (J.L.); and
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Gottingen, Germany (M.M.-K., A.P.)
| | - Gang Sa
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China (J.L., S.B., Y.Z., X.M., J.S., G.S., X.S., S.C.)
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, People’s Republic of China (J.L.); and
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Gottingen, Germany (M.M.-K., A.P.)
| | - Xin Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China (J.L., S.B., Y.Z., X.M., J.S., G.S., X.S., S.C.)
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, People’s Republic of China (J.L.); and
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Gottingen, Germany (M.M.-K., A.P.)
| | - Andrea Polle
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China (J.L., S.B., Y.Z., X.M., J.S., G.S., X.S., S.C.)
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, People’s Republic of China (J.L.); and
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Gottingen, Germany (M.M.-K., A.P.)
| | | |
Collapse
|
12
|
Smith SE, Smith FA. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:227-50. [PMID: 21391813 DOI: 10.1146/annurev-arplant-042110-103846] [Citation(s) in RCA: 574] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Root systems of most land plants form arbuscular mycorrhizal (AM) symbioses in the field, and these contribute to nutrient uptake. AM roots have two pathways for nutrient absorption, directly through the root epidermis and root hairs and via AM fungal hyphae into root cortical cells, where arbuscules or hyphal coils provide symbiotic interfaces. New physiological and molecular evidence shows that for phosphorus the mycorrhizal pathway (MP) is operational regardless of plant growth responses (positive or negative). Amounts delivered cannot be determined from plant nutrient contents because when responses are negative the contribution of the direct pathway (DP) is reduced. Nitrogen (N) is also delivered to roots via an MP, but the contribution to total N requirement and the costs to the plant are not clear. The functional interplay between activities of the DP and MP has important implications for consideration of AM symbioses in ecological, agronomic, and evolutionary contexts.
Collapse
Affiliation(s)
- Sally E Smith
- Soils Group, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
13
|
Benedito VA, Li H, Dai X, Wandrey M, He J, Kaundal R, Torres-Jerez I, Gomez SK, Harrison MJ, Tang Y, Zhao PX, Udvardi MK. Genomic inventory and transcriptional analysis of Medicago truncatula transporters. PLANT PHYSIOLOGY 2010; 152:1716-30. [PMID: 20023147 PMCID: PMC2832251 DOI: 10.1104/pp.109.148684] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/15/2009] [Indexed: 05/20/2023]
Abstract
Transporters move hydrophilic substrates across hydrophobic biological membranes and play key roles in plant nutrition, metabolism, and signaling and, consequently, in plant growth, development, and responses to the environment. To initiate and support systematic characterization of transporters in the model legume Medicago truncatula, we identified 3,830 transporters and classified 2,673 of these into 113 families and 146 subfamilies. Analysis of gene expression data for 2,611 of these transporters identified 129 that are expressed in an organ-specific manner, including 50 that are nodule specific and 36 specific to mycorrhizal roots. Further analysis uncovered 196 transporters that are induced at least 5-fold during nodule development and 44 in roots during arbuscular mycorrhizal symbiosis. Among the nodule- and mycorrhiza-induced transporter genes are many candidates for known transport activities in these beneficial symbioses. The data presented here are a unique resource for the selection and functional characterization of legume transporters.
Collapse
|
14
|
Moche M, Stremlau S, Hecht L, Göbel C, Feussner I, Stöhr C. Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles. PLANTA 2010; 231:425-36. [PMID: 19937342 PMCID: PMC2799628 DOI: 10.1007/s00425-009-1057-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/04/2009] [Indexed: 05/20/2023]
Abstract
Plant plasma membrane (pm) vesicles from mycorrhizal tobacco (Nicotiana tabacum cv. Samsun) roots were isolated with negligible fungal contamination by the aqueous two-phase partitioning technique as proven by fatty acid analysis. Palmitvaccenic acid became apparent as an appropriate indicator for fungal membranes in root pm preparations. The pm vesicles had a low specific activity of the vanadate-sensitive ATPase and probably originated from non-infected root cells. In a phosphate-limited tobacco culture system, root colonisation by the vesicular arbuscular mycorrhizal fungus, Glomus mosseae, is inhibited by external nitrate in a dose-dependent way. However, detrimental high concentrations of 25 mM nitrate lead to the highest colonisation rate observed, indicating that the defence system of the plant is impaired. Nitric oxide formation by the pm-bound nitrite:NO reductase increased in parallel with external nitrate supply in mycorrhizal roots in comparison to the control plants, but decreased under excess nitrate. Mycorrhizal pm vesicles had roughly a twofold higher specific activity as the non-infected control plants when supplied with 10-15 mM nitrate.
Collapse
Affiliation(s)
- Martin Moche
- Institute of Botany and Landscape Ecology, Greifswald University, Grimmer Str. 88, 17487 Greifswald, Germany
| | - Stefanie Stremlau
- Institute of Botany and Landscape Ecology, Greifswald University, Grimmer Str. 88, 17487 Greifswald, Germany
| | - Lars Hecht
- Institute of Botany and Landscape Ecology, Greifswald University, Grimmer Str. 88, 17487 Greifswald, Germany
| | - Cornelia Göbel
- Plant Biochemistry, Georg-August-University, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Plant Biochemistry, Georg-August-University, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Christine Stöhr
- Institute of Botany and Landscape Ecology, Greifswald University, Grimmer Str. 88, 17487 Greifswald, Germany
| |
Collapse
|
15
|
Ramos AC, Martins MA, Okorokova-Façanha AL, Olivares FL, Okorokov LA, Sepúlveda N, Feijó JA, Façanha AR. Arbuscular mycorrhizal fungi induce differential activation of the plasma membrane and vacuolar H+ pumps in maize roots. MYCORRHIZA 2009; 19:69-80. [PMID: 18841397 DOI: 10.1007/s00572-008-0204-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 09/16/2008] [Indexed: 05/21/2023]
Abstract
Roots undergo multiple changes as a consequence of arbuscular mycorrhizal (AM) interactions. One of the major alterations expected is the induction of membrane transport systems, including proton pumps. In this work, we investigated the changes in the activities of vacuolar and plasma membrane (PM) H(+) pumps from maize roots (Zea mays L.) in response to colonization by two species of AM fungi, Gigaspora margarita and Glomus clarum. Both the vacuolar and PM H(+)-ATPase activities were inhibited, while a concomitant strong stimulation of the vacuolar H(+)-PPase was found in the early stages of root colonization by G. clarum (30 days after inoculation), localized in the younger root regions. In contrast, roots colonized by G. margarita exhibited only stimulation of these enzymatic activities, suggesting a species-specific phenomenon. However, when the root surface H(+) effluxes were recorded using a noninvasive vibrating probe technique, a striking activation of the PM H(+)-ATPases was revealed specifically in the elongation zone of roots colonized with G. clarum. The data provide evidences for a coordinated regulation of the H(+) pumps, which depicts a mechanism underlying an activation of the root H(+)-PPase activity as an adaptative response to the energetic changes faced by the host root during the early stages of the AM interaction.
Collapse
Affiliation(s)
- Alessandro C Ramos
- Developmental Biology Center, Instituto Gulbenkian de Ciência, Pt-2780-156, Oeiras, Portugal
| | - Marco A Martins
- Centro de Ciências e Tecnologia Agropecuária, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-600, Brazil
| | - Anna L Okorokova-Façanha
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28015-620, Brazil
| | - Fábio Lopes Olivares
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28015-620, Brazil
| | - Lev A Okorokov
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28015-620, Brazil
| | - Nuno Sepúlveda
- Centro de Estatística e Aplicações da Universidade de Lisboa, Campo Grande Ed C6, 1749-016, Lisbon, Portugal
- Theoretical Immunology Group, Instituto Gulbenkian de Ciência, Pt-2780-156, Oeiras, Portugal
| | - José A Feijó
- Developmental Biology Center, Instituto Gulbenkian de Ciência, Pt-2780-156, Oeiras, Portugal
- Faculdade de Ciências, Universidade de Lisboa, DBV, Campo Grande Ed. C2, 1749-016, Lisbon, Portugal
| | - Arnoldo R Façanha
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28015-620, Brazil.
| |
Collapse
|
16
|
Ramos AC, Lima PT, Dias PN, Kasuya MCM, Feijó JA. A pH signaling mechanism involved in the spatial distribution of calcium and anion fluxes in ectomycorrhizal roots. THE NEW PHYTOLOGIST 2009; 181:448-462. [PMID: 19121039 DOI: 10.1111/j.1469-8137.2008.02656.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mycorrhization is a typical example of a host-pathogen symbiotic interaction where the pathogen cell biology and the host immune response coevolved several functional links. Here, the role played by ion fluxes across the root concerning nutrient uptake, osmoregulation, growth and signaling events is addressed. An ion-selective vibrating probe system was used to determine the net fluxes of protons (H(+)), calcium (Ca(2+)) and anions (A(-)) along nonmycorrhizal and ectomycorrhizal (ECM) roots of Eucalyptus globulus colonized by Pisolithus sp. These data show that, from five root zones analyzed, the main effect of fungal colonization was localized to the elongation zone. Here, strong changes in ion dynamics and rhizosphere acidification capacity were observed. Additionally, ion fluxes exhibited periodic fluctuations. To verify whether these fluctuations corresponded to sustained oscillations, continuous wavelet time spectrum analysis was applied and it was determined that H(+) and A(-) fluxes from ECM roots had longer periods than nonmycorrhizal roots. By contrast, Ca(2+) oscillations were completely abolished following fungal interaction. These results are interpreted in the light of a working model in which nutrient uptake and stimulation of growth are mediated by ECM fungi and may be pH-dependent. Furthermore, the variations detected in ECM roots for H(+) and A(-) fluxes suggest a main contribution from the plant, while the results obtained for Ca(2+) point to a significant involvement of the fungus.
Collapse
Affiliation(s)
- Alessandro C Ramos
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, Oeiras, 2780-901, Portugal;Depto de Microbiologia, Universidade Federal de Viçosa, Viçosa-MG, 36570-000, Brazil;Depto Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Campo Grande, 1700, Portugal
| | - Pedro T Lima
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, Oeiras, 2780-901, Portugal;Depto de Microbiologia, Universidade Federal de Viçosa, Viçosa-MG, 36570-000, Brazil;Depto Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Campo Grande, 1700, Portugal
| | - Pedro N Dias
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, Oeiras, 2780-901, Portugal;Depto de Microbiologia, Universidade Federal de Viçosa, Viçosa-MG, 36570-000, Brazil;Depto Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Campo Grande, 1700, Portugal
| | - Maria Catarina M Kasuya
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, Oeiras, 2780-901, Portugal;Depto de Microbiologia, Universidade Federal de Viçosa, Viçosa-MG, 36570-000, Brazil;Depto Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Campo Grande, 1700, Portugal
| | - José A Feijó
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, Oeiras, 2780-901, Portugal;Depto de Microbiologia, Universidade Federal de Viçosa, Viçosa-MG, 36570-000, Brazil;Depto Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Campo Grande, 1700, Portugal
| |
Collapse
|