1
|
Niu C, Liu T, Zhao S, Ren J, Zhao Y, Kang X, Qin W, Xie X, Zhang X, Wei T, Tian J, Li X, Li M, Li S, Li G. Multi-gene analysis of the Russula crown clade (Russulales, Basidiomycota) revealed six new species and Alboflavinae subsect. nov. from Fagaceae forests in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1454035. [PMID: 39439511 PMCID: PMC11494609 DOI: 10.3389/fpls.2024.1454035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Introduction The crown clade is one of two major groups in the Russula subg. Russula. Methods/material An analysis of Chinese samples was performed based on the morphology, internal transcribed spacer (ITS) sequences, and multi-gene phylogenies of 28S nrLSU, 16S mtSSU, rpb1, rpb2, and tef1-α. Results The results supported the independence of six new species: Russula alboflava (sect. Amethystinae), R. chrysantha (subsect. Chamaeleontinae), R. liyui (subsect. Laricinae), R. lutescens (subsect. Olivaceinae), R. paraxerampelina, and R. prunicolor (subsect. Xerampelinae) from Fagaceae forest habitats. Subsect. Alboflavinae was newly proposed in sect. Amethystinae. Members of the new subsection include R. alboflava, R. burlinghamiae, and possibly R. ballouii. Discussion Our analyses also supported the claim that two species of R. fulvograminea (subsect. Laricinae) and R. subrubens (subsect. Xerampelinae) have a Eurasian distribution. The habitat and primary hosts of the main phylogenetic clades within related subsections were summarized and discussed.
Collapse
Affiliation(s)
- Caiyun Niu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding, Hebei, China
| | - Tiezhi Liu
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, China
| | - Shiyi Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding, Hebei, China
| | - Jing Ren
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding, Hebei, China
| | - Yi Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding, Hebei, China
| | - Xia Kang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding, Hebei, China
| | | | - Xuejiao Xie
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding, Hebei, China
| | - Xu Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding, Hebei, China
| | - Tiezheng Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinghua Tian
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding, Hebei, China
| | - Xiao Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding, Hebei, China
| | - Ming Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding, Hebei, China
| | - Shoumian Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding, Hebei, China
| | - Guojie Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, China
- Collaborative Innovation Center of Vegetable Industry of Hebei Province, Baoding, Hebei, China
| |
Collapse
|
2
|
Pena R, Tibbett M. Mycorrhizal symbiosis and the nitrogen nutrition of forest trees. Appl Microbiol Biotechnol 2024; 108:461. [PMID: 39249589 PMCID: PMC11384646 DOI: 10.1007/s00253-024-13298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: • Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. • Ectomycorrhizal fungal communities exhibit a high functional diversity. • Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rodica Pena
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK.
- Department of Silviculture, Transilvania University of Brasov, Brasov, Romania.
| | - Mark Tibbett
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
3
|
F K, L B, M EM, M R B, N F, R B, F B, A DS, C D, M N F, G G, M J G, M L, A L, W L M, A N, A S, G S, E I V, K V, L V, B Z, L A, D D, M B. "Ectomycorrhizal exploration type" could be a functional trait explaining the spatial distribution of tree symbiotic fungi as a function of forest humus forms. MYCORRHIZA 2024; 34:203-216. [PMID: 38700516 DOI: 10.1007/s00572-024-01146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
In European forests, most tree species form symbioses with ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) fungi. The EM fungi are classified into different morphological types based on the development and structure of their extraradical mycelium. These structures could be root extensions that help trees to acquire nutrients. However, the relationship between these morphological traits and functions involved in soil nutrient foraging is still under debate.We described the composition of mycorrhizal fungal communities under 23 tree species in a wide range of climates and humus forms in Europe and investigated the exploratory types of EM fungi. We assessed the response of this tree extended phenotype to humus forms, as an indicator of the functioning and quality of forest soils. We found a significant relationship between the relative proportion of the two broad categories of EM exploration types (short- or long-distance) and the humus form, showing a greater proportion of long-distance types in the least dynamic soils. As past land-use and host tree species are significant factors structuring fungal communities, we showed this relationship was modulated by host trait (gymnosperms versus angiosperms), soil depth and past land use (farmland or forest).We propose that this potential functional trait of EM fungi be used in future studies to improve predictive models of forest soil functioning and tree adaptation to environmental nutrient conditions.
Collapse
Affiliation(s)
- Khalfallah F
- Université de Lorraine, INRAE, IAM, Nancy, F-54000, France
- INRAE, BEF, Nancy, F-54000, France
| | - Bon L
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
| | - El Mazlouzi M
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
- IEES, Université Paris Est Créteil, CNRS, INRAE, IRD, Créteil, 94010, 94010, France
| | - Bakker M R
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
| | - Fanin N
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
| | - Bellanger R
- INRAE, Site de la Villa Thuret, Antibes, 1353 UEVT, 06600, France
| | - Bernier F
- INRAE, Domaine de l'Hermitage, Cestas Pierroton, 0570 UEFP, 33610, France
| | - De Schrijver A
- Departement Biowetenschappen en Industriële Technologie, AgroFoodNature HOGENT, Melle, 9090, Belgium
| | - Ducatillon C
- INRAE, Site de la Villa Thuret, Antibes, 1353 UEVT, 06600, France
| | - Fotelli M N
- Forest Research Institute Hellenic Agricultural Organization Dimitra, Vassilika, Thessaloniki, 57006, Greece
| | - Gateble G
- INRAE, Site de la Villa Thuret, Antibes, 1353 UEVT, 06600, France
| | - Gundale M J
- Department of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences, Umeå, 901-83, Sweden
| | - Larsson M
- Department of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences, Umeå, 901-83, Sweden
| | - Legout A
- INRAE, BEF, Nancy, F-54000, France
| | - Mason W L
- Forest Research, Northern Research Station, Roslin, Midlothian, EH25 9SY, Scotland, UK
| | - Nordin A
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901-83, Sweden
| | - Smolander A
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki, 00790, Finland
| | - Spyroglou G
- Forest Research Institute Hellenic Agricultural Organization Dimitra, Vassilika, Thessaloniki, 57006, Greece
| | - Vanguelova E I
- Forest Research, Alice Holt, Alice Holt Lodge, Farnham, GU10 4LH, UK
| | - Verheyen K
- Forest & Nature Lab, Ghent University, Gontrode, Melle, 9090, Belgium
| | - Vesterdal L
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Zeller B
- INRAE, BEF, Nancy, F-54000, France
| | - Augusto L
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France.
| | | | - Buée M
- Université de Lorraine, INRAE, IAM, Nancy, F-54000, France.
| |
Collapse
|
4
|
Jörgensen K, Clemmensen KE, Wallander H, Lindahl BD. Ectomycorrhizal fungi are more sensitive to high soil nitrogen levels in forests exposed to nitrogen deposition. THE NEW PHYTOLOGIST 2024; 242:1725-1738. [PMID: 38213001 DOI: 10.1111/nph.19509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Ectomycorrhizal fungi are essential for nitrogen (N) cycling in many temperate forests and responsive to anthropogenic N addition, which generally decreases host carbon (C) allocation to the fungi. In the boreal region, however, ectomycorrhizal fungal biomass has been found to correlate positively with soil N availability. Still, responses to anthropogenic N input, for instance through atmospheric deposition, are commonly negative. To elucidate whether variation in N supply affects ectomycorrhizal fungi differently depending on geographical context, we investigated ectomycorrhizal fungal communities along fertility gradients located in two nemo-boreal forest regions with similar ranges in soil N : C ratios and inorganic N availability but contrasting rates of N deposition. Ectomycorrhizal biomass and community composition remained relatively stable across the N gradient with low atmospheric N deposition, but biomass decreased and the community changed more drastically with increasing N availability in the gradient subjected to higher rates of N deposition. Moreover, potential activities of enzymes involved in ectomycorrhizal mobilisation of organic N decreased as N availability increased. In forests with low external input, we propose that stabilising feedbacks in tree-fungal interactions maintain ectomycorrhizal fungal biomass and communities even in N-rich soils. By contrast, anthropogenic N input seems to impair ectomycorrhizal functions.
Collapse
Affiliation(s)
- Karolina Jörgensen
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-750 07, Uppsala, Sweden
| | - Karina E Clemmensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-750 07, Uppsala, Sweden
| | - Håkan Wallander
- Department of Biology, Lund University, Sölvegatan 37, 223 26, Lund, Sweden
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-750 07, Uppsala, Sweden
| |
Collapse
|
5
|
Zhang M, Gao XL, Mu LQ, Deng WQ. Morphology and Molecular Phylogeny Reveal Five New Species of Laccaria (Hydnangiaceae, Agaricales) from Southern China. J Fungi (Basel) 2023; 9:1179. [PMID: 38132780 PMCID: PMC10744585 DOI: 10.3390/jof9121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
The genus Laccaria is a type of cosmopolitan and ecologically important fungal group. Members can form ectomycorrhizal associations with numerous trees, and some species are common edible fungi in local markets. Although some new species from China are recently published, the species diversity of Laccaria is still unclear in China. In this study, some samples of Laccaria were collected from southern China, and morphological characteristics and phylogenetic analyses based on the multilocus dataset of ITS-LSU-tef1-rpb2 confirmed five new species. Laccaria miniata, L. nanlingensis and L. neovinaceoavellanea were collected from subtropical broad-leaved forests, and L. rufobrunnea and L. umbilicata were collected from subtropical mixed forests of southwest China. Full descriptions, illustrations, comparisons with similar species and phylogenetic analysis are provided.
Collapse
Affiliation(s)
- Ming Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Xue-Lian Gao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Li-Qin Mu
- Chuxiong Yi Autonomous Prefecture Forestry and Grassland Science Research Institute, Chuxiong 675000, China
| | - Wang-Qiu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| |
Collapse
|
6
|
Blaschke M, Siemonsmeier A, Harjes J, Okach DO, Rambold G. Comparison of survey methods for fungi using metabarcoding and fruit body inventories in an altitudinal gradient. Arch Microbiol 2023; 205:269. [PMID: 37354241 DOI: 10.1007/s00203-023-03606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
Metabarcoding of environmental samples is nowadays an established method in biodiversity research. When it comes to studying fungal populations in various ecotypes, fruit body inventories are the traditional method to assess the diversity of fungal communities. In this study, both methods-metabarcoding of soil samples and a traditional fruit body inventory-were conducted on 144 sample plots in an altitudinal gradient in the Bavarian Forest (Germany) and the results were compared. Metabarcoding detected significantly more species than the traditional fruit body inventory. The majority of taxa recorded in the fruit body inventory belonged to the Basidiomycota, whereas in the metabarcoding data, the distribution of species between Basidiomycota and Ascomycota was approximately balanced. Species of several orders forming inconspicuous or hypogeous fruit bodies were detected only by metabarcoding, while several wood decomposers were recorded only in the fruit body inventory. The proportion of detected wood-colonising species with melanized spores was considerably higher with metabarcoding than with the fruit body inventory, where more than 70% of recorded wood-colonisers had hyaline spores. Based on the metabarcoding data, a decline of species richness with increasing altitude was evident, but this was not visible in the fruit body inventory data. Detrended correspondence analyses yielded similar results for relative species community similarities with both survey methods.
Collapse
Affiliation(s)
- Markus Blaschke
- Bavarian State Institute of Forestry, Hans-Carl-von-Carlowitz-Platz 1, 85354, Freising, Germany.
| | - Angela Siemonsmeier
- Bavarian State Institute of Forestry, Hans-Carl-von-Carlowitz-Platz 1, 85354, Freising, Germany
- University of Applied Forest Science Rottenburg, Schadenweilerhof, 72108, Rottenburg am Neckar, Germany
| | - Janno Harjes
- Department of Mycology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Daniel O Okach
- Department of Mycology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Gerhard Rambold
- Department of Mycology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany.
| |
Collapse
|
7
|
Li GJ, Liu TZ, Li SM, Zhao SY, Niu CY, Liu ZZ, Xie XJ, Zhang X, Shi LY, Guo YB, Wang K, Cao B, Zhao RL, Li M, Deng CY, Wei TZ. Four New Species of Russula Subsection Sardoninae from China. J Fungi (Basel) 2023; 9:jof9020199. [PMID: 36836313 PMCID: PMC9963349 DOI: 10.3390/jof9020199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Four new species of Russula subsection Sardoninae from northern and southwestern China under coniferous and deciduous trees are proposed as R. begonia, R. photinia, R. rhodochroa, and R. rufa. Illustrations and descriptions of R. gracillima, R. leucomarginata, R. roseola, and the above four new species are provided based on evidence of morphological characters and phylogenetic analyses of the internal transcribed spacer (ITS), as well as the multi-locus of mtSSU, nLSU, rpb1, rpb2 and tef1-α. The relationships between these new species and allied taxa are discussed.
Collapse
Affiliation(s)
- Guo-Jie Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Tie-Zhi Liu
- College of Chemistry and Life Sciences, Chifeng University, Chifeng 024000, China
| | - Shou-Mian Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Shi-Yi Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Cai-Yun Niu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Zhen-Zhen Liu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Xue-Jiao Xie
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Xu Zhang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Lu-Yao Shi
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Yao-Bin Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Chun-Ying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China
- Correspondence: (C.-Y.D.); (T.-Z.W.)
| | - Tie-Zheng Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (C.-Y.D.); (T.-Z.W.)
| |
Collapse
|
8
|
A fresh outlook on the smooth-spored species of Inocybe: type studies and 18 new species. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractOn the basis of detailed morphological and molecular investigation, eighteen new species of Inocybe (I. alberichiana, I. beatifica, I. bellidiana, I. clandestina, I. drenthensis, I. dryadiana, I. gaiana, I. ghibliana, I. grusiana, I. knautiana, I. lampetiana, I. oetziana, I. orionis, I. plurabellae, I. rivierana, I. scolopacis, I. sitibunda and I. tiburtina) are described. All of them are smooth-spored, and most of them are pruinose only in the apical part of the stipe. The new species are compared to 40 type specimens, all of which are described here and for several of which (partial) ITS sequences have been generated. For eight species, epi-, lecto- or neotypes were selected, among these are I. geophylla, I. glabripes and I. tigrina. Based on these studies, we suggest twelve synonymies, i.e. that I. clarkii is synonymous with I. sindonia, I. conformata with I. cincinnata, I. elegans with I. griseolilacina, I. fuscidula with I. glabripes, I. griseotarda with I. psammobrunnea, I. obscurella with I. obscuroides, I. obscuromellea with I. semifulva, I. patibilis and I. tigrinella with I. tigrina, I. petroselinolens with I. tenuicystidiata and I. rubidofracta with I. pseudorubens and I. subporospora is synonymized with I. tjallingiorum. All of the new species are supported by phylogenetic analyses. Among the previously described species accepted here, sixteen are represented by types in the phylogenetic analyses and ten by own collections morphologically corresponding to the type. In summary, we here verify or provide morphological concepts associated with molecular data for 44 smooth-spored species of Inocybe.
Collapse
|
9
|
Abstract
We study long-term electrical resistance dynamics in mycelium and fruit bodies of oyster fungi P. ostreatus. A nearly homogeneous sheet of mycelium on the surface of a growth substrate exhibits trains of resistance spikes. The average width of spikes is c. 23[Formula: see text]min and the average amplitude is c. 1[Formula: see text]k[Formula: see text]. The distance between neighboring spikes in a train of spikes is c. 30[Formula: see text]min. Typically, there are 4–6 spikes in a train of spikes. Two types of electrical resistance spikes trains are found in fruit bodies: low frequency and high amplitude (28[Formula: see text]min spike width, 1.6[Formula: see text]k[Formula: see text] amplitude, 57[Formula: see text]min distance between spikes) and high frequency and low amplitude (10[Formula: see text]min width, 0.6[Formula: see text]k[Formula: see text] amplitude, 44[Formula: see text]min distance between spikes). The findings could be applied in monitoring of physiological states of fungi and future development of living electronic devices and sensors.
Collapse
Affiliation(s)
| | - Alessandro Chiolerio
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Torino, Italy
| | - Georgios Sirakoulis
- Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
| |
Collapse
|
10
|
Yu FM, Jayawardena RS, Liu J, Hyde KD, Zhao Q. Hypomyces pseudolactifluorum sp. nov. (Hypocreales: Hypocreaceae) on Russula sp. from Yunnan, PR China. Biodivers Data J 2020; 8:e53490. [PMID: 33061777 PMCID: PMC7536245 DOI: 10.3897/bdj.8.e53490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/19/2020] [Indexed: 11/12/2022] Open
Abstract
Background Hypomyces is a large genus of fungicolous fungi, parasitising the fruiting bodies of Agaricales, Boletales, Helotiales, Pezizales and Polyporales. Hypomyces currently comprises of 147 species widely distributed in Australia, China, France, Germany, Italy, Japan, North America, Sri Lanka, Thailand and UK. Amongst them, 28 species have been recorded in China. New information Hypomyces pseudolactifluorum sp. nov., growing on the fruiting bodies of Russula sp. in subsect. Lactarioideae and collected from Yunnan, China, is described with illustrations and molecular phylogenetic data (combined ITS, LSU, TEF1-α and RPB2 sequence dataset). The new species is characterised by semi-immersed to immersed perithecia and fusiform, apiculate and verrucose ascospores. We also review the species diversity of the genus Hypomyces in China.
Collapse
Affiliation(s)
- Feng-Ming Yu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences Kunming China.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiangrai, Thailand Center of Excellence in Fungal Research, Mae Fah Luang University Chiangrai Thailand
| | - Ruvishika S Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiangrai, Thailand Center of Excellence in Fungal Research, Mae Fah Luang University Chiangrai Thailand
| | - Jianwei Liu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences Kunming China
| | - Kevin D Hyde
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences Kunming China.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiangrai, Thailand Center of Excellence in Fungal Research, Mae Fah Luang University Chiangrai Thailand.,Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China Institute of Plant Health, Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Qi Zhao
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences Kunming China.,Institute of Applied Fungi, Southwest Forestry University, Kunming, China Institute of Applied Fungi, Southwest Forestry University Kunming China
| |
Collapse
|
11
|
Nguyen DQ, Schneider D, Brinkmann N, Song B, Janz D, Schöning I, Daniel R, Pena R, Polle A. Soil and root nutrient chemistry structure root-associated fungal assemblages in temperate forests. Environ Microbiol 2020; 22:3081-3095. [PMID: 32383336 DOI: 10.1111/1462-2920.15037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Root-associated fungi (RAF) link nutrient fluxes between soil and roots and thus play important roles in ecosystem functioning. To enhance our understanding of the factors that control RAF, we fitted statistical models to explain variation in RAF community structure using data from 150 temperate forest sites covering a broad range of environmental conditions and chemical root traits. We found that variation in RAF communities was related to both root traits (e.g., cations, carbohydrates, NO3 - ) and soil properties (pH, cations, moisture, C/N). The identified drivers were the combined result of distinct response patterns of fungal taxa (determined at the rank of orders) to biotic and abiotic factors. Our results support that RAF community variation is related to evolutionary adaptedness of fungal lineages and consequently, drivers of RAF communities are context-dependent.
Collapse
Affiliation(s)
- Dung Quang Nguyen
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany.,Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Grisebachstraße 8, 37077, Germany
| | - Nicole Brinkmann
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Bin Song
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Ingo Schöning
- Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Grisebachstraße 8, 37077, Germany
| | - Rodica Pena
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen-Institut, University of Göttingen, Göttingen, Büsgenweg 2, 37077, Germany
| |
Collapse
|
12
|
Fassler A, Bellemare J, Ignace DD. Loss of a Foundation Species, Eastern Hemlock (Tsuga canadensis), May Lead to Biotic Homogenization of Fungal Communities and Altered Bacterial Abundance in the Forest Floor. Northeast Nat (Steuben) 2019. [DOI: 10.1656/045.026.0322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Aliza Fassler
- Department of Biological Sciences, Smith College, Northampton, MA 01063
| | - Jesse Bellemare
- Department of Biological Sciences, Smith College, Northampton, MA 01063
| | | |
Collapse
|
13
|
Birch Bog on Anthropogenically Transformed Raised Bogs. A Case Study from Pomerania (Poland). WATER 2019. [DOI: 10.3390/w11061224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Birch bog is formed on the margins of or within raised bogs, on secondary habitats. The study aim was to understand the vegetation and mycological diversity of birch bog on the background of habitat conditions on raised bogs subject to anthropogenic changes, including 15 areas located on seven bogs. Two of the analyzed areas were located on a peat bog not subject to human impact. Phytosociological and mycosociological relevés were taken and substrate analyses were carried out (pH, humidity, N-NH4, N-NO2, N-NO3 and P-PO4). Based on habitat predictors, two area groups were distinguished, differing primarily in humidity. More humid habitats were present on the margins of bogs, and were characterized by lower acidity and higher N-NH4 and P-PO4 abundance. Despite the fact they were enriched by runoffs from the neighboring arable fields, this was not always reflected in the plant and fungi species richness. Quercus robur appeared on less humid habitats, which may be a symptom of unfavorable changes toward habitat drying. In the majority of cases, changes in the habitat independent of the birch patches located and the human impact type are not yet reflected in the vegetation. However, they may be indicated by the fungal diversity, highest in former peat extraction pits, and lowest in pristine peat.
Collapse
|
14
|
Reschke K, Popa F, Yang ZL, Kost G. Diversity and taxonomy of Tricholoma species from Yunnan, China, and notes on species from Europe and North America. Mycologia 2018; 110:1081-1109. [PMID: 30383484 DOI: 10.1080/00275514.2018.1512295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although taxonomic knowledge on Tricholoma (Agaricales, Basidiomycota) is fairly comprehensive in northwest Europe, knowledge of the global diversity and distribution of Tricholoma spp. is still sparse. In this study, the diversity and distribution of some Tricholoma spp. are analyzed by morphological and molecular methods based on 70 collections from Yunnan, China, 45 from central Europe, 32 from Colorado, USA, 9 from Japan, and 3 from Ukraine. A Holarctic distribution is suggested for several species, based on collections and nuc rDNA internal transcribed spacer ITS1-5.8S-ITS2 (ITS) sequences. Six species new to science are formally described from Yunnan: five in existing sections, Tricholoma forteflavescens, T. olivaceoluteolum, T. melleum, T. olivaceum, and T. sinoportentosum, and one, T. muscarioides, in the newly described section Muscaria alongside several previously described species. Additional putatively new species cannot be formally described because they lack sufficient material. Tricholoma foliicola is recognized as a species of the genus Gerhardtia.
Collapse
Affiliation(s)
- Kai Reschke
- a Department for Systematic Botany and Mycology , Faculty of Biology, University of Marburg , Karl-von-Frisch-Straße 8, 35032 Marburg , Germany.,b Department of Mycology , Goethe University of Frankfurt am Main , Max-von-Laue Straße 13, 60439 Frankfurt am Main , Germany
| | - Flavius Popa
- a Department for Systematic Botany and Mycology , Faculty of Biology, University of Marburg , Karl-von-Frisch-Straße 8, 35032 Marburg , Germany.,c Department for Ecosystem Monitoring , Research & Wildlife Conservation , National Park Schwarzwald, Kniebisstraße 67, 72250 Freudenstadt Kniebis , Germany
| | - Zhu L Yang
- d Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences , 650201 Kunming , China
| | - Gerhard Kost
- a Department for Systematic Botany and Mycology , Faculty of Biology, University of Marburg , Karl-von-Frisch-Straße 8, 35032 Marburg , Germany
| |
Collapse
|
15
|
Houles A, Vincent B, David M, Ducousso M, Galiana A, Juillot F, Hannibal L, Carriconde F, Fritsch E, Jourand P. Ectomycorrhizal Communities Associated with the Legume Acacia spirorbis Growing on Contrasted Edaphic Constraints in New Caledonia. MICROBIAL ECOLOGY 2018; 76:964-975. [PMID: 29717331 DOI: 10.1007/s00248-018-1193-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
This study aims to characterize the ectomycorrhizal (ECM) communities associated with Acacia spirorbis, a legume tree widely spread in New Caledonia that spontaneously grows on contrasted edaphic constraints, i.e. calcareous, ferralitic and volcano-sedimentary soils. Soil geochemical parameters and diversity of ECM communities were assessed in 12 sites representative of the three mains categories of soils. The ectomycorrhizal status of Acacia spirorbis was confirmed in all studied soils, with a fungal community dominated at 92% by Basidiomycota, mostly represented by/tomentella-thelephora (27.6%), /boletus (15.8%), /sebacina (10.5%), /russula-lactarius (10.5%) and /pisolithus-scleroderma (7.9%) lineages. The diversity and the proportion of the ECM lineages were similar for the ferralitic and volcano-sedimentary soils but significantly different for the calcareous soils. These differences in the distribution of the ECM communities were statistically correlated with pH, Ca, P and Al in the calcareous soils and with Co in the ferralitic soils. Altogether, these data suggest a high capacity of A. spirorbis to form ECM symbioses with a large spectrum of fungi regardless the soil categories with contrasted edaphic parameters.
Collapse
Affiliation(s)
- Anne Houles
- CIRAD, UMR082 LSTM, TA A-82/J, Campus International de Baillarguet, 34398 Cedex 5, Montpellier, France
- Koniambo Nickel SAS, Vavouto, BP 679, 98860, Koné, New Caledonia
| | - Bryan Vincent
- IRD, UMR040 LSTM, 98848, Nouméa Cedex, New Caledonia
| | - Magali David
- IRD, UMR206 IMPMC, 98848, Nouméa Cedex, New Caledonia
| | - Marc Ducousso
- CIRAD, UMR082 LSTM, TA A-82/J, Campus International de Baillarguet, 34398 Cedex 5, Montpellier, France.
| | - Antoine Galiana
- CIRAD, UMR082 LSTM, TA A-82/J, Campus International de Baillarguet, 34398 Cedex 5, Montpellier, France
| | - Farid Juillot
- IRD, UMR206 IMPMC, 98848, Nouméa Cedex, New Caledonia
| | | | - Fabian Carriconde
- Institut Agronomique néo-Calédonien (IAC), Axe 2, 98800, Nouméa, New Caledonia
| | | | | |
Collapse
|
16
|
Scott N, Pec GJ, Karst J, Landhäusser SM. Additive or synergistic? Early ectomycorrhizal fungal community response to mixed tree plantings in boreal forest reclamation. Oecologia 2018; 189:9-19. [PMID: 30094634 DOI: 10.1007/s00442-018-4241-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022]
Abstract
Ectomycorrhizal fungi are an important component to ecosystem function in the boreal forest. Underlying factors influencing fungal community composition and richness, such as host identity and soil type have been studied, but interactions between these factors have been less explored. Furthermore, mixed-species stands may have additive or synergistic effects on ectomycorrhizal fungi species richness, but this effect is challenging to test on natural sites due to difficulty in finding monospecific and mixed-species stands with similar site conditions and history. Forest reclamation areas can provide an opportunity to explore some of these fundamental questions, as site conditions and history are often known and managed, with the added benefit that knowledge emerging from these studies can be used to evaluate the recovery of degraded forest landscapes. Here, we compared the richness and composition of ectomycorrhizal fungi in young single- and mixed-species stands established on a reclamation area designed to inform strategies to restore upland boreal forests disturbed by oil sands mining. Seedlings of three host tree species (Populus tremuloides, Pinus banksiana, Picea glauca) were planted in single- and mixed-species stands on three different salvaged soils (forest floor material, peat, subsoil). After four growing seasons, there was no difference in total ectomycorrhizal fungi species richness and composition in mixed- versus combined single-species stands indicating that an additive effect of host tree species prevailed early in development. However, there were compositional shifts in fungal communities across both the host tree species and the salvaged soil type, with soil type being the strongest driver.
Collapse
Affiliation(s)
- Natalie Scott
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada.
| | - Gregory J Pec
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Justine Karst
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| | - Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
17
|
Antibus RK, Hobbie EA, Cripps CL. Sporocarp δ15N and use of inorganic and organic nitrogen in vitro differ among host-specific suilloid fungi associated with high elevation five-needle pines. MYCOSCIENCE 2018. [DOI: 10.1016/j.myc.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Pierre-Arthur M, Jean-Michel B, Renée L, Zacharias A, Antonis A, Herman L, Christian S, Ellen L, Michael L. Hidden diversity uncovered in Hygrophorus sect. Aurei (Hygrophoraceae), including the Mediterranean H. meridionalis and the North American H. boyeri, spp. nov. Fungal Biol 2018; 122:817-836. [PMID: 30007432 DOI: 10.1016/j.funbio.2018.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 01/01/2023]
Abstract
For many years, the binomial Hygrophorus hypothejus was widely applied to collections from various geographical regions in different continents, assuming a circum-boreal and circum-mediterranean distribution for this species. This hypothesis, however, had never been put to the test. To assess the diversity and species-limits within this complex of yellow-coloured waxcaps, a phylogenetic, morphological and taxonomical investigation into Hygrophorus sect. Aurei and similar species in sect. Olivaceoumbrini was carried out, including material of pan-European origin, as well as the east and west coasts of North America. Following sequencing of the ITS rDNA locus, nine lineages are confirmed in sect. Aurei, most of them highly continentalised. Of these, two are new to science, introduced here as Hygrophorus boyeri sp. nov., from Pinus banksiana and P. rigida forests in eastern North America and from P. muricata and P. contorta forests in western North America, and Hygrophorus meridionalis sp. nov., from Pinus brutia and Pinus halepensis forests in the island of Cyprus and mainland Greece. H. hypothejus is lectotypified and epitypified, and here resolved as a strictly European species, with the old forgotten taxon Hygrophorus siccipes revived as its North American vicariant. The placement of Hygrophorus fuligineus in sect. Aurei is phylogenetically confirmed and detailed comparisons between morphologically similar and phylogenetically affiliated taxa in sect. Aurei and sect. Olivaceoumbrini are provided. The chronic confusion associated with Hygrophorus fuscoalbus, a highly controversial taxon described from Germany nearly two centuries ago and variously interpreted since, is discussed, concluding that this name is too ambiguous to be applied to any currently recognized species.
Collapse
Affiliation(s)
| | - Bellanger Jean-Michel
- CEFE UMR5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE - INSERM, 1919, route de Mende, F-34293 Montpellier Cedex 5, France
| | | | | | | | | | - Schwarz Christian
- Norris Center for Natural History, University of California, Santa Cruz, CA, United States
| | - Larsson Ellen
- Biological and Environmental Science, University of Gothenburg, Box 461, SE40530 Göteborg, Sweden
| | | |
Collapse
|
19
|
Kranabetter JM, Berch SM, MacKinnon JA, Ceska O, Dunn DE, Ott PK. Species-area curve and distance-decay relationships indicate habitat thresholds of ectomycorrhizal fungi in an old-growth Pseudotsuga menziesii
landscape. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- J. M. Kranabetter
- British Columbia Ministry of Forests, Lands and Natural Resource Operations; Victoria BC Canada
| | - S. M. Berch
- British Columbia Ministry of Environment; Victoria BC Canada
| | - J. A. MacKinnon
- School of Resource and Environmental Management; Simon Fraser University; Burnaby BC Canada
| | - O. Ceska
- Consulting Mycologist; Victoria BC Canada
| | - D. E. Dunn
- Pacific Forestry Centre; Natural Resources Canada; Victoria BC Canada
| | - P. K. Ott
- British Columbia Ministry of Forests, Lands and Natural Resource Operations; Victoria BC Canada
| |
Collapse
|
20
|
Recovery of the ectomycorrhizal community after termination of long-term nitrogen fertilisation of a boreal Norway spruce forest. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
|
22
|
Liu LN, Wu L, Chen ZH, Bau T, Zhang P. The species of Lentaria (Gomphales, Basidiomycota) from China based on morphological and molecular evidence. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1284-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Garcia MO, Smith JE, Luoma DL, Jones MD. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone. MYCORRHIZA 2016; 26:275-286. [PMID: 26547440 DOI: 10.1007/s00572-015-0668-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Forest ecosystems of the Pacific Northwest of the USA are changing as a result of climate change. Specifically, rise of global temperatures, decline of winter precipitation, earlier loss of snowpack, and increased summer drought are altering the range of Pinus contorta. Simultaneously, flux in environmental conditions within the historic P. contorta range may facilitate the encroachment of P. ponderosa into P. contorta territory. Furthermore, successful pine species migration may be constrained by the distribution or co-migration of ectomycorrhizal fungi (EMF). Knowledge of the linkages among soil fungal diversity, community structure, and environmental factors is critical to understanding the organization and stability of pine ecosystems. The objectives of this study were to establish a foundational knowledge of the EMF communities of P. ponderosa and P. contorta in the Deschutes National Forest, OR, USA, and to examine soil characteristics associated with community composition. We examined EMF root tips of P. ponderosa and P. contorta in soil cores and conducted soil chemistry analysis for P. ponderosa cores. Results indicate that Cenococcum geophilum, Rhizopogon salebrosus, and Inocybe flocculosa were dominant in both P. contorta and P. ponderosa soil cores. Rhizopogon spp. were ubiquitous in P. ponderosa cores. There was no significant difference in the species composition of EMF communities of P. ponderosa and P. contorta. Ordination analysis of P. ponderosa soils suggested that soil pH, plant-available phosphorus (Bray), total phosphorus (P), carbon (C), mineralizable nitrogen (N), ammonium (NH4), and nitrate (NO3) are driving EMF community composition in P. ponderosa stands. We found a significant linear relationship between EMF species richness and mineralizable N. In conclusion, P. ponderosa and P. contorta, within the Deschutes National Forest, share the same dominant EMF species, which implies that P. ponderosa may be able to successfully establish within the historic P. contorta range and dominant EMF assemblages may be conserved.
Collapse
Affiliation(s)
- Maria O Garcia
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Jane E Smith
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 Jefferson Way, Corvallis, OR, 97331, USA.
| | - Daniel L Luoma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Melanie D Jones
- Biology Department, Institute for Biodiversity, Resilience and Ecosystem Services, University of British Columbia, Okanagan campus, Kelowna, British Columbia, V1V 1V7, Canada
| |
Collapse
|
24
|
Kranabetter JM, Hawkins BJ, Jones MD, Robbins S, Dyer T, Li T. Species turnover (β-diversity) in ectomycorrhizal fungi linked to NH4+ uptake capacity. Mol Ecol 2015; 24:5992-6005. [DOI: 10.1111/mec.13435] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/30/2015] [Accepted: 10/20/2015] [Indexed: 11/29/2022]
Affiliation(s)
- J. M. Kranabetter
- British Columbia Ministry of Forests, Lands and Natural Resource Operations; PO Box 9536 STN PROV GOVT Victoria British Columbia Canada V8W 9C4
| | - B. J. Hawkins
- Centre for Forest Biology; University of Victoria; PO Box 3020 STN CSC Victoria British Columbia Canada V8W 3N5
| | - M. D. Jones
- Biology Department; University of British Columbia; Okanagan Campus Sci-385 1177 Research Road Kelowna British Columbia Canada V4V 1V7
| | - S. Robbins
- Centre for Forest Biology; University of Victoria; PO Box 3020 STN CSC Victoria British Columbia Canada V8W 3N5
| | - T. Dyer
- Natural Resources Canada; Pacific Forestry Centre; 506 Burnside Road West Victoria British Columbia Canada V8Z 1M5
| | - T. Li
- Laboratory of Conservation and Utilization of Bio-resources; Yunnan University; 2# Cuihu Road North Kunming China
| |
Collapse
|
25
|
Ángeles-Argáiz RE, Flores-García A, Ulloa M, Garibay-Orijel R. Commercial Sphagnum peat moss is a vector for exotic ectomycorrhizal mushrooms. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0992-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Sphagnum peat moss is one of the most commonly used substrates for forest plant and houseplant production. It is extracted from peat bogs in the circumboreal region and exported worldwide. Commercial peat moss is pasteurized, and is therefore believed to be free of viable ectomycorrhizal propagules. We used a bioassay with Pinus montezumae to demonstrate that commercial peat moss carries viable ectomycorrhizal spores, able to form mycorrhizae. Ectomycorrhizal fungi on seedling root-tips were sequenced for phylogenetic analyses using the ITS rDNA barcode region. We found three species: Suillus brevipes, Sphaerosporella brunnea, and Thelephora terrestris. S. brevipes and T. terrestris were found as viable inoculum transported in the peat moss, while S. brunnea was a greenhouse contaminant. S. brevipes and T. terrestris have biological characteristics (such as heat resistant and long living spores) that facilitate their survival to the extraction, transport, and storage processes of peat moss. This allows them to colonize nursery seedlings and to become potential invasive species in plantation areas. S. brevipes and T. terrestris are two of the most introduced fungi by anthropic activities; it has been argued that the vehicle for the introductions are their pine symbionts. This is the first time it has been demonstrated that peat moss is an important vehicle for the introduction of these fungi; a fact potentially related to the pattern of introduction of these ectomycorrhizal species from the northern hemisphere to elsewhere in the world.
Collapse
|
26
|
|
27
|
Tsiaras S, Domakinis C. Correlating Mushroom Habitats and Geology in Grevena Prefecture (Greece) with the Use of Geographic Information Systems (GIS). INTERNATIONAL JOURNAL OF AGRICULTURAL AND ENVIRONMENTAL INFORMATION SYSTEMS 2015. [DOI: 10.4018/ijaeis.2015040101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study is to assess the relationship between geological background and habitats of mushrooms. The study area is Grevena, a Prefecture of Greece well known for the great variety of the fungal flora and its distinctive geology. Thematic maps of the study area were produced with the use of GIS, taking under consideration geological formations, elevation, ecosystems and land use. Findings provide evidence that certain mushrooms are more likely to be found in specific ecosystems. The connection between forest ecosystems and the geology of the study area is more apparent, as certain forest types are related with specific geological formations; due to the insignificant presence of grasslands and riverine settings in the study area, it is not possible to assess the role of the geological formation for these mushroom habitats.
Collapse
Affiliation(s)
- Stefanos Tsiaras
- Department of Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Domakinis
- Department of Physical and Environmental Geography, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
28
|
Kranabetter J, de Montigny L, Ross G. Effectiveness of green-tree retention in the conservation of ectomycorrhizal fungi. FUNGAL ECOL 2013. [DOI: 10.1016/j.funeco.2013.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Lim S, Berbee ML. Phylogenetic structure of ectomycorrhizal fungal communities of western hemlock changes with forest age and stand type. MYCORRHIZA 2013; 23:473-486. [PMID: 23475506 DOI: 10.1007/s00572-013-0488-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 02/11/2013] [Indexed: 06/01/2023]
Abstract
On Vancouver Island, British Columbia, fertilization with nitrogen (N) and phosphorus (P) following clearcutting increases growth of western hemlock. To explore whether fertilization also resulted in ectomycorrhizal fungal communities that were more or less similar to neighboring unlogged stands, we sampled roots from western hemlock from three replicate plots from each of five different, well-characterized, forest stand types that differed in site type, and in logging and fertilization history. We harvested four samples of 100 ectomycorrhizal root tips from each plot, a total of 60 samples per stand type. From each sample, we analyzed fungal ribosomal internal transcribed spacers and 28S DNA, sequencing 15-29 clones per sample and 60-116 clones per plot. We detected 147 fungal operational taxonomic units among a total of 1435 sequences. Craterellus tubaeformis was frequently present and resulted in a pattern of phylogenetic overdispersion in the fungal communities. Fungal species composition was strongly correlated with foliar nitrogen concentration. However, other site quality factors were also important because the fertilized regenerating hemlock and mature hemlock-amabilis fir forests had similar foliar nitrogen content but little overlap in fungal species. Compared with unfertilized regenerating forests, fungal communities in N + P-fertilized regenerating forests had significantly more species overlap with old growth forests. However, the fungal communities of all regenerating forest were similar to one another and all differed significantly from older forests. By correlating fungal clades with habitats, this research improves understanding of how forest management can contribute to maintaining diverse ectomycorrhizal fungal communities across a landscape.
Collapse
Affiliation(s)
- SeaRa Lim
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada.
| | | |
Collapse
|
30
|
Moukha S, Férandon C, Beroard E, Guinberteau J, Castandet B, Callac P, Creppy E, Barroso G. A molecular contribution to the assessment of the Tricholoma equestre species complex. Fungal Biol 2013; 117:145-55. [DOI: 10.1016/j.funbio.2013.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/31/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
|
31
|
|
32
|
Soil factors influencing ectomycorrhizal sporome distribution in neotropical forests dominated by Pinus montezumae, Mexico. MYCOSCIENCE 2012. [DOI: 10.1007/s10267-011-0136-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Kranabetter JM, Stoehr MU, O'Neill GA. Divergence in ectomycorrhizal communities with foreign Douglas-fir populations and implications for assisted migration. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:550-560. [PMID: 22611853 DOI: 10.1890/11-1514.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Assisted migration of forest trees has been widely proposed as a climate change adaptation strategy, but moving tree populations to match anticipated future climates may disrupt the geographically based, coevolved association suggested to exist between host trees and ectomycorrhizal fungal (EMF) communities. We explored this issue by examining the consistency of EMF communities among populations of 40 year-old Douglas-fir (Pseudotsuga menziesii var. menziesii) trees in a common-garden field trial using four provenances from contrasting coastal climates in southwestern British Columbia. Considerable variation in EMF community composition within test sites was found, ranging from 0.38 to 0.65 in the mean similarity index, and the divergence in EMF communities from local populations increased with site productivity. Clinal patterns in colonization success were detected for generalist and specialist EMF species on only the two productive test sites. Host population effects were limited to EMF species abundance rather than species loss, as richness per site averaged 15.0 among provenances and did not differ by transfer extent (up to 450 km), while Shannon's diversity index declined slightly. Large differences in colonization rates of specialist fungi, such as Tomentella stuposa and Clavulina cristata, raise the possibility that EMF communities maladapted to soil conditions contributed to the inferior growth of some host populations on productive sites. The results of the study suggest locally based specificity in host-fungal communities is likely a contributing factor in the outcome of provenance trials, and should be a consideration in analyzing seed-transfer effects and developing strategies for assisted migration.
Collapse
Affiliation(s)
- J M Kranabetter
- B.C. Ministry of Forests, Lands and Natural Resource Operations, P.O. Box 9536 Stn Prov Govt, Victoria, British Columbia V8W 9C4, Canada.
| | | | | |
Collapse
|