1
|
Punsung Y, Pachit P, Kijpornyongpan T, Paliyavuth C, Imwattana K, Piapukiew J. Optimizing conditions of mycelial inoculum immobilized in Ca-alginate beads: a case study in ectomycorrhizal fungus Astraeus odoratus. World J Microbiol Biotechnol 2024; 40:238. [PMID: 38858319 DOI: 10.1007/s11274-024-03962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/19/2024] [Indexed: 06/12/2024]
Abstract
Ectomycorrhizal inoculum has emerged as a critical tool for forest restoration, especially under challenging climate change conditions. The inoculation of selective ectomycorrhizal fungi can enhance seedling survival and subsequent growth in the field. This study optimized the liquid media for mycelial growth of Astraeus odoratus strain K1 and the sodium alginate solution composition for enhanced mycelial viability after entrapment. Using Modified Melin-Norkrans as the optimal media for mycelial cultivation and 2% sodium alginate supplemented with Czapek medium, 0.25% activated charcoal, 5% sucrose, and 5% sorbitol in the alginate solution yielded the highest viability of A. odoratus mycelia. Preservation in distilled water and 10% glycerol at 25 °C for 60 days proved to be the most effective storage condition for the alginate beads. Both fresh and preserved alginate beads were tested for colonizing on Hopea odorata Roxb. seedlings, showing successful colonization and ectomycorrhizal root formation, with over 49% colonization. This study fills a crucial gap in biotechnology and ectomycorrhizal inoculum, paving the way for more effective and sustainable forest restoration practices.
Collapse
Affiliation(s)
- Yanisa Punsung
- Biotechnological Sciences Program, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Pawara Pachit
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | | | - Chanita Paliyavuth
- Department of Botany, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Karn Imwattana
- Department of Botany, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Jittra Piapukiew
- Department of Botany, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand.
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Ichida H, Murata H, Hatakeyama S, Yamada A, Ohta A. Near-complete de novo assembly of Tricholoma bakamatsutake chromosomes revealed the structural divergence and differentiation of Tricholoma genomes. G3 (BETHESDA, MD.) 2023; 13:jkad198. [PMID: 37659058 PMCID: PMC10627285 DOI: 10.1093/g3journal/jkad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
Tricholoma bakamatsutake, which is an edible ectomycorrhizal fungus associated with Fagaceae trees, may have diverged before the other species in Tricholoma section Caligata. We generated a highly contiguous whole-genome sequence for T. bakamatsutake SF-Tf05 isolated in an Oak (Quercus salicina) forest in Japan. The assembly of high-fidelity long reads, with a median read length of 12.3 kb, resulted in 13 chromosome-sized contigs comprising 142,068,211 bases with an average guanine and cytosine (GC) content of 43.94%. The 13 chromosomes were predicted to encode 11,060 genes. A contig (122,566 bases) presumably containing the whole circular mitochondrial genome was also recovered. The chromosome-wide comparison of T. bakamatsutake and Tricholoma matsutake (TMA_r1.0) indicated that the basic number of chromosomes (13) was conserved, but the structures of the corresponding chromosomes diverged, with multiple inversions and translocations. Gene conservation and cluster analyses revealed at least 3 phylogenetic clades in Tricholoma section Caligata. Specifically, all T. bakamatsutake strains belonged to the "bakamatsutake" clade, which is most proximal to the "caligatum" clade consisting of Tricholoma caligatum and Tricholoma fulvocastaneum. The constructed highly contiguous nearly telomere-to-telomere genome sequence of a T. bakamatsutake isolate will serve as a fundamental resource for future research on the evolution and differentiation of Tricholoma species.
Collapse
Affiliation(s)
- Hiroyuki Ichida
- Ion Beam Breeding Group, RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
| | - Hitoshi Murata
- Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, Tsukuba, Ibaraki 305-8687, Japan
| | - Shin Hatakeyama
- Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Akiyoshi Yamada
- Faculty of Agriculture, Shinshu University, Minami-minowa, Nagano 399-4598, Japan
| | - Akira Ohta
- Kansai Research Center, FFPRI, Kyoto, Kyoto 612-0855, Japan
| |
Collapse
|
3
|
Yamada A. Cultivation studies of edible ectomycorrhizal mushrooms: successful establishment of ectomycorrhizal associations in vitro and efficient production of fruiting bodies. MYCOSCIENCE 2022; 63:235-246. [PMID: 37089523 PMCID: PMC10043572 DOI: 10.47371/mycosci.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Most edible ectomycorrhizal mushrooms are harvested in forests or controlled tree plantations; examples include truffles, chanterelles, porcinis, saffron milk caps, and matsutake. This study explored recent advances in in vitro ectomycorrhizal cultivation of chanterelles and matsutakes for successful ectomycorrhizal seedling establishment and the subsequent manipulation of these seedlings for efficient fruiting body production. Chanterelle cultivation studies have been limited due to the difficulty of establishing pure cultures. However, once pure cultures were established in the Japanese yellow chanterelle (Cantharellus anzutake), its ectomycorrhizal manipulation produced fruiting bodies under controlled laboratory conditions. As C. anzutake strains have fruited repeatedly under ectomycorrhizal symbiosis with pine and oak seedlings, mating tests for the cross breeding are ongoing issues. As one of the established strains C-23 has full-genome sequence, its application for various type of ectomycorrhizal studies is also expected. By contrast, Tricholoma matsutake fruiting bodies have not yet been produced under controlled conditions, despite successful establishment of ectomycorrhizal seedlings. At present, the shiro structure of ≈1L in volume can be provided in two y incubation with pine hosts under controlled environmental conditions. Therefore, further studies that provides larger shiro on the host root system are desired for the outplantation trial and fruiting.
Collapse
|
4
|
Wang Y, He X, Yu F. Non-host plants: Are they mycorrhizal networks players? PLANT DIVERSITY 2022; 44:127-134. [PMID: 35505991 PMCID: PMC9043302 DOI: 10.1016/j.pld.2021.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 05/04/2023]
Abstract
Common mycorrhizal networks (CMNs) that connect individual plants of the same or different species together play important roles in nutrient and signal transportation, and plant community organization. However, about 10% of land plants are non-mycorrhizal species with roots that do not form any well-recognized types of mycorrhizas; and each mycorrhizal fungus can only colonize a limited number of plant species, resulting in numerous non-host plants that could not establish typical mycorrhizal symbiosis with a specific mycorrhizal fungus. If and how non-mycorrhizal or non-host plants are able to involve in CMNs remains unclear. Here we summarize studies focusing on mycorrhizal-mediated host and non-host plant interaction. Evidence has showed that some host-supported both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) hyphae can access to non-host plant roots without forming typical mycorrhizal structures, while such non-typical mycorrhizal colonization often inhibits the growth but enhances the induced system resistance of non-host plants. Meanwhile, the host growth is also differentially affected, depending on plant and fungi species. Molecular analyses suggested that the AMF colonization to non-hosts is different from pathogenic and endophytic fungi colonization, and the hyphae in non-host roots may be alive and have some unknown functions. Thus we propose that non-host plants are also important CMNs players. Using non-mycorrhizal model species Arabidopsis, tripartite culture system and new technologies such as nanoscale secondary ion mass spectrometry and multi-omics, to study nutrient and signal transportation between host and non-host plants via CMNs may provide new insights into the mechanisms underlying benefits of intercropping and agro-forestry systems, as well as plant community establishment and stability.
Collapse
Affiliation(s)
- Yanliang Wang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xinhua He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, 95616, USA
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Corresponding author.
| |
Collapse
|
5
|
|
6
|
Advances in the cultivation of the highly-prized ectomycorrhizal mushroom Tricholoma matsutake. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Schneider-Maunoury L, Deveau A, Moreno M, Todesco F, Belmondo S, Murat C, Courty PE, Jąkalski M, Selosse MA. Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, endophytically colonise roots of non-ectomycorrhizal plants in natural environments. THE NEW PHYTOLOGIST 2020; 225:2542-2556. [PMID: 31733103 DOI: 10.1111/nph.16321] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/30/2019] [Indexed: 05/27/2023]
Abstract
Serendipitous findings and studies on Tuber species suggest that some ectomycorrhizal fungi, beyond their complex interaction with ectomycorrhizal hosts, also colonise roots of nonectomycorrhizal plants in a loose way called endophytism. Here, we investigate endophytism of T. melanosporum and T. aestivum. We visualised endophytic T. melanosporum hyphae by fluorescent in situ hybridisation on nonectomycorrhizal plants. For the two Tuber species, microsatellite genotyping investigated the endophytic presence of the individuals whose mating produced nearby ascocarps. We quantified the expression of four T. aestivum genes in roots of endophyted, non-ectomycorrhizal plants. Tuber melanosporum hyphae colonised the apoplast of healthy roots, confirming endophytism. Endophytic Tuber melanosporum and T. aestivum contributed to nearby ascocarps, but only as maternal parents (forming the flesh). Paternal individuals (giving only genes found in meiotic spores of ascocarps) were not detected. Gene expression of T. aestivum in non-ectomycorrhizal plants confirmed a living status. Tuber species, and likely other ectomycorrhizal fungi found in nonectomycorrhizal plant roots in this study, can be root endophytes. This is relevant for the ecology (brûlé formation) and commercial production of truffles. Evolutionarily speaking, endophytism may be an ancestral trait in some ectomycorrhizal fungi that evolved from root endophytes.
Collapse
Affiliation(s)
- Laure Schneider-Maunoury
- Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, SU, EPHE), Muséum national d'Histoire naturelle, 57 rue Cuvier, 75005, Paris, France
| | - Aurélie Deveau
- INRA, UMR IAM, Laboratory of Excellence ARBRE, Université de Lorraine, 54000, Nancy, France
| | - Myriam Moreno
- Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, SU, EPHE), Muséum national d'Histoire naturelle, 57 rue Cuvier, 75005, Paris, France
| | - Flora Todesco
- INRA, UMR IAM, Laboratory of Excellence ARBRE, Université de Lorraine, 54000, Nancy, France
| | - Simone Belmondo
- INRA, UMR IAM, Laboratory of Excellence ARBRE, Université de Lorraine, 54000, Nancy, France
| | - Claude Murat
- INRA, UMR IAM, Laboratory of Excellence ARBRE, Université de Lorraine, 54000, Nancy, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 17 rue Sully, 21000, Dijon, France
| | - Marcin Jąkalski
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, SU, EPHE), Muséum national d'Histoire naturelle, 57 rue Cuvier, 75005, Paris, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
8
|
Horimai Y, Misawa H, Suzuki K, Fukuda M, Furukawa H, Masuno K, Yamanaka T, Yamada A. Sibling spore isolates of Tricholoma matsutake vary significantly in their ectomycorrhizal colonization abilities on pine hosts in vitro and form multiple intimate associations in single ectomycorrhizal roots. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Gibert A, Tozer W, Westoby M. Plant performance response to eight different types of symbiosis. THE NEW PHYTOLOGIST 2019; 222:526-542. [PMID: 30697746 DOI: 10.1111/nph.15392] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/07/2018] [Indexed: 06/09/2023]
Abstract
Almost all plant species interact with one or more symbioses somewhere within their distribution range. Bringing together plant trait data and growth responses to symbioses spanning 552 plant species, we provide for the first time on a large scale (597 studies) a quantitative synthesis on plant performance differences between eight major types of symbiosis, including mycorrhizas, N-fixing bacteria, fungal endophytes and ant-plant interactions. Frequency distributions of plant growth responses varied considerably between different types of symbiosis, in terms of both mean effect and 'risk', defined here as percentage of experiments reporting a negative effect of symbiosis on plants. Contrary to expectation, plant traits were poor predictors of growth response across and within all eight symbiotic associations. Our analysis showed no systematic additive effect when a host plant engaged in two functionally different symbioses. This synthesis suggests that plant species' ecological strategies have little effect in determining the influence of a symbiosis on host plant growth. Reliable quantification of differences in plant performance across symbioses will prove valuable for developing general hypotheses on how species become engaged in mutualisms without a guarantee of net returns.
Collapse
Affiliation(s)
- Anais Gibert
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wade Tozer
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
10
|
Yamada A, Hayakawa N, Saito C, Horimai Y, Misawa H, Yamanaka T, Fukuda M. Physiological variation among Tricholoma matsutake isolates generated from basidiospores obtained from one basidioma. MYCOSCIENCE 2019. [DOI: 10.1016/j.myc.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Kariman K, Barker SJ, Tibbett M. Structural plasticity in root-fungal symbioses: diverse interactions lead to improved plant fitness. PeerJ 2018; 6:e6030. [PMID: 30533314 PMCID: PMC6284451 DOI: 10.7717/peerj.6030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/30/2018] [Indexed: 01/08/2023] Open
Abstract
Root-fungal symbioses such as mycorrhizas and endophytes are key components of terrestrial ecosystems. Diverse in trophy habits (obligate, facultative or hemi-biotrophs) and symbiotic relations (from mutualism to parasitism), these associations also show great variability in their root colonization and nutritional strategies. Specialized interface structures such as arbuscules and Hartig nets are formed by certain associations while others are restricted to non-specialized intercellular or intracellular hyphae in roots. In either case, there are documented examples of active nutrient exchange, reinforcing the fact that specialized structures used to define specific mycorrhizal associations are not essential for reciprocal exchange of nutrients and plant growth promotion. In feremycorrhiza (with Austroboletus occidentalis and eucalypts), the fungal partner markedly enhances plant growth and nutrient acquisition without colonizing roots, emphasizing that a conventional focus on structural form of associations may have resulted in important functional components of rhizospheres being overlooked. In support of this viewpoint, mycobiome studies using the state-of-the-art DNA sequencing technologies have unearthed much more complexity in root-fungal relationships than those discovered using the traditional morphology-based approaches. In this review, we explore the existing literature and most recent findings surrounding structure, functioning, and ecology of root-fungal symbiosis, which highlight the fact that plant fitness can be altered by taxonomically/ecologically diverse fungal symbionts regardless of root colonization and interface specialization. Furthermore, transition from saprotrophy to biotrophy seems to be a common event that occurs in diverse fungal lineages (consisting of root endophytes, soil saprotrophs, wood decayers etc.), and which may be accompanied by development of specialized interface structures and/or mycorrhiza-like effects on plant growth and nutrition.
Collapse
Affiliation(s)
- Khalil Kariman
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| | - Susan Jane Barker
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mark Tibbett
- Centre for Agri-Environmental Research & Soil Research Centre, School of Agriculture Policy and Development, University of Reading, Berkshire, United Kingdom
| |
Collapse
|
12
|
Schneider-Maunoury L, Leclercq S, Clément C, Covès H, Lambourdière J, Sauve M, Richard F, Selosse MA, Taschen E. Is Tuber melanosporum colonizing the roots of herbaceous, non-ectomycorrhizal plants? FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2017.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Selosse MA, Schneider-Maunoury L, Martos F. Time to re-think fungal ecology? Fungal ecological niches are often prejudged. THE NEW PHYTOLOGIST 2018; 217:968-972. [PMID: 29334598 DOI: 10.1111/nph.14983] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Laure Schneider-Maunoury
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
14
|
Saito C, Ogawa W, Kobayashi H, Yamanaka T, Fukuda M, Yamada A. In vitro ectomycorrhization of Tricholoma matsutake strains is differentially affected by soil type. MYCOSCIENCE 2018. [DOI: 10.1016/j.myc.2017.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Knoblochová T, Kohout P, Püschel D, Doubková P, Frouz J, Cajthaml T, Kukla J, Vosátka M, Rydlová J. Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession. MYCORRHIZA 2017; 27:775-789. [PMID: 28752181 DOI: 10.1007/s00572-017-0792-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
The arbuscular mycorrhizal (AM) grass Calamagrostis epigejos and predominantly ectomycorrhizal (EcM) tree Salix caprea co-occur at post-mining sites spontaneously colonized by vegetation. During succession, AM herbaceous vegetation is replaced by predominantly EcM woody species. To better understand the interaction of AM and EcM plants during vegetation transition, we studied the reciprocal effects of these species' coexistence on their root-associated fungi (RAF). We collected root and soil samples from three different microenvironments: stand of C. epigejos, under S. caprea canopy, and contact zone where roots of the two species interacted. RAF communities and mycorrhizal colonization were determined in sampled roots, and the soil was tested for EcM and AM inoculation potentials. Although the microenvironment significantly affected composition of the RAF communities in both plant species, the effect was greater in the case of C. epigejos RAF communities than in that of S. caprea RAF communities. The presence of S. caprea also significantly decreased AM fungal abundance in soil as well as AM colonization and richness of AM fungi in C. epigejos roots. Changes observed in the abundance and community composition of AM fungi might constitute an important factor in transition from AM-dominated to EcM-dominated vegetation during succession.
Collapse
Affiliation(s)
- Tereza Knoblochová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Petr Kohout
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
- Institute of Microbiology, Czech Academy of Science, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - David Püschel
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Pavla Doubková
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Jan Frouz
- Faculty of Science, Institute for Environmental Studies, Charles University, Benátská 2, 128 44, Prague, Czech Republic
| | - Tomáš Cajthaml
- Faculty of Science, Institute for Environmental Studies, Charles University, Benátská 2, 128 44, Prague, Czech Republic
| | - Jaroslav Kukla
- Faculty of Science, Institute for Environmental Studies, Charles University, Benátská 2, 128 44, Prague, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Jana Rydlová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.
| |
Collapse
|
16
|
Li Q, Chen C, Penttinen P, Xiong C, Zheng L, Huang W. Microbial diversity associated with Tricholoma matsutake fruiting bodies. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716050106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Murata H, Yamada A, Yokota S, Maruyama T, Shimokawa T, Neda H. Innate traits of Pinaceae-specific ectomycorrhizal symbiont Suillus luteus that differentially associates with arbuscular mycorrhizal broad-leaved trees in vitro. MYCOSCIENCE 2015. [DOI: 10.1016/j.myc.2015.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Vaario LM, Lu J, Koistinen A, Tervahauta A, Aronen T. Variation among matsutake ectomycorrhizae in four clones of Pinus sylvestris. MYCORRHIZA 2015; 25:195-204. [PMID: 25179801 DOI: 10.1007/s00572-014-0601-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/20/2014] [Indexed: 06/03/2023]
Abstract
Tricholoma matsutake is an ectomycorrhizal fungus that forms commercially important mushrooms in coniferous forests. In this study, we explored the ability of T. matsutake to form mycorrhizae with Pinus sylvestris by inoculating emblings produced through somatic embryogenesis (SE) in an aseptic culture system. Two months after inoculation, clones with less phenolic compounds in the tissue culture phase formed mycorrhizae with T. matsutake, while clones containing more phenols did not. Effects of inoculation on embling growth varied among clones; two of the four tested showed a significant increase in biomass and two had a significant increase in root density. In addition, results suggest that clones forming well-developed mycorrhizae absorbed more Al, Fe, Na, P, and Zn after 8 weeks of inoculation. This study illustrates the value of SE materials in experimental work concerning T. matsutake as well as the role played by phenolic compounds in host plant response to infection by mycorrhizal fungi.
Collapse
Affiliation(s)
- Lu-Min Vaario
- Finnish Forest Research Institute, PL 18, FI-01301, Vantaa, Finland,
| | | | | | | | | |
Collapse
|
19
|
Murata H, Yamada A, Maruyama T, Neda H. Ectomycorrhizas in vitro between Tricholoma matsutake, a basidiomycete that associates with Pinaceae, and Betula platyphylla var. japonica, an early-successional birch species, in cool-temperate forests. MYCORRHIZA 2015; 25:237-241. [PMID: 25236465 DOI: 10.1007/s00572-014-0606-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/12/2014] [Indexed: 06/03/2023]
Abstract
Tricholoma matsutake is an ectomycorrhizal basidiomycete that associates with Pinaceae in the Northern Hemisphere and produces prized "matsutake" mushrooms. We questioned whether the symbiont could associate with a birch that is an early-successional species in boreal, cool-temperate, or subalpine forests. In the present study, we demonstrated that T. matsutake can form typical ectomycorrhizas with Betula platyphylla var. japonica; the associations included a Hartig net and a thin but distinct fungal sheath, as well as the rhizospheric mycelial aggregate "shiro" that is required for fruiting in nature. The in vitro shiro also emitted a characteristic aroma. This is the first report of an ectomycorrhizal formation between T. matsutake and a deciduous broad-leaved tree in the boreal or cool-temperate zones that T. matsutake naturally inhabits.
Collapse
Affiliation(s)
- Hitoshi Murata
- Department of Applied Microbiology and Mushroom Science, Forestry & Forest Products Research Institute, Matsunosato 1, Tsukuba, 305-8687, Japan,
| | | | | | | |
Collapse
|
20
|
Endo N, Kawamura F, Kitahara R, Sakuma D, Fukuda M, Yamada A. Synthesis of Japanese Boletus edulis ectomycorrhizae with Japanese red pine. MYCOSCIENCE 2014. [DOI: 10.1016/j.myc.2013.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
In vitro shiro formation between the ectomycorrhizal basidiomycete Tricholoma matsutake and Cedrela herrerae in the Mahogany family (Meliaceae). MYCOSCIENCE 2014. [DOI: 10.1016/j.myc.2013.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Yamanaka T, Ota Y, Konno M, Kawai M, Ohta A, Neda H, Terashima Y, Yamada A. The host ranges of conifer-associated Tricholoma matsutake, Fagaceae-associated T. bakamatsutake and T. fulvocastaneum are wider in vitro than in nature. Mycologia 2014; 106:397-406. [PMID: 24871598 DOI: 10.3852/13-197] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tricholoma matsutake is the most commercially important edible mushroom in pine forests in Japan. Tricholoma bakamatsutake and T. fulvocastaneum, species closely related to T. matsutake, occur in Fagaceae forests. We examined ectomycorrhizal (EM) formation by these Tricholoma species by in vitro synthesis among seven strains (two of T. matsutake, four of T. bakamatsutake, one of T. fulvocastaneum) and axenic plants of pine (Pinus densiflora) and oak (Quercus serrata, Q. phillyraeoides). All strains, except for one of T. matsutake, formed EM associations with both pine and oak. Plant growth and mycelial development were differently affected by EM formation depending on the plant-fungus combination.
Collapse
Affiliation(s)
- Takashi Yamanaka
- Department of Forest Microbiology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Yuko Ota
- Department of Forest Microbiology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Miki Konno
- Miyagi Prefectural Forestry Technology Institute, Ohira, Miyagi 981-3602, Japan
| | - Masataka Kawai
- Nara Forest Research Institute, Takatori, Nara 635-0133, Japan
| | - Akira Ohta
- Shiga Forest Research Center, Yasu, Shiga 520-2321, Japan
| | - Hitoshi Neda
- Department of Applied Microbiology and Mushroom Science, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | | | - Akiyoshi Yamada
- Shinshu University, 8304 Minami-minowa, Nagano 399-4598, Japan
| |
Collapse
|
23
|
Murata H, Yamada A, Yokota S, Maruyama T, Endo N, Yamamoto K, Ohira T, Neda H. Root endophyte symbiosis in vitro between the ectomycorrhizal basidiomycete Tricholoma matsutake and the arbuscular mycorrhizal plant Prunus speciosa. MYCORRHIZA 2014; 24:315-321. [PMID: 24158697 DOI: 10.1007/s00572-013-0534-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
We previously reported that Tricholoma matsutake and Tricholoma fulvocastaneum, ectomycorrhizal basidiomycetes that associate with Pinaceae and Fagaceae, respectively, in the Northern Hemisphere, could interact in vitro as a root endophyte of somatic plants of Cedrela odorata (Meliaceae), which naturally harbors arbuscular mycorrhizal fungi in South America, to form a characteristic rhizospheric colony or "shiro". We questioned whether this phenomenon could have occurred because of plant-microbe interactions between geographically separated species that never encounter one another in nature. In the present study, we document that these fungi formed root endophyte interactions and shiro within 140 days of inoculation with somatic plants of Prunus speciosa (=Cerasus speciosa, Rosaceae), a wild cherry tree that naturally harbors arbuscular mycorrhizal fungi in Japan. Compared with C. odorata, infected P. speciosa plants had less mycelial sheath surrounding the exodermis, and the older the roots, especially main roots, the more hyphae penetrated. In addition, a large number of juvenile roots were not associated with hyphae. We concluded that such root endophyte interactions were not events isolated to the interactions between exotic plants and microbes but could occur generally in vitro. Our pure culture system with a somatic plant allowed these fungi to express symbiosis-related phenotypes that varied with the plant host; these traits are innately programmed but suppressed in nature and could be useful in genetic analyses of plant-fungal symbiosis.
Collapse
Affiliation(s)
- Hitoshi Murata
- Department of Applied Microbiology and Mushroom Sciences, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, 305-8687, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Toju H, Sato H, Tanabe AS. Diversity and spatial structure of belowground plant-fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants. PLoS One 2014; 9:e86566. [PMID: 24489745 PMCID: PMC3904951 DOI: 10.1371/journal.pone.0086566] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/12/2013] [Indexed: 11/18/2022] Open
Abstract
Plant-mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant-fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant-fungal symbiosis in subtropical forests is complex in that it includes "non-typical" plant-fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that associations with multiple functional (or phylogenetic) groups of fungi are ubiquitous among plants. Moreover, ectomycorrhizal fungal symbionts of fagaceous plants may "invade" the roots of neighboring non-fagaceous plants, potentially influencing the interactions between non-fagaceous plants and their arbuscular-mycorrhizal fungal symbionts at a fine spatial scale.
Collapse
Affiliation(s)
- Hirokazu Toju
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
| | - Hirotoshi Sato
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
| | - Akifumi S. Tanabe
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
- National Research Institute of Fisheries Science, Fisheries Research Agency, Fukuura, Kanazawa, Yokohama, Kanagawa, Japan
| |
Collapse
|
25
|
Yamada A, Endo N, Murata H, Ohta A, Fukuda M. Tricholoma matsutake Y1 strain associated with Pinus densiflora shows a gradient of in vitro ectomycorrhizal specificity with Pinaceae and oak hosts. MYCOSCIENCE 2014. [DOI: 10.1016/j.myc.2013.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Phylogenetic position of the ectomycorrhizal basidiomycete Tricholoma dulciolens in relation to species of Tricholoma that produce “matsutake” mushrooms. MYCOSCIENCE 2013. [DOI: 10.1016/j.myc.2013.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Toju H, Yamamoto S, Sato H, Tanabe AS. Sharing of diverse mycorrhizal and root-endophytic fungi among plant species in an oak-dominated cool-temperate forest. PLoS One 2013; 8:e78248. [PMID: 24250752 PMCID: PMC3824041 DOI: 10.1371/journal.pone.0078248] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/10/2013] [Indexed: 11/18/2022] Open
Abstract
Most terrestrial plants interact with diverse clades of mycorrhizal and root-endophytic fungi in their roots. Through belowground plant-fungal interactions, dominant plants can benefit by interacting with host-specific mutualistic fungi and proliferate in a community based on positive plant-mutualistic fungal feedback. On the other hand, subordinate plant species may persist in the community by sharing other sets (functional groups) of fungal symbionts with each other. Therefore, revealing how diverse clades of root-associated fungi are differentially hosted by dominant and subordinate plant species is essential for understanding plant community structure and dynamics. Based on 454-pyrosequencing, we determined the community composition of root-associated fungi on 36 co-occurring plant species in an oak-dominated forest in northern Japan and statistically evaluated the host preference phenotypes of diverse mycorrhizal and root-endophytic fungi. An analysis of 278 fungal taxa indicated that an ectomycorrhizal basidiomycete fungus in the genus Lactarius and a possibly endophytic ascomycete fungus in the order Helotiales significantly favored the dominant oak (Quercus) species. In contrast, arbuscular mycorrhizal fungi were generally shared among subordinate plant species. Although fungi with host preferences contributed to the compartmentalization of belowground plant-fungal associations, diverse clades of ectomycorrhizal fungi and possible root endophytes were associated not only with the dominant Quercus but also with the remaining plant species. Our findings suggest that dominant-ectomycorrhizal and subordinate plant species can host different subsets of root-associated fungi, and diverse clades of generalist fungi can counterbalance the compartmentalization of plant-fungal associations. Such insights into the overall structure of belowground plant-fungal associations will help us understand the mechanisms that facilitate the coexistence of plant species in natural communities.
Collapse
Affiliation(s)
- Hirokazu Toju
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
| | - Satoshi Yamamoto
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
| | - Hirotoshi Sato
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
| | - Akifumi S. Tanabe
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
- National Research Institute of Fisheries Science, Fisheries Research Agency, Fukuura, Kanazawa, Yokohama, Kanagawa, Japan
| |
Collapse
|
28
|
Toju H, Sato H, Yamamoto S, Kadowaki K, Tanabe AS, Yazawa S, Nishimura O, Agata K. How are plant and fungal communities linked to each other in belowground ecosystems? A massively parallel pyrosequencing analysis of the association specificity of root-associated fungi and their host plants. Ecol Evol 2013; 3:3112-24. [PMID: 24101998 PMCID: PMC3790555 DOI: 10.1002/ece3.706] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022] Open
Abstract
In natural forests, hundreds of fungal species colonize plant roots. The preference or specificity for partners in these symbiotic relationships is a key to understanding how the community structures of root-associated fungi and their host plants influence each other. In an oak-dominated forest in Japan, we investigated the root-associated fungal community based on a pyrosequencing analysis of the roots of 33 plant species. Of the 387 fungal taxa observed, 153 (39.5%) were identified on at least two plant species. Although many mycorrhizal and root-endophytic fungi are shared between the plant species, the five most common plant species in the community had specificity in their association with fungal taxa. Likewise, fungi displayed remarkable variation in their association specificity for plants even within the same phylogenetic or ecological groups. For example, some fungi in the ectomycorrhizal family Russulaceae were detected almost exclusively on specific oak (Quercus) species, whereas other Russulaceae fungi were found even on "non-ectomycorrhizal" plants (e.g., Lyonia and Ilex). Putatively endophytic ascomycetes in the orders Helotiales and Chaetothyriales also displayed variation in their association specificity and many of them were shared among plant species as major symbionts. These results suggest that the entire structure of belowground plant-fungal associations is described neither by the random sharing of hosts/symbionts nor by complete compartmentalization by mycorrhizal type. Rather, the colonization of multiple types of mycorrhizal fungi on the same plant species and the prevalence of diverse root-endophytic fungi may be important features of belowground linkage between plant and fungal communities.
Collapse
Affiliation(s)
- Hirokazu Toju
- Graduate School of Global Environmental Studies, Kyoto UniversityKyoto, 606-8501, Japan
- Graduate School of Human and Environmental Studies, Kyoto UniversityKyoto, 606-8501, Japan
| | - Hirotoshi Sato
- Graduate School of Global Environmental Studies, Kyoto UniversityKyoto, 606-8501, Japan
- Graduate School of Human and Environmental Studies, Kyoto UniversityKyoto, 606-8501, Japan
| | - Satoshi Yamamoto
- Graduate School of Global Environmental Studies, Kyoto UniversityKyoto, 606-8501, Japan
- Graduate School of Human and Environmental Studies, Kyoto UniversityKyoto, 606-8501, Japan
| | - Kohmei Kadowaki
- Graduate School of Global Environmental Studies, Kyoto UniversityKyoto, 606-8501, Japan
- Graduate School of Human and Environmental Studies, Kyoto UniversityKyoto, 606-8501, Japan
| | - Akifumi S Tanabe
- Graduate School of Global Environmental Studies, Kyoto UniversityKyoto, 606-8501, Japan
| | - Shigenobu Yazawa
- Graduate School of Science, Kyoto UniversityKyoto, 606-8502, Japan
| | - Osamu Nishimura
- Graduate School of Science, Kyoto UniversityKyoto, 606-8502, Japan
| | - Kiyokazu Agata
- Graduate School of Science, Kyoto UniversityKyoto, 606-8502, Japan
| |
Collapse
|
29
|
Murata H, Ota Y, Yamaguchi M, Yamada A, Katahata S, Otsuka Y, Babasaki K, Neda H. Mobile DNA distributions refine the phylogeny of "matsutake" mushrooms, Tricholoma sect. Caligata. MYCORRHIZA 2013; 23:447-461. [PMID: 23440576 DOI: 10.1007/s00572-013-0487-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 02/07/2013] [Indexed: 06/01/2023]
Abstract
"Matsutake" mushrooms are formed by several species of Tricholoma sect. Caligata distributed across the northern hemisphere. A phylogenetic analysis of matsutake based on virtually neutral mutations in DNA sequences resolved robust relationships among Tricholoma anatolicum, Tricholoma bakamatsutake, Tricholoma magnivelare, Tricholoma matsutake, and Tricholoma sp. from Mexico (=Tricholoma sp. Mex). However, relationships among these matsutake and other species, such as Tricholoma caligatum and Tricholoma fulvocastaneum, were ambiguous. We, therefore, analyzed genomic copy numbers of σ marY1 , marY1, and marY2N retrotransposons by comparing them with the single-copy mobile DNA megB1 using real-time polymerase chain reaction (PCR) to clarify matsutake phylogeny. We also examined types of megB1-associated domains, composed of a number of poly (A) and poly (T) reminiscent of RNA-derived DNA elements among these species. Both datasets resolved two distinct groups, one composed of T. bakamatsutake, T. fulvocastaneum, and T. caligatum that could have diverged earlier and the other comprising T. magnivelare, Tricholoma sp. Mex, T. anatolicum, and T. matsutake that could have evolved later. In the first group, T. caligatum was the closest to the second group, followed by T. fulvocastaneum and T. bakamatsutake. Within the second group, T. magnivelare was clearly differentiated from the other species. The data suggest that matsutake underwent substantial evolution between the first group, mostly composed of Fagaceae symbionts, and the second group, comprised only of Pinaceae symbionts, but diverged little within each groups. Mobile DNA markers could be useful in resolving difficult phylogenies due to, for example, closely spaced speciation events.
Collapse
Affiliation(s)
- Hitoshi Murata
- Department of Applied Microbiology and Mushroom Sciences, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.
| | | | | | | | | | | | | | | |
Collapse
|