1
|
Nogueira PTS, Freitas EFS, Silva JAR, Kasuya MCM, Pereira OL. Efficiency of mycorrhizal fungi for seed germination and protocorms development of commercial Cattleya species (Orchidaceae). Braz J Microbiol 2025; 56:589-599. [PMID: 39729158 PMCID: PMC11885741 DOI: 10.1007/s42770-024-01597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Orchidaceae is one of the largest plant families and stands out for its wide variety of flowers with ornamental and environmental importance. Cattleya is one of the main commercial genera, presenting a great diversity of species and hybrids that attract the attention of collectors, orchid enthusiasts, and consumers. In their natural environment, orchids associate with mycorrhizal fungi, which are responsible for providing carbon and other nutrients during seed germination. This study investigated the potential of mycorrhizal fungi isolated from the genus Cattleya for in vitro symbiotic germination of seeds from three contrasting Cattleya species, comparing them with non-symbiotic germination in a commercially used culture medium for orchid propagation. The isolated fungi were molecularly identified through phylogenetic analyses of DNA sequences using the ITS (Internal Transcribed Spacer) region. Three isolates obtained were identified as Tulasnella amonilioides, and through microscopic evaluations, the formation of monilioid cells was observed, a morphological characteristic previously unknown for this species. The T. amonilioides isolates were efficient in promoting seed germination of Cattleya bicolor, Cattleya walkeriana and Cattleya jongheana and accelerated the germination process when compared with the non-symbiotic commercial medium, showing to be promised for commercial seed production of these orchids species.
Collapse
Affiliation(s)
- Pedro T S Nogueira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Emiliane F S Freitas
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jessica A R Silva
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria C M Kasuya
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Olinto L Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Harzli I, Özdener Kömpe Y. Impact of Fungal Symbionts of Co-occurring Orchids on the Seed Germination of Serapias orientalis and Spiranthes spiralis. Curr Microbiol 2025; 82:79. [PMID: 39792271 DOI: 10.1007/s00284-024-04055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Interactions with mycorrhizal fungi are increasingly recognized as crucial ecological factors influencing orchids' distribution and local abundance. While some orchid species interact with multiple fungal partners, others show selectivity in their mycorrhizal associations. Additionally, orchids that share the same habitat often form relationships with different fungal partners, possibly to reduce competition and ensure stable coexistence. However, the direct impact of variations in mycorrhizal partners on seed germination remains largely unknown. We examined how fungal associates' specific identity and origin affect seed germination in Spiranthes spiralis and Serapias orientalis through in situ symbiotic germination experiments. A total of four fungal isolates, Tulasnellaceae and Ceratobasidiaceae were successfully isolated and cultured from S. spiralis and S. orientalis and two additional orchid species found in the same habitat: Neotinea tridentata and Orchis provincialis. While all fungal strains facilitated the swelling of seed embryos, only the fungal associate, a member of the Ceratobasidiaceae family isolated from N. tridentata, (NT2) was capable of inducing protocorm formation and subsequent seedling growth of S. spiralis seeds. Another fungal associate belonging to the Tulasnellaceae family and isolated from O. provincialis (OP3) supported seed germination up to the seedling stage of S. orientalis seeds. However, the remaining two fungal strains did not support seed germination. We conclude that fungal associates of co-occurring orchids can promote seed germination and seedling growth in S. spiralis and S. orientalis.
Collapse
Affiliation(s)
- Ines Harzli
- Faculty of Science, Department of Biology, Ondokuz Mayis University, Samsun, 55139, Türkiye.
| | - Yasemin Özdener Kömpe
- Faculty of Science, Department of Biology, Ondokuz Mayis University, Samsun, 55139, Türkiye
| |
Collapse
|
3
|
Freestone M, Reiter N, Swarts ND, Linde CC. Temporal turnover of Ceratobasidiaceae orchid mycorrhizal fungal communities with ontogenetic and phenological development in Prasophyllum (Orchidaceae). ANNALS OF BOTANY 2024; 134:933-948. [PMID: 38835172 PMCID: PMC11687622 DOI: 10.1093/aob/mcae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND AND AIMS Plant-fungus symbioses may experience temporal turnover during the ontogenetic or phenological development of the host, which can influence the ecological requirements of the host plant. In this study, we investigate temporal turnover of Ceratobasidiaceae orchid mycorrhizal fungal (OMF) communities in Prasophyllum (Orchidaceae), asking whether OMF communities are subject to temporal change attributable to orchid phenology or ontogeny. METHODS Roots of adult Prasophyllum frenchii, Prasophyllum lindleyanum and Prasophyllum sp. aff. validum from Australia were sampled between autumn and spring. Seed was sown in situ as 'baits' to explore the mycorrhizal associations of germinating protocorms, which were compared with OMF in roots of co-occurring adult plants. Culture-dependent and -independent sequencing methods were used to amplify the internal transcribed spacer and mitochondrial large subunit loci, with sequences assigned to operational taxonomic units (OTUs) in phylogenetic analyses. Germination trials were used to determine whether fungal OTUs were mycorrhizal. KEY RESULTS A persistent core of OMF was associated with Prasophyllum, with Ceratobasidiaceae OMF dominant in all three species. Phenological turnover occurred in P. lindleyanum and P. sp. aff. validum, but not in P. frenchii, which displayed specificity to a single OTU. Ontogenetic turnover occurred in all species. However, phenological and ontogenetic turnover was typically driven by the presence or absence of infrequently detected OTUs in populations that otherwise displayed specificity to one or two dominant OTUs. Ex situ germination trials showed that 13 of 14 tested OTUs supported seed germination in their host orchid, including eight OTUs that were not found in protocorms in situ. CONCLUSIONS An understanding of OMF turnover can have practical importance for the conservation of threatened orchids and their mycorrhizal partners. However, frameworks for classifying OMF turnover should focus on OTUs important to the life cycle of the host plant, which we suggest are likely to be those that are frequently detected or functionally significant.
Collapse
Affiliation(s)
- Marc Freestone
- Royal Botanic Gardens Victoria, Science Division, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC 3977, Australia
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
- The Biodiversity Consultancy, Cambridge CB2 1SJ, United Kingdom
| | - Noushka Reiter
- Royal Botanic Gardens Victoria, Science Division, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC 3977, Australia
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Nigel D Swarts
- Tasmanian Institute of Agriculture, The University of Tasmania, Sandy Bay, TAS 7005, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
4
|
Pujasatria GC, Miura C, Yamaguchi K, Shigenobu S, Kaminaka H. Colonization by orchid mycorrhizal fungi primes induced systemic resistance against necrotrophic pathogen. FRONTIERS IN PLANT SCIENCE 2024; 15:1447050. [PMID: 39145195 PMCID: PMC11322130 DOI: 10.3389/fpls.2024.1447050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
Orchids and arbuscular mycorrhiza (AM) plants evolved independently and have different structures and fungal partners, but they both facilitate nutrient uptake. Orchid mycorrhiza (OM) supports orchid seed germination, but unlike AM, its role in disease resistance of mature plants is largely unknown. Here, we examined whether OM induces systemic disease resistance against a necrotrophic pathogen in a similar fashion to AM. We investigated the priming effect of mycorrhizal fungi inoculation on resistance of a terrestrial orchid, Bletilla striata, to soft rot caused by Dickeya fangzhongdai. We found that root colonization by a compatible OM fungus primed B. striata seedlings and induced systemic resistance against the infection. Transcriptome analysis showed that priming was mediated by the downregulation of jasmonate and ethylene pathways and that these pathways are upregulated once infection occurs. Comparison with the reported transcriptome of AM fungus-colonized rice leaves revealed similar mechanisms in B. striata and in rice. These findings highlight a novel aspect of commonality between OM and AM plants in terms of induced systemic resistance.
Collapse
Affiliation(s)
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology Core Research Facilities, Okazaki, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology Core Research Facilities, Okazaki, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori, Japan
| |
Collapse
|
5
|
Yang J, Li NQ, Gao JY. Roles of mycorrhizal fungi on seed germination of two Chinese medicinal orchids: need or do not need a fungus? FRONTIERS IN PLANT SCIENCE 2024; 15:1415401. [PMID: 39145188 PMCID: PMC11322765 DOI: 10.3389/fpls.2024.1415401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024]
Abstract
Generally, orchids highly depend on specific fungi for seed germination and subsequent seedling development in nature. For medicinal orchids, obtaining compatible fungi is prerequisite for imitation of wild cultivation and conservation. In this study, the two important traditional Chinese medicinal orchids, Pleione bulbocodioides and Bletilla striata, were studied to screen out effective fungi for seed germination and seedling development. P. bulbocodioides seeds germinated and formed protocorms in all fungal and control treatments, but seedlings only developed in fungal Serendipita officinale (SO) and S. indica (SI) treatments and nutrient-rich medium MS treatment. At 90 days after incubation, the percentages of seedlings were 34.83 ± 3.4% and 27.59 ± 3.5% in SO and SI treatments, which were significantly higher than the MS treatment (18.39 ± 2.0%; all P < 0.05). At this stage, most seedlings in SO and SI treatments bore two leaves (Stage 5), and pelotons inside the basal cells of seedlings were clearly observed. For B. striata, seeds germinated up to seedlings with or without fungus, but seedlings developed rapidly in SI treatment. At 90 days after incubation, the percentage of seedlings in SI treatment reached 77.90 ± 4.1%, but was significantly lower than the nutrient-poor medium OMA treatment (85.18 ± 3.7%; P < 0.01), however, the seedlings in SI treatment were stronger than the seedlings in OMA treatment. The results suggested that P. bulbocodioides rely on compatible fungi for seeds germinated up to seedlings, and fungus SO could effectively promote seed germination and support seedling development; while B. striata can germinate up to seedling without any fungus, but compatible fungus S. indica can greatly speed up seed germination and promote seedling development. We suggest that S. officinale and S. indica fungi can be used in conservation practices or imitation of wild cultivation of these two important medicinal orchids, respectively.
Collapse
Affiliation(s)
| | | | - Jiang-Yun Gao
- Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Jin XH, Wang YC, Li D, Li Y, He HY, Zhang HB. Diverse Mycena Fungi and Their Potential for Gastrodia elata Germination. J Microbiol Biotechnol 2024; 34:1249-1259. [PMID: 38938004 PMCID: PMC11239410 DOI: 10.4014/jmb.2401.01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/29/2024]
Abstract
It remains to be determined whether there is a geographical distribution pattern and phylogenetic signals for the Mycena strains with seed germination of the orchid plant Gastrodia elata. This study analyzed the community composition and phylogenetics of 72 Mycena strains associated with G. elata varieties (G. elata. f. glauca and G. elata. f. viridis) using multiple gene fragments (ITS+nLSU+SSU). We found that (1) these diverse Mycena phylogenetically belong to the Basidiospore amyloid group. (2) There is a phylogenetic signal of Mycena for germination of G. elata. Those strains phylogenetically close to M. abramsii, M. polygramma, and an unclassified Mycena had significantly higher germination rates than those to M. citrinomarginata. (3) The Mycena distribution depends on geographic site and G. elata variety. Both unclassified Mycena group 1 and the M. abramsii group were dominant for the two varieties of G. elata; in contrast, the M. citrinomarginata group was dominant in G. elata f. glauca but absent in G. elata f. viridis. Our results indicate that the community composition of numerous Mycena resources in the Zhaotong area varies by geographical location and G. elata variety. Importantly, our results also indicate that Mycena's phylogenetic status is correlated with its germination rate.
Collapse
Affiliation(s)
- Xiao-Han Jin
- State Key Laboratory Conservation and Utilization of Bio-Resources in Yunnan, Kunming, P.R. China
- School of Ecology and Environmental Science, Yunnan University, Kunming, P.R. China
| | - Yu-Chuan Wang
- Gastrodia Tuber Research Institute of Zhaotong, P.R. China
| | - Dong Li
- State Key Laboratory Conservation and Utilization of Bio-Resources in Yunnan, Kunming, P.R. China
- School of Ecology and Environmental Science, Yunnan University, Kunming, P.R. China
| | - Yu Li
- State Key Laboratory Conservation and Utilization of Bio-Resources in Yunnan, Kunming, P.R. China
| | - Hai-Yan He
- The Agriculture and Life Sciences College, Zhaotong University, Zhaotong, P.R. China
- Yunnan Key Laboratory of Gastrodia elata and Fungus Symbiotic Biology, Zhaotong, P.R. China
| | - Han-Bo Zhang
- State Key Laboratory Conservation and Utilization of Bio-Resources in Yunnan, Kunming, P.R. China
| |
Collapse
|
7
|
Yao N, Wang T, Jiang J, Yang Y, Cao X. Coriolopsis strumosa as an Orchid Endophytic Fungus and Its Spatial Distribution in Epidendrum sp. (Orchidaceae). Microorganisms 2024; 12:1054. [PMID: 38930436 PMCID: PMC11205860 DOI: 10.3390/microorganisms12061054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Coriolopsis spp. are wood-decaying fungi that inhabit forests. They are mainly distributed in tropical and subtropical areas. Strain Epi910 was isolated from the asymbiotically germinated protocorm of Epidendrum sp. and identified as Coriolopsis strumosa. Symbiotic germination and high-throughput sequencing of the endophytic fungal communities of different parts were performed to characterize the function and spatial distribution of the Epi910 isolate. Under symbiotic germination, Epi910 promoted seed germination and seedling formation as an endophytic native fungus of Epidendrum sp. Endophytic fungal communities from seven different parts of Epidendrum sp. were characterized. In total, 645 OTUs were identified; 30 OTUs were shared among all seven parts. The internal transcribed spacer sequence of Epi910 was identical to that of a dominant shared OTU (OTU6). The relative abundance of OTU6 in the seven parts was identified as follows: capsule pericarp > seed > root > asymbiotically germinated protocorm > epiphytic root > ovary > rachis. Our results suggest that the isolate belonging to Coriolopsis strumosa could promote the germination of Epidendrum sp. There may, therefore, be endophytic fungi other than common orchid mycorrhizal fungi with the ability to enhance germination in orchids.
Collapse
Affiliation(s)
- Na Yao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Tao Wang
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing 100093, China; (T.W.); (J.J.); (Y.Y.)
| | - Jingwan Jiang
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing 100093, China; (T.W.); (J.J.); (Y.Y.)
| | - Yuqian Yang
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing 100093, China; (T.W.); (J.J.); (Y.Y.)
| | - Xiaolu Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| |
Collapse
|
8
|
Mennicken S, Paula CCPD, Vogt-Schilb H, Jersáková J. Diversity of Mycorrhizal Fungi in Temperate Orchid Species: Comparison of Culture-Dependent and Culture-Independent Methods. J Fungi (Basel) 2024; 10:92. [PMID: 38392764 PMCID: PMC10890429 DOI: 10.3390/jof10020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Many orchid species are endangered due to anthropogenic pressures such as habitat destruction and overharvesting, meanwhile, all orchids rely on orchid mycorrhizal fungi (OMF) for seed germination and seedling growth. Therefore, a better understanding of this intimate association is crucial for orchid conservation. Isolation and identification of OMF remain challenging as many fungi are unculturable. In our study, we tested the efficiency of both culture-dependent and culture-independent methods to describe OMF diversity in multiple temperate orchids and assessed any phylogenetic patterns in cultivability. The culture-dependent method involved the cultivation and identification of single pelotons (intracellular hyphal coils), while the culture-independent method used next-generation sequencing (NGS) to identify root-associated fungal communities. We found that most orchid species were associated with multiple fungi, and the orchid host had a greater impact than locality on the variability in fungal communities. The culture-independent method revealed greater fungal diversity than the culture-dependent one, but despite the lower detection, the isolated fungal strains were the most abundant OMF in adult roots. Additionally, the abundance of NGS reads of cultured OTUs was correlated with the extent of mycorrhizal root colonization in orchid plants. Finally, this limited-scale study tentatively suggests that the cultivability character of OMF may be randomly distributed along the phylogenetic trees of the rhizoctonian families.
Collapse
Affiliation(s)
- Sophie Mennicken
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Caio César Pires de Paula
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
- Institute of Hydrobiology, Biology Centre CAS, 37005 České Budějovice, Czech Republic
| | - Hélène Vogt-Schilb
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, École Pratique des Hautes Études (EPHE), Institut de Recherche pour le Développement (IRD), 1919 Route de Mende, 34293 Montpellier, France
| | - Jana Jersáková
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| |
Collapse
|
9
|
Reiter N, Dimon R, Arifin A, Linde C. Culture age of Tulasnella affects symbiotic germination of the critically endangered Wyong sun orchid Thelymitra adorata (Orchidaceae). MYCORRHIZA 2023; 33:409-424. [PMID: 37947881 DOI: 10.1007/s00572-023-01131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Orchids (Orchidaceae) are dependent on mycorrhizal fungi for germination and to a varying extent as adult plants. We isolated fungi from wild plants of the critically endangered terrestrial orchid Thelymitra adorata and identified them using a multi-region barcoding approach as two undescribed Tulasnella species, one in each of phylogenetic group II and III (OTU1) of the Tulasnellaceae. Using symbiotic propagation methods, we investigated the role of Tulasnella identity (species and isolate) and age post isolation, on the fungus's ability and efficacy in germinating T. adorata. The group II isolate did not support germination. Seed germination experiments were conducted using either (i) three different isolates of OTU1, (ii) 4- and 12-week-old fungal cultures (post isolation) of a single isolate of OTU1, and (iii) T. subasymmetrica which is widespread and known to associate with other species of Thelymitra. Culture age and fungal species significantly (P < 0.05) affected the time to germination and percentage of seed germination, with greater and faster germination with 4-week-old cultures. Tulasnella subasymmetrica was able to germinate T. adorata to leaf stage, although at slightly lower germination percentages than OTU1. The ability of T. adorata to germinate with T. subasymmetrica may allow for translocation sites to be considered outside of its native range. Our findings on the age of Tulasnella culture affecting germination may have applications for improving the symbiotic germination success of other orchids. Furthermore, storage of Tulasnella may need to take account of the culture age post-isolation, with storage at - 80 °C as soon as possible recommended, post isolation.
Collapse
Affiliation(s)
- Noushka Reiter
- Royal Botanic Gardens Victoria, Science Division, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC, 3977, Australia.
- Ecology and Evolution, Research School of Biology, ANU College of Science, RN Robertson Building, 46 Sullivans Creek Road, The Australian National University, Canberra, ACT 2600, Australia.
| | - Richard Dimon
- Royal Botanic Gardens Victoria, Science Division, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC, 3977, Australia
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Mrs Macquaries Rd, Sydney, NSW 2000, Australia
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, 306 Cermody Rd, St Lucia, QLD, Australia
| | - Arild Arifin
- Ecology and Evolution, Research School of Biology, ANU College of Science, RN Robertson Building, 46 Sullivans Creek Road, The Australian National University, Canberra, ACT 2600, Australia
- Department of Plant Pathology, Washington State University Tree Fruit Research and Extension Center, Wenatchee, WA, 98801, USA
| | - Celeste Linde
- Ecology and Evolution, Research School of Biology, ANU College of Science, RN Robertson Building, 46 Sullivans Creek Road, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
10
|
Xu ZX, Zhu XM, Yin H, Li B, Chen XJ, Fan XL, Li NQ, Selosse MA, Gao JY, Han JJ. Symbiosis between Dendrobium catenatum protocorms and Serendipita indica involves the plant hypoxia response pathway. PLANT PHYSIOLOGY 2023; 192:2554-2568. [PMID: 36988071 PMCID: PMC10315314 DOI: 10.1093/plphys/kiad198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Mycorrhizae are ubiquitous symbioses established between fungi and plant roots. Orchids, in particular, require compatible mycorrhizal fungi for seed germination and protocorm development. Unlike arbuscular mycorrhizal fungi, which have wide host ranges, orchid mycorrhizal fungi are often highly specific to their host orchids. However, the molecular mechanism of orchid mycorrhizal symbiosis is largely unknown compared to that of arbuscular mycorrhizal and rhizobial symbiosis. Here, we report that an endophytic Sebacinales fungus, Serendipita indica, promotes seed germination and the development of protocorms into plantlets in several epiphytic Epidendroideae orchid species (6 species in 2 genera), including Dendrobium catenatum, a critically endangered orchid with high medicinal value. Although plant-pathogen interaction and high meristematic activity can induce the hypoxic response in plants, it has been unclear whether interactions with beneficial fungi, especially mycorrhizal ones, also involve the hypoxic response. By studying the symbiotic relationship between D. catenatum and S. indica, we determined that hypoxia-responsive genes, such as those encoding alcohol dehydrogenase (ADH), are highly induced in symbiotic D. catenatum protocorms. In situ hybridization assay indicated that the ADH gene is predominantly expressed in the basal mycorrhizal region of symbiotic protocorms. Additionally, the ADH inhibitors puerarin and 4-methylpyrazole both decreased S. indica colonization in D. catenatum protocorms. Thus, our study reveals that S. indica is widely compatible with orchids and that ADH and its related hypoxia-responsive pathway are involved in establishing successful symbiotic relationships in germinating orchids.
Collapse
Affiliation(s)
- Zhi-Xiong Xu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Xin-Meng Zhu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Huachun Yin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiao-Jie Chen
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Xu-Li Fan
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Neng-Qi Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Marc-André Selosse
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- Institut de Systématique, Évolution, Biodiversité (UMR 7205-CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- University of Gdańsk, Faculty of Biology, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
- Institut Universitaire de France (IUF), Paris, France
| | - Jiang-Yun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Jia-Jia Han
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| |
Collapse
|
11
|
Calevo J, Duffy KJ. Interactions among mycorrhizal fungi enhance the early development of a Mediterranean orchid. MYCORRHIZA 2023; 33:229-240. [PMID: 37436449 PMCID: PMC10442268 DOI: 10.1007/s00572-023-01118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023]
Abstract
Orchids depend on mycorrhizal fungi to germinate from seed. While multiple orchid mycorrhizal (OrM) taxa are often found associated with adult orchids, the relative contribution of particular OrM taxa to germination and early orchid development is poorly understood. We isolated 28 OrM fungi associated with the Mediterranean orchid Anacamptis papilionacea and tested the efficiency of five isolates on germination and early development, four belonging to the Tulasnella calospora species complex and one belonging to Ceratobasidium. Co-cultures of varying two-way and three-way combinations of OrM isolates were used in vitro to compare the simultaneous effect on seed germination rate with monocultures. We then tested whether, when given initial priority over other fungi, particular OrM taxa were more effective during the early stages of development. Seedlings germinated with different isolates were transferred to a growth chamber, and either the same or different isolate was added 45 days later. After 3 months, the number of roots, length of the longest root, and tuber area were measured. All OrM fungi resulted in seed germination; however, lower germination rates were associated with the Ceratobasidium isolate compared to the tulasnelloid isolates. There was significant decreased germination in co-culture experiments when the Ceratobasidium isolate was added. Despite being associated with reduced germination rates, the addition of the Ceratobasidium isolate to the seedlings germinated with tulasnelloid strains resulted in significant increased tuber size. Although A. papilionacea associates with many OrM taxa, these results show that OrM fungi may play different roles during orchid germination and early development. Even when given initial priority, other fungi may colonize developing orchids and interact to influence early orchid development.
Collapse
Affiliation(s)
- Jacopo Calevo
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126, Naples, Italy.
| | - Karl J Duffy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126, Naples, Italy.
| |
Collapse
|
12
|
Yao N, Zheng B, Wang T, Cao X. Isolation of Tulasnella spp. from Cultivated Paphiopedilum Orchids and Screening of Germination-Enhancing Fungi. J Fungi (Basel) 2023; 9:597. [PMID: 37367533 DOI: 10.3390/jof9060597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Ex situ conservation, an important way to increase the survival and sustainability of endangered species, is widely used in the conservation of endangered orchids. However, long-term ex situ conservation might affect the dominant group of orchid symbiotic fungi, which are crucial for orchid growth and reintroduction. This study investigated the culturable Tulasnella spp. associated with Paphiopedilum orchids after long-term greenhouse cultivation, and identified germination-enhancing isolates. A total of 44 Tulasnella isolates were obtained from the roots of 14 Paphiopedilum spp., and 29 of them were selected for phylogenetic analysis. They clustered mainly with Tulasnella deliquescens, Tulasnella calospora, Tulasnella bifrons, and Tulasnella irregularis, but included two potential new groups. Compared with published uncultured data, most of the isolates were grouped together with the reported types, and the dominant Tulasnella associated with P. armeniacum and P. micranthum could still be isolated after ten years of cultivation, most of which were the first isolation. In vitro symbiotic germination showed that certain root isolates could promote seed germination (e.g., parm152 isolated from P. armeniacum, Php12 from P. hirsutissimum, and prhi68 from P. rhizomatosum). These data indicated that the dominant Tulasnella types colonizing the roots of cultivated Paphiopedilum are stable over time, and germination-enhancing fungi colonizing the roots would benefit for seed reproduction after population reintroduction into the wild.
Collapse
Affiliation(s)
- Na Yao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Baoqiang Zheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Tao Wang
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Floriculture Engineering Technology Research Centre, China National Botanical Garden (North Garden), Beijing 100093, China
| | - Xiaolu Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
13
|
Yang H, Li NQ, Gao JY. A novel method to produce massive seedlings via symbiotic seed germination in orchids. FRONTIERS IN PLANT SCIENCE 2023; 14:1114105. [PMID: 36968353 PMCID: PMC10034380 DOI: 10.3389/fpls.2023.1114105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Orchids produce large numbers of dust-like seeds that rely heavily on orchid mycorrhizal fungi (OMFs) for germination. Using OMFs to facilitate orchid proliferation is considered an effective method for orchid conservation but still presents challenges in practice. In this study, orchid seed-fungus complexes, in which orchid seeds and fungal mycelia were embedded together to form granules, were developed as platforms to facilitate seed germination and seedling production. Overall, seedlings were produced by seed-fungus complexes for five orchid species with large variations in the percentages of seedlings produced among species/treatments. For the different fungal treatments in Dendrobium officinale, Sebacinales LQ performed much better than the other fungal strains. At 90 days after sowing, 75.8±2.6% seedlings were produced in the LQ treatment, which was significantly higher than in the Tulasnella sp. JM (22.0±3.0%) and Tulasnella sp. TPYD-2 (5.3±1.0%) treatments, as well as in the LQ and TPYD-2 cocultured treatment (40.4±3.2%), while no seedlings were formed in the Tulasnella sp. SSCDO-5 or control treatments. For the other four orchid species, only one compatible fungus for each species was used, and the percentages of seedlings in epiphytic Dendrobium devonianum (67.2±2.9%) and D. nobile (38.9±2.8%) were much higher than those in terrestrial Paphiopedilum spicerianum (2.9±1.1%) and Arundina graminifolia (6.7±2.1%) at 90 days after sowing. Adding 1% polymer water-absorbent resin to the seed-fungus complexes of D. officinale seeds with fungal strain Sebacinales LQ significantly increased seedling formation, while other additional substances showed negative effects on seedling formation. For the storage of seed-fungus complexes, it is recommended to store the seed-fungus complexes in valve bags at room temperature for a short time and at a low temperature of 4°C for no more than 30 days. As a platform for symbiotic seed germination, the seed-fungus complex can facilitate seed germination, produce seedlings and support subsequent seedling growth, and its seedling productivity depends on seed germination characteristics, seed viability, and the efficiency of fungi. Seed-fungus complexes have great potential to be used as propagules in orchid conservation.
Collapse
|
14
|
Addition of fungal inoculum increases seed germination and protocorm formation in a terrestrial orchid. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Yao N, Wang T, Cao X. Epidendrumradicans Fungal Community during Ex Situ Germination and Isolation of Germination-Enhancing Fungi. Microorganisms 2022; 10:1841. [PMID: 36144443 PMCID: PMC9503211 DOI: 10.3390/microorganisms10091841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Orchids exhibit varying specificities to fungi in different microbial environments. This pilot study investigated the preference of fungal recruitment during symbiotic germination of Epidendrum radicans Pav. ex Lindl. Two different orchid substrates were used for ex situ seed baiting: pine bark and rotten oak leaf, with Basidiomycota and Ascomycota as the respective dominant groups. Both substrates promoted seed germination, with a higher protocorm formation rate on pine bark (65.75%). High-throughput sequencing characterized the fungal communities of germinated protocorms. Basidiomycota was the dominant group in protocorms that symbiotically germinated on both substrates. The family-level community structures of endophytic fungi in protocorms that symbiotically germinated on both substrates were close to those of protocorms that germinated in vitro on MS1 medium. For protocorms, the dominant fungal groups recruited from substrates differed at the genus level; from pine bark, they were genera belonging to unclassified Sebacinales (41.34%), Thanatephorus (14.48%) and Fusarium (7.35%), while, from rotten oak leaf, they were Rhizoctonia (49.46%), Clitopilus (34.61%), and Oliveonia (7.96%). Four fungal isolates were successfully obtained and identified as belonging to the family Tulasnellaceae, genera Ceratobasidium and Peniophora, which could promote seed germination to the seedling stage. The data indicate that endophytic fungi for E. radicans germination on two different substrates are affected at the genus level by the substrate, with a degree of specificity at the family level.
Collapse
Affiliation(s)
- Na Yao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Tao Wang
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Floriculture Engineering Technology Research Centre, China National Botanical Garden, Beijing 100093, China
| | - Xiaolu Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
16
|
Chen XG, Wu YH, Li NQ, Gao JY. What role does the seed coat play during symbiotic seed germination in orchids: an experimental approach with Dendrobium officinale. BMC PLANT BIOLOGY 2022; 22:375. [PMID: 35906552 PMCID: PMC9336064 DOI: 10.1186/s12870-022-03760-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Orchids require specific mycorrhizal associations for seed germination. During symbiotic germination, the seed coat is the first point of fungal attachment, and whether the seed coat plays a role in the identification of compatible and incompatible fungi is unclear. Here, we compared the effects of compatible and incompatible fungi on seed germination, protocorm formation, seedling development, and colonization patterns in Dendrobium officinale; additionally, two experimental approaches, seeds pretreated with NaClO to change the permeability of the seed coat and fungi incubated with in vitro-produced protocorms, were used to assess the role of seed coat played during symbiotic seed germination. RESULTS The two compatible fungi, Tulasnella sp. TPYD-2 and Serendipita indica PI could quickly promote D. officinale seed germination to the seedling stage. Sixty-two days after incubation, 67.8 ± 5.23% of seeds developed into seedlings with two leaves in the PI treatment, which was significantly higher than that in the TPYD-2 treatment (37.1 ± 3.55%), and massive pelotons formed inside the basal cells of the protocorm or seedlings in both compatible fungi treatments. In contrast, the incompatible fungus Tulasnella sp. FDd1 did not promote seed germination up to seedlings at 62 days after incubation, and only a few pelotons were occasionally observed inside the protocorms. NaClO seed pretreatment improved seed germination under all three fungal treatments but did not improve seed colonization or promote seedling formation by incompatible fungi. Without the seed coat barrier, the colonization of in vitro-produced protocorms by TPYD-2 and PI was slowed, postponing protocorm development and seedling formation compared to those in intact seeds incubated with the same fungi. Moreover, the incompatible fungus FDd1 was still unable to colonize in vitro-produced protocorms and promote seedling formation. CONCLUSIONS Compatible fungi could quickly promote seed germination up to the seedling stage accompanied by hyphal colonization of seeds and formation of many pelotons inside cells, while incompatible fungi could not continuously colonize seeds and form enough protocorms to support D. officinale seedling development. The improvement of seed germination by seed pretreatment may result from improving the seed coat hydrophilicity and permeability, but seed pretreatment cannot change the compatibility of a fungus with an orchid. Without a seed coat, the incompatible fungus FDd1 still cannot colonize in vitro-produced protocorms or support seedling development. These results suggest that seed coats are not involved in symbiotic germination in D. officinale.
Collapse
Affiliation(s)
- Xiang-Gui Chen
- Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, Yunnan, China
| | - Yi-Hua Wu
- Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, Yunnan, China
| | - Neng-Qi Li
- Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, Yunnan, China
| | - Jiang-Yun Gao
- Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
17
|
Herrera H, Sanhueza T, da Silva Valadares RB, Matus F, Pereira G, Atala C, Mora MDLL, Arriagada C. Diversity of Root-Associated Fungi of the Terrestrial Orchids Gavilea lutea and Chloraea collicensis in a Temperate Forest Soil of South-Central Chile. J Fungi (Basel) 2022; 8:jof8080794. [PMID: 36012784 PMCID: PMC9409917 DOI: 10.3390/jof8080794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
The diversity of orchid mycorrhizal fungi (OMF) and other beneficial root-associated fungi in temperate forests has scarcely been examined. This study aimed to analyze the diversity of mycorrhizal and rhizosphere-associated fungal communities in the terrestrial orchids Gavilea lutea and Chloraea collicensis growing in high-orchid-population-density areas in the piedmont of the Andes Cordillera with native forest (Nothofagus-Araucaria) and Coastal Cordillera with an exotic plantation (Pinus-Eucalyptus) in south-central Chile. We focused on rhizosphere-inhabiting and peloton-associated OMF in a native forest (Andes Cordillera) and a mixed forest (Coastal Cordillera). The native terrestrial orchids G. lutea and C. collicensis were localized, mycorrhizal root segments were taken to isolate peloton-associated OMF, and rhizosphere soil was taken to perform the metabarcoding approach. The results revealed that Basidiomycota and Ascomycota were the main rhizosphere-inhabiting fungal phyla, showing significant differences in the composition of fungal communities in both sites. Sebacina was the most-abundant OMF genera in the rhizosphere of G. lutea growing in the native forest soil. In contrast, Thanatephorus was the most abundant mycorrhizal taxa growing in the rhizosphere of orchids from the Coastal Cordillera. Besides, other OMF genera such as Inocybe, Tomentella, and Mycena were detected. The diversity of OMF in pelotons differed, being mainly related to Ceratobasidium sp. and Tulasnella sp. These results provide evidence of differences in OMF from pelotons and the rhizosphere soil in G. lutea growing in the Andes Cordillera and a selection of microbial communities in the rhizosphere of C. collicensis in the Coastal Cordillera. This raises questions about the efficiency of propagation strategies based only on mycorrhizal fungi obtained by culture-dependent methods, especially in orchids that depend on non-culturable taxa for seed germination and plantlet development.
Collapse
Affiliation(s)
- Héctor Herrera
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile;
- Correspondence: (H.H.); (C.A.)
| | - Tedy Sanhueza
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile;
- Programa de Magister en Manejo de Recursos Naturales, Universidad de La Frontera, Casilla 54-D, Francisco Salazar 01145, Temuco 4780000, Chile
| | | | - Francisco Matus
- Laboratory of Conservation and Dynamics of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco 4780000, Chile;
- Network for Extreme Environmental Research (NEXER), Universidad de La Frontera, Temuco 4780000, Chile
| | - Guillermo Pereira
- Departamento de Ciencias y Tecnología Vegetal, Laboratorio Biotecnología de Hongos, Universidad de Concepción, Los Angeles 4440000, Chile;
| | - Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaiso 2340000, Chile;
| | - María de la Luz Mora
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Cesar Arriagada
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile;
- Correspondence: (H.H.); (C.A.)
| |
Collapse
|
18
|
Tang YJ, Zhou DY, Dai J, Li Y, Xing YM, Guo SX, Chen J. Potential Specificity Between Mycorrhizal Fungi Isolated from Widespread Dendrobium spp. and Rare D. huoshanense Seeds. Curr Microbiol 2022; 79:264. [PMID: 35859013 DOI: 10.1007/s00284-022-02952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
In nature, orchid seed germination and seedling development depend on compatible mycorrhizal fungi. Mycorrhizal generalist and specificity affect the orchid distribution and rarity. Here, we investigated the specificity toward fungi in the rare D. huoshanense by mycorrhizal fungal isolation and symbiotic germination in vitro. Twenty mycorrhizal fungal strains were isolated from the roots of adult Dendrobium spp. (six and 12 strains from rare D. huoshanense and widespread D. officinale, respectively, and two strains from D. nobile and D. moniliforme, respectively) and 13 strains belong to Tulasnellaceae and seven strains belong to Serendipitaceae. Germination trials in vitro revealed that all 20 tested fungal strains can stimulate seed germination of D. huoshanense, but only nine strains (~ 50%) can support it up to the seedling stage. This finding indicates that generalistic fungi are important for early germination, but only a few can maintain a symbiosis with host in seedling stage. Thus, a shift of the microbial community from seedling to mature stage probably narrows the D. huoshanense distribution range. In addition, to further understand the relationship between the fungal capability to promote seed germination and fungal enzyme activity, we screened the laccase and pectase activity. The results showed that the two enzymes activities of fungi cannot be directly correlated with their germination-promoting activities. Understanding the host specificity degree toward fungi can help to better interpret the limited geographic distribution of D. huoshanense and provides opportunities for in situ and ex situ conservation and reintroduction programs.
Collapse
Affiliation(s)
- Yan-Jing Tang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Dong-Yu Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jun Dai
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization for Traditional Chinese Medicine Resources, West Anhui University, Lu'an, 237012, Anhui, China.,College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, China
| | - Yang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yong-Mei Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shun-Xing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
19
|
Selosse MA, Petrolli R, Mujica MI, Laurent L, Perez-Lamarque B, Figura T, Bourceret A, Jacquemyn H, Li T, Gao J, Minasiewicz J, Martos F. The Waiting Room Hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes? ANNALS OF BOTANY 2022; 129:259-270. [PMID: 34718377 PMCID: PMC8835631 DOI: 10.1093/aob/mcab134] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND As in most land plants, the roots of orchids (Orchidaceae) associate with soil fungi. Recent studies have highlighted the diversity of the fungal partners involved, mostly within Basidiomycotas. The association with a polyphyletic group of fungi collectively called rhizoctonias (Ceratobasidiaceae, Tulasnellaceae and Serendipitaceae) is the most frequent. Yet, several orchid species target other fungal taxa that differ from rhizoctonias by their phylogenetic position and/or ecological traits related to their nutrition out of the orchid roots (e.g. soil saprobic or ectomycorrhizal fungi). We offer an evolutionary framework for these symbiotic associations. SCOPE Our view is based on the 'Waiting Room Hypothesis', an evolutionary scenario stating that mycorrhizal fungi of land flora were recruited from ancestors that initially colonized roots as endophytes. Endophytes biotrophically colonize tissues in a diffuse way, contrasting with mycorrhizae by the absence of morphological differentiation and of contribution to the plant's nutrition. The association with rhizoctonias is probably the ancestral symbiosis that persists in most extant orchids, while during orchid evolution numerous secondary transitions occurred to other fungal taxa. We suggest that both the rhizoctonia partners and the secondarily acquired ones are from fungal taxa that have broad endophytic ability, as exemplified in non-orchid roots. We review evidence that endophytism in non-orchid plants is the current ecology of many rhizoctonias, which suggests that their ancestors may have been endophytic in orchid ancestors. This also applies to the non-rhizoctonia fungi that were secondarily recruited by several orchid lineages as mycorrhizal partners. Indeed, from our review of the published literature, they are often detected, probably as endophytes, in extant rhizoctonia-associated orchids. CONCLUSION The orchid family offers one of the best documented examples of the 'Waiting Room Hypothesis': their mycorrhizal symbioses support the idea that extant mycorrhizal fungi have been recruited among endophytic fungi that colonized orchid ancestors.
Collapse
Affiliation(s)
- Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Rémi Petrolli
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| | - María Isabel Mujica
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile, & Instituto de Ecología and Biodiversidad (IEB), Alameda 340, Santiago, Chile
| | - Liam Laurent
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| | - Benoît Perez-Lamarque
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, 75005 Paris, France
| | - Tomáš Figura
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Amelia Bourceret
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Julita Minasiewicz
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
20
|
Ma GH, Chen XG, Selosse MA, Gao JY. Compatible and Incompatible Mycorrhizal Fungi With Seeds of Dendrobium Species: The Colonization Process and Effects of Coculture on Germination and Seedling Development. FRONTIERS IN PLANT SCIENCE 2022; 13:823794. [PMID: 35360307 PMCID: PMC8961024 DOI: 10.3389/fpls.2022.823794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/28/2022] [Indexed: 05/14/2023]
Abstract
Orchids highly rely on mycorrhizal fungi for seed germination, and compatible fungi could effectively promote germination up to seedlings, while incompatible fungi may stimulate germination but do not support subsequent seedling development. In this study, we compared the fungal colonization process among two compatible and two incompatible fungi during seed germination of Dendrobium officinale. The two compatible fungi, i.e., Tulasnella SSCDO-5 and Sebacinales LQ, originally from different habitats, could persistently colonize seeds and form a large number of pelotons continuously in the basal cells, and both fungi promoted seed germination up to seedling with relative effectiveness. In contrast, the two incompatible fungi, i.e., Tulasnella FDd1 and Tulasnella AgP-1, could not persistently colonize seeds. No pelotons in the FDd1 treatment and only a few pelotons in the AgP-1 treatment were observed; moreover, no seedlings were developed at 120 days after incubation in either incompatible fungal treatment. The pattern of fungal hyphae colonizing seeds was well-matched with the morphological differentiation of seed germination and seedling development. In the fungal cocultural experiments, for both orchids of D. officinale and Dendrobium devonianum, cocultures had slightly negative effects on seed germination, protocorm formation, and seedling formation compared with the monocultures with compatible fungus. These results provide us with a better understanding of orchid mycorrhizal interactions; therefore, for orchid conservation based on symbiotic seed germination, it is recommended that a single, compatible, and ecological/habitat-specific fungus can be utilized for seed germination.
Collapse
Affiliation(s)
- Guang-Hui Ma
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Xiang-Gui Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Marc-André Selosse
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Institut de Systématique, Évolution, Biodiversité, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Jiang-Yun Gao
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- *Correspondence: Jiang-Yun Gao,
| |
Collapse
|
21
|
Hampejsová R, Berka M, Berková V, Jersáková J, Domkářová J, von Rundstedt F, Frary A, Saiz-Fernández I, Brzobohatý B, Černý M. Interaction With Fungi Promotes the Accumulation of Specific Defense Molecules in Orchid Tubers and May Increase the Value of Tubers for Biotechnological and Medicinal Applications: The Case Study of Interaction Between Dactylorhiza sp. and Tulasnella calospora. FRONTIERS IN PLANT SCIENCE 2022; 13:757852. [PMID: 35845638 PMCID: PMC9282861 DOI: 10.3389/fpls.2022.757852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/13/2022] [Indexed: 05/04/2023]
Abstract
Terrestrial orchids can form tubers, organs modified to store energy reserves. Tubers are an attractive source of nutrients, and salep, a flour made from dried orchid tubers, is the source of traditional beverages. Tubers also contain valuable secondary metabolites and are used in traditional medicine. The extensive harvest of wild orchids is endangering their populations in nature; however, orchids can be cultivated and tubers mass-produced. This work illustrates the importance of plant-fungus interaction in shaping the content of orchid tubers in vitro. Orchid plants of Dactylorhiza sp. grown in asymbiotic culture were inoculated with a fungal isolate from Tulasnella calospora group and, after 3 months of co-cultivation, tubers were analyzed. The fungus adopted the saprotrophic mode of life, but no visible differences in the morphology and biomass of the tubers were detected compared to the mock-treated plants. To elucidate the mechanisms protecting the tubers against fungal infestation, proteome, metabolome, and lipidome of tubers were analyzed. In total, 1,526, 174, and 108 proteins, metabolites, and lipids were quantified, respectively, providing a detailed snapshot of the molecular process underlying plant-microbe interaction. The observed changes at the molecular level showed that the tubers of inoculated plants accumulated significantly higher amounts of antifungal compounds, including phenolics, alkaloid Calystegine B2, and dihydrophenanthrenes. The promoted antimicrobial effects were validated by observing transient inhibition of Phytophthora cactorum growth. The integration of omics data highlighted the promotion of flavonoid biosynthesis, the increase in the formation of lipid droplets and associated production of oxylipins, and the accumulation of auxin in response to T. calospora. Taken together, these results provide the first insights into the molecular mechanisms of defense priming in orchid tubers and highlight the possible use of fungal interactors in biotechnology for the production of orchid secondary metabolites.
Collapse
Affiliation(s)
- Romana Hampejsová
- Potato Research Institute, Ltd., Havlíčkův Brod, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jana Jersáková
- Department of Biology of Ecosystems, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | | | | | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Turkey
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- *Correspondence: Martin Černý,
| |
Collapse
|
22
|
In situ seedling baiting to isolate plant growth-promoting fungi from Dendrobium officinale, an over-collected medicinal orchid in China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
23
|
Foster EA, Ackerman JD. Future changes in the distribution of two non-indigenous orchids and their acquired enemy in Puerto Rico. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02596-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Zhao DK, Selosse MA, Wu L, Luo Y, Shao SC, Ruan YL. Orchid Reintroduction Based on Seed Germination-Promoting Mycorrhizal Fungi Derived From Protocorms or Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:701152. [PMID: 34276753 PMCID: PMC8278863 DOI: 10.3389/fpls.2021.701152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Orchids are among the most endangered in the plant kingdom. Lack of endosperm in their seeds renders orchids to depend on nutrients provided by orchid mycorrhizal fungi (OMF) for seed germination and seedling formation in the wild. OMF that parasitize in germination seeds is an essential element for orchid seedling formation, which can also help orchid reintroduction. Considering the limitations of the previous orchid reintroduction technology based on seed germination-promoting OMF (sgOMF) sourced from orchid roots, an innovative approach is proposed here in which orchid seeds are directly co-sown with sgOMF carrying ecological specificity from protocorms/seedlings. Based on this principle, an integrative and practical procedure concerning related ecological factors is further raised for re-constructing long-term and self-sustained orchid populations. We believe that this new approach will benefit the reintroduction of endangered orchids in nature.
Collapse
Affiliation(s)
- Da-Ke Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Marc-André Selosse
- Département Systématique et Evolution, UMR 7205 ISYEB, Muséum National d'Histoire Naturelle, Paris, France
- Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Limin Wu
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Yan Luo
- Gardening and Horticulture Department, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Shi-Cheng Shao
- Gardening and Horticulture Department, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
25
|
Protocorm-Supporting Fungi Are Retained in Roots of Mature Tipularia discolor Orchids as Mycorrhizal Fungal Diversity Increases. PLANTS 2021; 10:plants10061251. [PMID: 34202964 PMCID: PMC8233912 DOI: 10.3390/plants10061251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022]
Abstract
Mycorrhizal fungi are critical to understanding the distribution patterns of many plants, but they are especially important for orchids. Some orchids may change the mycorrhizal fungi they use through their lives, either in response to changes in abiotic or biotic conditions, or as a result of ontogenetic changes that alter the orchid’s need for fungal nutrition. The temperate terrestrial orchid Tipularia discolor germinates only on decomposing wood, but often persists well after the wood has completely decomposed and has been incorporated into the soil. We used PCR and Sanger sequencing to ask: (1) Do mature T. discolor retain protocorm fungi or are protocorm and adult mycorrhizal fungi mutually exclusive? (2) Are protocorm fungi limited to areas with decomposing wood? (3) Does the abundance of protocorm fungi in the substrate differ between decomposing wood and bare soil? We found that T. discolor retained protocorm fungi into maturity, regardless of whether they were growing in persistent decomposing wood or soil. Protocorm fungi were not restricted to decomposing wood but were more common and abundant in it. We conclude that the mycorrhizal fungi associated with T. discolor change during the ontogeny of individuals. These results highlight the importance of assessing protocorm fungi, in addition to mycorrhizal fungi associating with adult orchids, to understand the conditions needed for orchid germination, growth, and reproduction.
Collapse
|
26
|
Li T, Wu S, Yang W, Selosse MA, Gao J. How Mycorrhizal Associations Influence Orchid Distribution and Population Dynamics. FRONTIERS IN PLANT SCIENCE 2021; 12:647114. [PMID: 34025695 PMCID: PMC8138319 DOI: 10.3389/fpls.2021.647114] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 05/04/2023]
Abstract
Orchid distribution and population dynamics are influenced by a variety of ecological factors and the formation of holobionts, which play key roles in colonization and ecological community construction. Seed germination, seedling establishment, reproduction, and survival of orchid species are strongly dependent on orchid mycorrhizal fungi (OMF), with mycorrhizal cheating increasingly observed in photosynthetic orchids. Therefore, changes in the composition and abundance of OMF can have profound effects on orchid distribution and fitness. Network analysis is an important tool for the study of interactions between plants, microbes, and the environment, because of the insights that it can provide into the interactions and coexistence patterns among species. Here, we provide a comprehensive overview, systematically describing the current research status of the effects of OMF on orchid distribution and dynamics, phylogenetic signals in orchid-OMF interactions, and OMF networks. We argue that orchid-OMF associations exhibit complementary and specific effects that are highly adapted to their environment. Such specificity of associations may affect the niche breadth of orchid species and act as a stabilizing force in plant-microbe coevolution. We postulate that network analysis is required to elucidate the functions of fungal partners beyond their effects on germination and growth. Such studies may lend insight into the microbial ecology of orchids and provide a scientific basis for the protection of orchids under natural conditions in an efficient and cost-effective manner.
Collapse
Affiliation(s)
- Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shimao Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Wenke Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Marc-André Selosse
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| |
Collapse
|
27
|
Li T, Yang W, Wu S, Selosse MA, Gao J. Progress and Prospects of Mycorrhizal Fungal Diversity in Orchids. FRONTIERS IN PLANT SCIENCE 2021; 12:646325. [PMID: 34025694 PMCID: PMC8138444 DOI: 10.3389/fpls.2021.646325] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/12/2021] [Indexed: 05/03/2023]
Abstract
Orchids form mycorrhizal symbioses with fungi in natural habitats that affect their seed germination, protocorm growth, and adult nutrition. An increasing number of studies indicates how orchids gain mineral nutrients and sometime even organic compounds from interactions with orchid mycorrhizal fungi (OMF). Thus, OMF exhibit a high diversity and play a key role in the life cycle of orchids. In recent years, the high-throughput molecular identification of fungi has broadly extended our understanding of OMF diversity, revealing it to be a dynamic outcome co-regulated by environmental filtering, dispersal restrictions, spatiotemporal scales, biogeographic history, as well as the distribution, selection, and phylogenetic spectrum width of host orchids. Most of the results show congruent emerging patterns. Although it is still difficult to extend them to all orchid species or geographical areas, to a certain extent they follow the "everything is everywhere, but the environment selects" rule. This review provides an extensive understanding of the diversity and ecological dynamics of orchid-fungal association. Moreover, it promotes the conservation of resources and the regeneration of rare or endangered orchids. We provide a comprehensive overview, systematically describing six fields of research on orchid-fungal diversity: the research methods of orchid-fungal interactions, the primer selection in high-throughput sequencing, the fungal diversity and specificity in orchids, the difference and adaptability of OMF in different habitats, the comparison of OMF in orchid roots and soil, and the spatiotemporal variation patterns of OMF. Further, we highlight certain shortcomings of current research methodologies and propose perspectives for future studies. This review emphasizes the need for more information on the four main ecological processes: dispersal, selection, ecological drift, and diversification, as well as their interactions, in the study of orchid-fungal interactions and OMF community structure.
Collapse
Affiliation(s)
- Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Wenke Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shimao Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Marc-André Selosse
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| |
Collapse
|
28
|
Pujasatria GC, Miura C, Kaminaka H. In Vitro Symbiotic Germination: A Revitalized Heuristic Approach for Orchid Species Conservation. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1742. [PMID: 33317200 PMCID: PMC7763479 DOI: 10.3390/plants9121742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022]
Abstract
As one of the largest families of flowering plants, Orchidaceae is well-known for its high diversity and complex life cycles. Interestingly, such exquisite plants originate from minute seeds, going through challenges to germinate and establish in nature. Alternatively, orchid utilization as an economically important plant gradually decreases its natural population, therefore, driving the need for conservation. As with any conservation attempts, broad knowledge is required, including the species' interaction with other organisms. All orchids establish mycorrhizal symbiosis with certain lineages of fungi to germinate naturally. Since the whole in situ study is considerably complex, in vitro symbiotic germination study is a promising alternative. It serves as a tool for extensive studies at morphophysiological and molecular levels. In addition, it provides insights before reintroduction into its natural habitat. Here we reviewed how mycorrhiza contributes to orchid lifecycles, methods to conduct in vitro study, and how it can be utilized for conservation needs.
Collapse
Affiliation(s)
- Galih Chersy Pujasatria
- Department of Agricultural Science, Graduate School of Sustainable Science, Tottori University, Tottori 680-8553, Japan;
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan;
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan;
| |
Collapse
|
29
|
Shao SC, Luo Y, Jacquemyn H. Co-Cultures of Mycorrhizal Fungi Do Not Increase Germination and Seedling Development in the Epiphytic Orchid Dendrobium nobile. FRONTIERS IN PLANT SCIENCE 2020; 11:571426. [PMID: 33193505 PMCID: PMC7644947 DOI: 10.3389/fpls.2020.571426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Orchids are highly dependent on mycorrhizal fungi for seed germination and subsequent growth to a seedling as they provide essential carbon, water, and mineral nutrients to developing seeds. Although there is mounting evidence that orchid seeds are often colonized by multiple fungi simultaneously, most in vitro germination experiments focus on mycorrhizal monocultures and little is known about how mycorrhizal assemblages affect seed germination and growth of seedlings. In this study, we compared the effects of mycorrhizal monocultures and co-cultures on seed germination and seedling growth of the epiphytic orchid Dendrobium nobile. In situ baiting was used to isolate mycorrhizal fungi from protocorms for germination experiments. Germination experiments were conducted under two light regimes for 90 days. In total, five fungal strains were isolated from protocorms of D. nobile, indicating that the species was not highly specific to its fungal partners. Four strains (JC-01, JC-02, JC-04, and JC-05) belonged to the Serendipitaceae and one (JC-03) to the Tulasnellaceae. In vitro germination experiments showed that germination percentages were higher under light-dark conditions than under complete dark conditions, supporting previous findings that light facilitates germination in epiphytic orchids. While all strains were able to induce protocorm formation and growth into the seedling stage, large differences between fungal strains were observed. Co-cultures did not result in significantly higher seed germination percentages and seedling development than monocultures. Taken together, these results demonstrate that effects of fungal assemblages are not predictable from those of component species, and that more work is needed to better understand the role of fungal assemblages determining seed germination and subsequent growth under natural conditions.
Collapse
Affiliation(s)
- Shi-Cheng Shao
- Gardening and Horticulture Department, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Yan Luo
- Gardening and Horticulture Department, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Yang WK, Li TQ, Wu SM, Finnegan PM, Gao JY. Ex situ seed baiting to isolate germination-enhancing fungi for assisted colonization in Paphiopedilum spicerianum, a critically endangered orchid in China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Phillips RD, Reiter N, Peakall R. Orchid conservation: from theory to practice. ANNALS OF BOTANY 2020; 126:345-362. [PMID: 32407498 PMCID: PMC7424752 DOI: 10.1093/aob/mcaa093] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Given the exceptional diversity of orchids (26 000+ species), improving strategies for the conservation of orchids will benefit a vast number of taxa. Furthermore, with rapidly increasing numbers of endangered orchids and low success rates in orchid conservation translocation programmes worldwide, it is evident that our progress in understanding the biology of orchids is not yet translating into widespread effective conservation. SCOPE We highlight unusual aspects of the reproductive biology of orchids that can have important consequences for conservation programmes, such as specialization of pollination systems, low fruit set but high seed production, and the potential for long-distance seed dispersal. Further, we discuss the importance of their reliance on mycorrhizal fungi for germination, including quantifying the incidence of specialized versus generalized mycorrhizal associations in orchids. In light of leading conservation theory and the biology of orchids, we provide recommendations for improving population management and translocation programmes. CONCLUSIONS Major gains in orchid conservation can be achieved by incorporating knowledge of ecological interactions, for both generalist and specialist species. For example, habitat management can be tailored to maintain pollinator populations and conservation translocation sites selected based on confirmed availability of pollinators. Similarly, use of efficacious mycorrhizal fungi in propagation will increase the value of ex situ collections and likely increase the success of conservation translocations. Given the low genetic differentiation between populations of many orchids, experimental genetic mixing is an option to increase fitness of small populations, although caution is needed where cytotypes or floral ecotypes are present. Combining demographic data and field experiments will provide knowledge to enhance management and translocation success. Finally, high per-fruit fecundity means that orchids offer powerful but overlooked opportunities to propagate plants for experiments aimed at improving conservation outcomes. Given the predictions of ongoing environmental change, experimental approaches also offer effective ways to build more resilient populations.
Collapse
Affiliation(s)
- Ryan D Phillips
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
- Kings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park, WA, Australia
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Noushka Reiter
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Royal Botanic Gardens Victoria, Corner of Ballarto Road and Botanic Drive, Cranbourne, VIC, Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
32
|
Herrera H, Sanhueza T, Martiarena R, Valadares R, Fuentes A, Arriagada C. Mycorrhizal Fungi Isolated from Native Terrestrial Orchids from Region of La Araucanía, Southern Chile. Microorganisms 2020; 8:microorganisms8081120. [PMID: 32722489 PMCID: PMC7465119 DOI: 10.3390/microorganisms8081120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/05/2022] Open
Abstract
Mycorrhizal interactions of orchids are influenced by several environmental conditions. Hence, knowledge of mycorrhizal fungi associated with orchids inhabiting different ecosystems is essential to designing recovery strategies for threatened species. This study analyzes the mycorrhizal associations of terrestrial orchids colonizing grassland and understory in native ecosystems of the region of La Araucanía in southern Chile. Mycorrhizal fungi were isolated from peloton-containing roots and identified based on the sequence of the ITS region. Their capacities for seed germination were also investigated. We detected Tulasnella spp. and Ceratobasidium spp. in the pelotons of the analyzed orchids. Additionally, we showed that some Ceratobasidium isolates effectively induce seed germination to differing degrees, unlike Tulasnella spp., which, in most cases, fail to achieve protocorm growth. This process may underline a critical step in the life cycle of Tulasnella-associated orchids, whereas the Ceratobasidium-associated orchids were less specific for fungi and were effectively germinated with mycorrhizal fungi isolated from adult roots.
Collapse
Affiliation(s)
- Hector Herrera
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 4811230 Temuco, Chile; (H.H.); (T.S.); (A.F.)
| | - Tedy Sanhueza
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 4811230 Temuco, Chile; (H.H.); (T.S.); (A.F.)
| | - Rodolfo Martiarena
- Estación Experimental Agropecuaria Montecarlo, Instituto Nacional de Tecnología Agropecuaria, Av. el Libertador 2472, Montecarlo N3384, Misiones, Argentina;
| | - Rafael Valadares
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Cep, 66050-090 Belém, PA, Brazil;
| | - Alejandra Fuentes
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 4811230 Temuco, Chile; (H.H.); (T.S.); (A.F.)
| | - Cesar Arriagada
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, 4811230 Temuco, Chile; (H.H.); (T.S.); (A.F.)
- Correspondence: ; Tel.: +56-045-232-5635; Fax: +56-045-234-1467
| |
Collapse
|
33
|
Relative effectiveness of Tulasnella fungal strains in orchid mycorrhizal symbioses between germination and subsequent seedling growth. Symbiosis 2020. [DOI: 10.1007/s13199-020-00681-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Gao Y, Zhao Z, Li J, Liu N, Jacquemyn H, Guo S, Xing X. Do fungal associates of co-occurring orchids promote seed germination of the widespread orchid species Gymnadenia conopsea? MYCORRHIZA 2020; 30:221-228. [PMID: 32146514 DOI: 10.1007/s00572-020-00943-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/27/2020] [Indexed: 05/04/2023]
Abstract
Interactions with mycorrhizal fungi have been increasingly recognized as one of the most important ecological factors determining the distribution and local abundance of orchids. While some orchid species may interact with a variety of fungal associates, others are more specific in their choice of mycorrhizal partners. Moreover, orchids that co-occur at a given site, often associate with different partners, possibly to avoid competition and to allow stable coexistence. However, whether differences in mycorrhizal partners directly affect seed germination and subsequent protocorm formation remains largely unknown. In this research, we used in vitro germination experiments to investigate to what extent seed germination and protocorm formation of Gymnadenia conopsea was affected by the origin and identity of fungal associates. Fungi were isolated from G. conopsea and three other co-occurring orchid species (Dactylorhiza viridis (Coeloglossum viride), Herminium monorchis, and Platanthera chlorantha). In total, eight fungal associates, belonging to Tulasnellaceae, Ceratobasidiaceae, and Serendipitaceae, were successfully isolated and cultured. While all eight fungal strains were able to promote early germination of G. conopsea seeds, only fungal strain GS2, a member of the Ceratobasidiaceae isolated from G. conopsea itself, was able to promote protocorm formation and subsequent growth to a seedling. Two other fungal strains isolated from G. conopsea only supported seed germination until the protocorm formation stage. The other five fungal strains isolated from the co-occurring orchid species did not support seed germination beyond the protocorm stage. We conclude that, although G. conopsea is considered a mycorrhizal generalist that associates with a wide range of fungi during its adult life, it requires specific fungi to promote protocorm formation and growth to a seedling.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zeyu Zhao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jiayao Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Na Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hans Jacquemyn
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001, Leuven, Belgium
| | - Shunxing Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xiaoke Xing
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
35
|
Freitas EFS, da Silva M, Cruz EDS, Mangaravite E, Bocayuva MF, Veloso TGR, Selosse MA, Kasuya MCM. Diversity of mycorrhizal Tulasnella associated with epiphytic and rupicolous orchids from the Brazilian Atlantic Forest, including four new species. Sci Rep 2020; 10:7069. [PMID: 32341376 PMCID: PMC7184742 DOI: 10.1038/s41598-020-63885-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/07/2020] [Indexed: 11/29/2022] Open
Abstract
The genus Tulasnella often forms mycorrhizas with orchids and has worldwide distribution. Species of this genus are associated with a wide range of orchids, including endangered hosts. Initially, species identification relied mostly on morphological features and few cultures were preserved for later phylogenetic comparisons. In this study, a total of 50 Tulasnella isolates were collected from their natural sites in Minas Gerais, Brazil, cultured, and subjected to a phylogenetic analysis based on alignments of sequences of the internal transcribed spacer (ITS) of the nuclear ribosomal DNA. Our results, based on phylogeny, integrated with nucleotide divergence and morphology, revealed the diversity of isolated Tulasnella species, which included four new species, namely, Tulasnella brigadeiroensis, Tulasnella hadrolaeliae, Tulasnella orchidis and Tulasnella zygopetali. The conservation of these species is important due to their association with endangered orchid hosts and endemic features in the Brazilian Atlantic Forest.
Collapse
Affiliation(s)
| | - Meiriele da Silva
- Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil
| | - Everaldo da Silva Cruz
- Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil
| | - Erica Mangaravite
- Centro Universitário Unifaminas, 36888-233, Muriaé, Minas Gerais State, Brazil
| | - Melissa Faust Bocayuva
- Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil
| | - Tomás Gomes Reis Veloso
- Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil
| | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, F-750055, Paris, France
- University of Gdańsk, Faculty of Biology, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | | |
Collapse
|
36
|
Favre-Godal Q, Gourguillon L, Lordel-Madeleine S, Gindro K, Choisy P. Orchids and their mycorrhizal fungi: an insufficiently explored relationship. MYCORRHIZA 2020; 30:5-22. [PMID: 31982950 DOI: 10.1007/s00572-020-00934-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 01/17/2020] [Indexed: 05/03/2023]
Abstract
Orchids are associated with diverse fungal taxa, including nonmycorrhizal endophytic fungi as well as mycorrhizal fungi. The orchid mycorrhizal (OM) symbiosis is an excellent model for investigating the biological interactions between plants and fungi due to their high dependency on these symbionts for growth and survival. To capture the complexity of OM interactions, significant genomic, numerous transcriptomic, and proteomic studies have been performed, unraveling partly the role of each partner. On the other hand, several papers studied the bioactive metabolites from each partner but rarely interpreted their significance in this symbiotic relationship. In this review, we focus from a biochemical viewpoint on the OM dynamics and its molecular interactions. The ecological functions of OM in plant development and stress resistance are described first, summarizing recent literature. Secondly, because only few studies have specifically looked on OM molecular interactions, the signaling pathways and compounds allowing the establishment/maintenance of mycorrhizal association involved in arbuscular mycorrhiza (AM) are discussed in parallel with OM. Based on mechanistic similarities between OM and AM, and recent findings on orchids' endophytes, a putative model representing the different molecular strategies that OM fungi might employ to establish this association is proposed. It is hypothesized here that (i) orchids would excrete plant molecule signals such as strigolactones and flavonoids but also other secondary metabolites; (ii) in response, OM fungi would secrete mycorrhizal factors (Myc factors) or similar compounds to activate the common symbiosis genes (CSGs); (iii) overcome the defense mechanism by evasion of the pathogen-associated molecular patterns (PAMPs)-triggered immunity and by secretion of effectors such as small inhibitor proteins; and (iv) finally, secrete phytohormones to help the colonization or disrupt the crosstalk of plant defense phytohormones. To challenge this putative model, targeted and untargeted metabolomics studies with special attention to each partner's contribution are finally encouraged and some technical approaches are proposed.
Collapse
Affiliation(s)
- Quentin Favre-Godal
- LVMH recherche, Innovation Matériaux Naturels et Développement Durable, 185 avenue de Verdun, 45800, St Jean de Braye, France.
- CNRS, IPHC UMR 7178, Chimie analytique des molécules bioactives et pharmacognosie, Université de Strasbourg, F-67000, Strasbourg, France.
| | - Lorène Gourguillon
- LVMH recherche, Innovation Matériaux Naturels et Développement Durable, 185 avenue de Verdun, 45800, St Jean de Braye, France
| | - Sonia Lordel-Madeleine
- CNRS, IPHC UMR 7178, Chimie analytique des molécules bioactives et pharmacognosie, Université de Strasbourg, F-67000, Strasbourg, France
| | - Katia Gindro
- Agroscope, Swiss Federal Research Station, Plant Protection, 60 Route de Duiller, PO Box, 1260, Nyon, Switzerland
| | - Patrick Choisy
- LVMH recherche, Innovation Matériaux Naturels et Développement Durable, 185 avenue de Verdun, 45800, St Jean de Braye, France
| |
Collapse
|