1
|
Mahajan K, Sharma S, Gautam RK, Goyal R, Mishra DK, Singla RK. Insights on therapeutic approaches of natural anti-Alzheimer's agents in the management of Alzheimer's disease: A future perspective. J Alzheimers Dis 2024; 102:897-923. [PMID: 39523509 DOI: 10.1177/13872877241296557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In the current scenario, Alzheimer's disease is a complex, challenging, and arduous health issue, and its prevalence, together with comorbidities, is accelerating around the universe. Alzheimer's disease is becoming a primary concern that significantly impacts an individual's status in life. The traditional treatment of Alzheimer's disease includes some synthetic drugs, which have numerous dangerous side effects, a high risk of recurrence, lower bioavailability, and limited treatment. Hence, the current article is a detailed study and review of all known information on plant-derived compounds as natural anti-Alzheimer's agents, including their biological sources, active phytochemical ingredients, and a possible mode of action. With the help of a scientific data search engine, including the National Center for Biotechnology Information (NCBI/PubMed), Science Direct, and Google Scholar, analysis from 2001 to 2024 has been completed. This article also described clinical studies on phytoconstituents used to treat Alzheimer's disease. Plant-derived compounds offer promising alternatives to synthetic drugs in treating Alzheimer's disease, with the potential for improving cognitive function and slowing down the progression of the disease. Further research and clinical trials are needed to fully explore their therapeutic potential and develop effective strategies for managing this complex condition.
Collapse
Affiliation(s)
- Kalpesh Mahajan
- School of Pharmacy and Technology Management, SVKMS NMIMS Maharashtra, Shirpur, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, Maharashtra, India
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Rau, Indore, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Dinesh Kumar Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University) Koni, Bilaspur (C.G.), India
| | - Rajeev K Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Olasehinde TA, AKomolafe SF, Oladapo IF, Oyeleye SI. Effect of diet supplemented with African Star Apple Fruit Pulp on purinergic, cholinergic and monoaminergic enzymes, TNF-α expression and redox imbalance in the brain of hypertensive rats. Nutr Neurosci 2022; 26:496-510. [PMID: 35470775 DOI: 10.1080/1028415x.2022.2062925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE This study examined whether diet supplemented with African star apple fruit pulp (FP) can mitigate the effect of high blood pressure on brain neurochemicals, histopathology and expression of genes linked with neuroinflammation. METHODS Rats were administered with cyclosporine (25 mg/kg.bw) to induce hypertension and were fed with or without FP supplemented diet. Purinergic (Nucleoside triphosphate diphosphohydrolases [NTPdase] and adenosine deaminase [ADA]) cholinergic (acetylcholinesterase [AChE]) and monoaminergic (monoamine oxidase-B) enzymes were assessed in treated and untreated hypertensive rats' brains. Oxidative stress biomarkers (catalase, glutathione-S-transferase, thiols, reactive oxygen species [ROS] and malondialdehyde [MDA]), as well as AChE, tumour necrosis factor and receptor (TNF-α and TNF-α-R) expression, were also determined. RESULTS FP supplemented diet significantly reduced NTPdase and ADA activities and increased Na+/K+-ATPase activities in hypertensive rats' brains compared to the untreated group. Furthermore, FP reduced acetylcholinesterase and monoamine oxidase-B activities compared to the hypertensive group. Redox imbalance was observed in hypertensive rats with inhibition of antioxidant enzymes and high levels of ROS and MDA. However, FP supplemented diet improved antioxidant enzymes, reduced ROS and MDA production in the brain of hypertensive rats. High blood pressure also triggered upregulation of AChE, TNF-α and TNF-α-R while feeding with FP supplemented diet downregulated the genes. CONCLUSION This study demonstrates the neuroprotective role of FP supplemented diet against alterations in neurochemicals associated with Alzheimer's disease, oxidative stress-induced neuronal damage and expression of genes linked with neuroinflammation. Moreover, studies on animal behaviour and human subjects are required to confirm these beneficial effects.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Lagos, Nigeria.,Department of Biochemistry and Microbiology, University of Fort Hare Alice South Africa, Alice, South Africa
| | - Seun F AKomolafe
- Department of Biochemistry, Ekiti State University, Ado-Ekiti, Nigeria
| | - Iyabo F Oladapo
- Department of Basic Medical Science, College of Health Science and Technology, Ijero Ekiti, Nigeria
| | - Sunday I Oyeleye
- Department of Biomedical Technology, Federal University of Technology, Akure, Ondo State.,Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State
| |
Collapse
|
3
|
Ajeigbe OF, Ademosun AO, Oboh G. Relieving the tension in hypertension: Food-drug interactions and anti-hypertensive mechanisms of food bioactive compounds. J Food Biochem 2020; 45:e13317. [PMID: 32537763 DOI: 10.1111/jfbc.13317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/26/2022]
Abstract
Hypertension is a global health problem. Statistics report from the World Health Organization reveals its prevalence in about a quarter of the world global population. Due to the complications associated with hypertension, it is required to be well managed or prevented pharmacologically or non-pharmacologically. Pharmacologically, the major antihypertensive drugs used are centrally acting sympatholytic drugs, diuretics, vasodilators, angiotensin converting enzyme inhibitors, and angiotensin II receptor blockers while non-pharmacological means of management include lifestyle changes, intake of diet or supplements with antihypertensive effects. Interestingly, the use of diet as a complement with drug intake has become very popular due to occurring side effects over time. Recent research efforts have revealed that foods such as fruits and vegetables contain bioactive substances that modulate the activities of macromolecules involved in the development, complications, and management of hypertension. PRACTICAL APPLICATIONS: Recent research efforts have suggested the efficacy of diets rich in fruits and vegetables in the management of hypertension. This review examines some of the mechanisms involved in the dietary management or prevention of hypertension by bioactive compounds found in foods. This review promotes the use of diet in the management of the condition and also suggests that precautions to be taken in the combined use of food and drugs.
Collapse
Affiliation(s)
- Olufunke Florence Ajeigbe
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ayokunle Olubode Ademosun
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
4
|
Akomolafe SF, Olasehinde TA, Oyeleye SI, Aluko TB, Adewale OO, Ijomone OM. Curcumin Administration Mitigates Cyclophosphamide-Induced Oxidative Damage and Restores Alteration of Enzymes Associated with Cognitive Function in Rats' Brain. Neurotox Res 2020; 38:199-210. [PMID: 32405958 DOI: 10.1007/s12640-020-00205-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/19/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
The use of chemotherapeutic drugs is associated with oxidative damage, cognitive dysfunction, and brain damage. This study sought to investigate the neuroprotective effect of curcumin against cognitive problems associated with treatment with cyclophosphamide via assessment of biomolecules associated with cognitive function in rats' brain homogenates. Rats were divided in to five groups: Control (vehicle), CUR (curcumin [20 mg/kg]), CPA (cyclophosphamide [150 mg/kg]), CUR1 + CPA (curcumin [20 mg/kg] and cyclophosphamide [150 mg/kg]), and CPA + CUR2 (cyclophosphamide [150 mg/kg] and curcumin [20 mg/kg]). After the treatment, cognitive behavior was assessed and enzymes [cholinesterases, purinergic enzymes, arginase, and angiotensin I-converting enzyme] associated with cognitive function were examined. Oxidative stress parameters [total thiol, non-protein thiol, malondialdehyde, and nitric oxide] including the expression of caspase-3 were also assessed in rats' brain. Our results showed that curcumin improved cognitive behavior, attenuated cholinergic deficit as revealed by the inhibition of cholinesterases, and improved purinergic signaling in cyclophosphamide-treated rats. Furthermore, curcumin reduced angiotensin-I-converting enzyme and arginase activities before and after treatment with cyclophosphamide. Curcumin also improved redox balance and showed protection against cyclophosphamide-induced oxidative damage to rats' brain via an increase in protein and non-protein thiols and nitric oxide levels as well as a significant reduction in malondialdehyde levels. Curcumin also prevented neuronal degeneration in different brain regions and reduced caspase-3 expression. Hence this study suggests that pre and post-treatment with curcumin improved neurobehavior, modulates some biomarkers associated with cognitive function and exhibit neuroprotection against cyclophosphamide-induced neurotoxicity in rats.
Collapse
Affiliation(s)
| | - Tosin A Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria. .,Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa.
| | - Sunday Idowu Oyeleye
- Department of Biomedical Technology, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Tola B Aluko
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Omowumi O Adewale
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Omamuyovwi M Ijomone
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| |
Collapse
|
5
|
Olasehinde TA, Olaniran AO, Okoh AI. Neuroprotective effects of some seaweeds against Zn - induced neuronal damage in HT-22 cells via modulation of redox imbalance, inhibition of apoptosis and acetylcholinesterase activity. Metab Brain Dis 2019; 34:1615-1627. [PMID: 31346859 DOI: 10.1007/s11011-019-00469-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/14/2019] [Indexed: 02/07/2023]
Abstract
Zinc plays an important role in neuronal signaling and neurotransmission. However, dyshomeostasis of this metal or its accumulation in the brain has been linked with neurological disorders such as Alzheimer's disease and Parkinson's disease. In this study, the neuroprotective effects of Ecklonia maxima (KPM), Gracilaria gracilis (GCL), Ulva lactuca (ULT) and Gelidium pristoides (MNP) in Zn -induced neurotoxicity in HT-22 cells was examined. Cells were treated with Zinc sulphate and/or aqueous - ethanol extracts and cell viability, apoptosis, acetylcholinesterase activity, including some antioxidant enzymes (catalase and superoxide dismutase activity) and glutathione (GSH) levels were determined. Malondialdehyde and nitric oxide levels produced in the Zn and/or seaweed extract treated cells were also determined. Prior treatment with the seaweed extracts improved cell viability and inhibited Zn - induced cell death. Acetylcholinesterase activity was significantly high in Zn treated cells compared to the control. Pre-treatment with the seaweed extracts triggered a decrease in acetylcholinesterase activity in Zn - treated cells. Furthermore, treatment with Zn caused a significant reduction in GSH levels as well as a decrease in superoxide dismutase and catalase activities. In contrast, the seaweed extract increased antioxidant enzyme activities and GSH levels. An increase in malondialdehyde and nitric oxide levels was also reversed after treatment with the seaweed extracts. These results suggest that the seaweed extracts improved cholinergic transmission disrupted by Zn - induced neurotoxicity and protected the cells against oxidative damage and neuroinflammation. The neuroprotective effects of the seaweed extracts could be linked to their bioactive constituents. Hence these seaweeds are potential sources of active ingredients with neuroprotective potentials and could be used for the development of functional foods and/or nutraceuticals.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa.
- Nutrition and Toxicology Division, Department of Food Technology, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa
| |
Collapse
|
6
|
Macroalgae as a Valuable Source of Naturally Occurring Bioactive Compounds for the Treatment of Alzheimer's Disease. Mar Drugs 2019; 17:md17110609. [PMID: 31731422 PMCID: PMC6891758 DOI: 10.3390/md17110609] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that affects mostly aged individuals. Evidence suggests that pathological mechanisms involved in the development of AD are associated with cholinergic deficit, glutamate excitotoxicity, beta-amyloid aggregation, tau phosphorylation, neuro-inflammation, and oxidative damage to neurons. Currently there is no cure for AD; however, synthetic therapies have been developed to effectively manage some of the symptoms at the early stage of the disease. Natural products from plants and marine organisms have been identified as important sources of bioactive compounds with neuroprotective potentials and less adverse effects compared to synthetic agents. Seaweeds contain several kinds of secondary metabolites such as phlorotannins, carotenoids, sterols, fucoidans, and poly unsaturated fatty acids. However, their neuroprotective effects and mechanisms of action have not been fully explored. This review discusses recent investigations and/or updates on interactions of bioactive compounds from seaweeds with biomarkers involved in the pathogenesis of AD using reports in electronic databases such as Web of science, Scopus, PubMed, Science direct, Scifinder, Taylor and Francis, Wiley, Springer, and Google scholar between 2015 and 2019. Phlorotannins, fucoidans, sterols, and carotenoids showed strong neuroprotective potentials in different experimental models. However, there are no data from human studies and/or clinical trials.
Collapse
|
7
|
Olasehinde TA, Olaniran AO, Okoh AI. Aqueous-ethanol extracts of some South African seaweeds inhibit beta-amyloid aggregation, cholinesterases, and beta-secretase activities in vitro. J Food Biochem 2019; 43:e12870. [PMID: 31353743 DOI: 10.1111/jfbc.12870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 01/20/2023]
Abstract
In this study, we evaluated the anti-amyloidogenic, anticholinesterase, and antioxidant potentials of hydroethanolic extracts of Ecklonia maxima (ECK), Gelidium pristoides (GLD), Gracilaria gracilis (GCL), and Ulva lactuca (ULT). The effect of the extracts on β-amyloid (Aβ1-42 ) peptide were determined using electron microscope. The effects of the extracts on β-secretase and cholinesterase activities, as well as their radical scavenging and metal chelating activities were also assessed. Electron micrographs revealed that ECK, GLD, GCL, and ULT incubated with Aβ1-42 at different intervals (0-96 hr) showed very low levels of fibrils compared to the control. The extracts also inhibited β-secretase, acetylcholinesterase, and butyrylcholinesterase activities in a dose-dependent manner. Furthermore, the extracts scavenged hydroxyl radicals and were able to chelate Fe2+ in a dose-dependent manner. Our findings suggest that the seaweed extracts are potential sources of lead compounds and novel inhibitors of β-amyloid aggregation, β-secretase, and cholinesterases for the management of Alzheimer's diseases. PRACTICAL APPLICATIONS: Seaweeds have been identified as good sources of naturally occurring bioactive compounds with several medicinal properties. They are commonly used as functional foods and development of nutraceuticals, dietary supplements, and cosmeceuticals. However, the neuroprotective effects of many species of seaweeds have not been fully explored. The findings of this study suggests that Gracilaria gracilis, Ulva lactuca, Ecklonia maxima, and Gelidium pristoides are potential sources of cholinesterase, beta-secretase, and amyloid protein aggregation inhibitors. Hence, this support the use of these seaweeds as alternative sources of antioxidants and natural compounds with neuroprotective potentials for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
8
|
Chlorella sorokiniana and Chlorella minutissima exhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of β-amyloid fibrils. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
9
|
Ojo OA, Afon AA, Ojo AB, Ajiboye BO, Okesola MA, Aruleba RT, Adekiya TA, Oyinloye BE. Spondias mombim L. (Anacardiaceae): Chemical fingerprints, inhibitory activities, and molecular docking on key enzymes relevant to erectile dysfunction and Alzheimer's diseases. J Food Biochem 2019; 43:e12772. [PMID: 31353540 DOI: 10.1111/jfbc.12772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
Due to the exceptional wide range in biochemical activities of natural plant products, Spondias mombim L. are attaining a new height because they present great prospects for drug advancement. This research was designed to analyze the pharmaceutical properties of S. mombim L. ethyl acetate fraction (SMEAF) on key enzymes relevant to erectile and cognitive dysfunction. SMEAF inhibitory activities of the specified enzymes were determined spectrophotometrically. Chemical profile of SMEAF were assessed by HPLC/MS analysis. Thereafter, molecular docking of the studied enzymes with chlorogenic acid, lutein, and zeaxanthin were carried out using PATCHDOCK. SMEAF had remarkable enzyme inhibitory effects against phosphodiesterase-5 (PDE-5), arginase, angiotensin I-converting enzyme (ACE), cholinesterase, monoamine oxidase A (MAO), ecto-5' nucleotidase (E-NTDase), tyrosinase, and stimulated sodium-potassium ATPase (Na+/K+-ATPase) activities. HPLC/MS analysis revealed that phenolics and carotenoids were major components in these fraction notably, chlorogenic acid, lutein, and zeaxanthin. Our results suggested that SMEAF could be explored as phytopharmaceuticals. PRACTICAL APPLICATIONS: Spondias mombim L. are cooked as green vegetable with enormous medicinal value probably due to its polyphenols with potent antioxidant activity. Furthermore, the leaves could also be useful for therapeutic purposes against erectile dysfunction and central nervous system disorders.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, and Biomedical Toxicology Unit, Department of Biochemistry, Afe Babalola University, Ado-Ekiti, Nigeria.,Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Adeola Agnes Afon
- Phytomedicine, and Biomedical Toxicology Unit, Department of Biochemistry, Afe Babalola University, Ado-Ekiti, Nigeria
| | | | - Basiru Olaitan Ajiboye
- Phytomedicine, and Biomedical Toxicology Unit, Department of Biochemistry, Afe Babalola University, Ado-Ekiti, Nigeria
| | | | - Raphael Taiwo Aruleba
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Tayo Alex Adekiya
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, and Biomedical Toxicology Unit, Department of Biochemistry, Afe Babalola University, Ado-Ekiti, Nigeria.,Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| |
Collapse
|
10
|
Ajiboye BO, Ojo OA, Okesola MA, Oyinloye BE, Kappo AP. Ethyl acetate leaf fraction of Cnidoscolus aconitifolius (Mill.) I. M. Johnst: antioxidant potential, inhibitory activities of key enzymes on carbohydrate metabolism, cholinergic, monoaminergic, purinergic, and chemical fingerprinting. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1504787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Basiru Olaitan Ajiboye
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Oluwafemi Adeleke Ojo
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Mary Abiola Okesola
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
11
|
Ademiluyi AO. Local condiments from fermented tropical legume seeds modulate activities of critical enzymes relevant to cardiovascular diseases and endothelial function. Food Sci Nutr 2018; 6:602-608. [PMID: 29876111 PMCID: PMC5980267 DOI: 10.1002/fsn3.582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/09/2017] [Accepted: 11/21/2017] [Indexed: 01/14/2023] Open
Abstract
Investigation into modulatory effects of local condiments produced from fermented legume (African locust bean and soybean) seeds on activities of enzymes relevant to endothelial function and cardiovascular disease (arginase, phosphodiesterase-5, acetylcholinesterase, and, ecto 5'-nucleotidase) in vitro was the focus of this study. The condiments were prepared according to traditional methods of fermentation. Thereafter, modulatory effects of aqueous extracts from the condiments on activities of the enzymes were subsequently carried out. Results showed the extracts significantly inhibited activities of arginase, phosphodiesterase-5 and acetylcholinesterase, while the activity of ecto 5'-nucleotidase was stimulated at sample concentrations tested. Thus, the observed enzyme modulatory properties exhibited by the condiments could be novel mechanisms to support their use as functional foods and nutraceuticals for the management of cardiovascular disease and associated endothelial dysfunction.
Collapse
|
12
|
Ademosun AO, Oboh G, Olasehinde TA, Adeoyo OO. From folk medicine to functional food: a review on the bioactive components and pharmacological properties of citrus peels. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s13596-017-0292-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Odubanjo VO, Olasehinde TA, Oyeleye SI, Oboh G, Boligon AA. Seed extracts from Myristica fragrans
(Nutmeg) and Moringa oleifera
(Drumstick tree) inhibits enzymes relevant to erectile dysfunction and metal-induced oxidative damage in rats' penile tissues. J Food Biochem 2017. [DOI: 10.1111/jfbc.12452] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Veronica O. Odubanjo
- Department of Biochemistry; Adekunle Ajasin University, P.M.B 001; Akungba Akoko Ondo State Nigeria
- Functional Foods and Nutraceuticals, Department of Biochemistry; Federal University of Technology, P.M.B 704, Akure; Ondo State Nigeria
| | - Tosin A. Olasehinde
- Nutrition and Toxicology Division; Federal Institute of Industrial Research Oshodi, PMB 21023, Lagos, Nigeria
| | - Sunday I. Oyeleye
- Functional Foods and Nutraceuticals, Department of Biochemistry; Federal University of Technology, P.M.B 704, Akure; Ondo State Nigeria
- Department of Biomedical Technology; Federal University of Technology; P.M.B 704, Akure, Ondo State Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceuticals, Department of Biochemistry; Federal University of Technology, P.M.B 704, Akure; Ondo State Nigeria
| | - Aline A. Boligon
- Depatamento de Farmacia Industrial; Universidade Federal de Santa Maria; Santa Maria Brazil
| |
Collapse
|
14
|
Ademosun AO, Oboh G, Oyeleye SI, Ejakpovi II, Adewuni TM. Modulation of cholinergic, monoaminergic, and purinergic enzymes of the brain functions by bitter (Vernonia amygdalina) and water bitter (Struchium sparganophora) leaves extracts: comparison of phenolic constituents versus nootropic potentials. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s00580-017-2518-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Therapeutic Potentials of Microalgae in the Treatment of Alzheimer's Disease. Molecules 2017; 22:molecules22030480. [PMID: 28335462 PMCID: PMC6155420 DOI: 10.3390/molecules22030480] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
Current research is geared towards the discovery of new compounds with strong neuroprotective potential and few or no side effects compared to synthetic drugs. This review focuses on the potentials of extracts and biologically active compounds derived from microalgal biomass for the treatment and management of Alzheimer’s disease (AD). Microalgal research has gained much attention recently due to its contribution to the production of renewable fuels and the ability of alga cells to produce several secondary metabolites such as carotenoids, polyphenols, sterols, polyunsaturated fatty acids and polysaccharides. These compounds exhibit several pharmacological activities and possess neuroprotective potential. The pathogenesis of Alzheimer’s disease (AD) involves complex mechanisms that are associated with oxidative stress, cholinergic dysfunction, neuronal damage, protein misfolding and aggregation. The antioxidant, anticholinesterase activities as well as the inhibitory effects of some bioactive compounds from microalgae extracts on β-amyloid aggregation and neuronal death are discussed extensively. Phytochemical compounds from microalgae are used as pharmaceuticals, nutraceuticals and food supplements, and may possess neuroprotective potentials that are relevant to the management and/or treatment of AD.
Collapse
|
16
|
Oboh G, Ogunruku OO, Oyeleye SI, Olasehinde TA, Ademosun AO, Boligon AA. Phenolic Extracts fromClerodendrum volubileLeaves Inhibit Cholinergic and Monoaminergic Enzymes Relevant to the Management of Some Neurodegenerative Diseases. J Diet Suppl 2016; 14:358-371. [DOI: 10.1080/19390211.2016.1237401] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Adefegha SA, Oboh G, Olasehinde TA. Alkaloid extracts from shea butter and breadfruit as potential inhibitors of monoamine oxidase, cholinesterases, and lipid peroxidation in rats’ brain homogenates: a comparative study. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s00580-016-2331-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|