1
|
Mamachan M, Sharun K, Banu SA, Muthu S, Pawde AM, Abualigah L, Maiti SK. Mesenchymal stem cells for cartilage regeneration: Insights into molecular mechanism and therapeutic strategies. Tissue Cell 2024; 88:102380. [PMID: 38615643 DOI: 10.1016/j.tice.2024.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-β, BMP, Wnt/β-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.
Collapse
Affiliation(s)
- Merlin Mamachan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India; Orthopaedic Research Group, Coimbatore, Tamil Nadu, India; Department of Orthopaedics, Government Medical College, Kaur, Tamil Nadu, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laith Abualigah
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan; Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan; MEU Research Unit, Middle East University, Amman 11831, Jordan; Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon; Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan; School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
2
|
El-Husseiny HM, Mady EA, Helal MAY, Tanaka R. The Pivotal Role of Stem Cells in Veterinary Regenerative Medicine and Tissue Engineering. Vet Sci 2022; 9:648. [PMID: 36423096 PMCID: PMC9698002 DOI: 10.3390/vetsci9110648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
The introduction of new regenerative therapeutic modalities in the veterinary practice has recently picked up a lot of interest. Stem cells are undifferentiated cells with a high capacity to self-renew and develop into tissue cells with specific roles. Hence, they are an effective therapeutic option to ameliorate the ability of the body to repair and engineer damaged tissues. Currently, based on their facile isolation and culture procedures and the absence of ethical concerns with their use, mesenchymal stem cells (MSCs) are the most promising stem cell type for therapeutic applications. They are becoming more and more well-known in veterinary medicine because of their exceptional immunomodulatory capabilities. However, their implementation on the clinical scale is still challenging. These limitations to their use in diverse affections in different animals drive the advancement of these therapies. In the present article, we discuss the ability of MSCs as a potent therapeutic modality for the engineering of different animals' tissues including the heart, skin, digestive system (mouth, teeth, gastrointestinal tract, and liver), musculoskeletal system (tendons, ligaments, joints, muscles, and nerves), kidneys, respiratory system, and eyes based on the existing knowledge. Moreover, we highlighted the promises of the implementation of MSCs in clinical use in veterinary practice.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Mahmoud A. Y. Helal
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
| |
Collapse
|
3
|
The transplantation of particulated juvenile allograft cartilage and synovium for the repair of meniscal defect in a lapine model. J Orthop Translat 2022; 33:72-89. [PMID: 35281522 PMCID: PMC8897607 DOI: 10.1016/j.jot.2022.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Synovium has been confirmed to be the primary contributor to meniscal repair. Particulated Juvenile Allograft Cartilage (PJAC) has demonstrated promising clinical effect on repairing cartilage. The synergistic effect of synovium and PJAC transplant on meniscal fibrocartilaginous repair is unclear. We hypothesize that the transplantation of synovium and PJAC synergistically facilitates meniscal regeneration and the donor cells within graft tissues still survive in the regenerated tissue at the last follow up (16 weeks postoperatively). Methods The study included 24 mature female rabbits, which were randomly divided into experimental and control groups. A cylindrical full-thickness defect measuring 2.0 mm was prepared in the avascular portion of the anterior horn of medial meniscus in both knees. The synovium and PJAC transplant were harvested from juvenile male rabbits (2 months after birth). The experimental group received synovium and PJAC transplant encapsulated with fibrin gel. The control groups received synovium transplant encapsulated with fibrin gel, pure fibrin gel and nothing. The macroscopic, imageological and histological evaluations of repaired tissue were performed at 8 weeks and 16 weeks postoperatively. The in situ hybridization (ISH) of male-specific sex-determining region Y-linked (SRY) gene was performed to detect the transplanted cells. Results The regenerated tissue in experimental group showed superior structural integrity, superficial smoothness, and marginal integration compared to control groups at 8 weeks or 16 weeks postoperatively. More meniscus-like fibrochondrocytes filled the repaired tissue in the experimental group, and the matrix surrounding these cell clusters demonstrated strongly positive safranin O and type 2 collagen immunohistochemistry staining. By SRY gene ISH, the positive SRY signal of experimental group could be detected at 8 weeks (75.72%, median) and 16 weeks (48.69%, median). The expression of SOX9 in experimental group was the most robust, with median positive rates of 65.52% at 8 weeks and 67.55% at 16 weeks. Conclusion The transplantation of synovium and PJAC synergistically facilitates meniscal regeneration. The donor cells survive for at least 16 weeks in the recipient. The translational potential of this article This study highlighted the positive effect of PJAC and synovium transplant on meniscal repair. We also clarified the potential repair mechanisms reflected by the survival of donor cells and upregulated expression of meniscal fibrochondrocytes related genes. Thus, based on our study, further clinical experiments are needed to investigate synovium and PJAC transplant as a possible treatment to meniscal defects.
Collapse
|
4
|
Prządka P, Buczak K, Frejlich E, Gąsior L, Suliga K, Kiełbowicz Z. The Role of Mesenchymal Stem Cells (MSCs) in Veterinary Medicine and Their Use in Musculoskeletal Disorders. Biomolecules 2021; 11:1141. [PMID: 34439807 PMCID: PMC8391453 DOI: 10.3390/biom11081141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Regenerative medicine is a dynamically developing field of human and veterinary medicine. The animal model was most commonly used for mesenchymal stem cells (MSCs) treatment in experimental and preclinical studies with a satisfactory therapeutic effect. Year by year, the need for alternative treatments in veterinary medicine is increasing, and other applications for promising MSCs and their biological derivatives are constantly being sought. There is also an increase in demand for other methods of treating disease states, of which the classical treatment methods did not bring the desired results. Cell therapy can be a realistic option for treating human and animal diseases in the near future and therefore additional research is needed to optimize cell origins, numbers, or application methods in order to standardize the treatment process and assess its effects. The aim of the following work was to summarize available knowledge about stem cells in veterinary medicine and their possible application in the treatment of chosen musculoskeletal disorders in dogs and horses.
Collapse
Affiliation(s)
- Przemysław Prządka
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, Pl. Grunwadzki 51, 50-366 Wroclaw, Poland; (K.B.); (Z.K.)
| | - Krzysztof Buczak
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, Pl. Grunwadzki 51, 50-366 Wroclaw, Poland; (K.B.); (Z.K.)
| | - Ewelina Frejlich
- 2nd Department of General Surgery and Surgical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Ludwika Gąsior
- Vets & Pets Veterinary Clinic, Zakladowa 11N, 50-231 Wroclaw, Poland;
| | - Kamil Suliga
- Student Veterinary Surgical Society “LANCET”, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, Pl. Grunwaldzki 51, 50-366 Wroclaw, Poland;
| | - Zdzisław Kiełbowicz
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, Pl. Grunwadzki 51, 50-366 Wroclaw, Poland; (K.B.); (Z.K.)
| |
Collapse
|
5
|
Miar S, Pearson J, Montelongo S, Zamilpa R, Betancourt AM, Ram B, Navara C, Appleford MR, Ong JL, Griffey S, Guda T. Regeneration enhanced in critical-sized bone defects using bone-specific extracellular matrix protein. J Biomed Mater Res B Appl Biomater 2021; 109:538-547. [PMID: 32915522 PMCID: PMC8740960 DOI: 10.1002/jbm.b.34722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Extracellular matrix (ECM) products have the potential to improve cellular attachment and promote tissue-specific development by mimicking the native cellular niche. In this study, the therapeutic efficacy of an ECM substratum produced by bone marrow stem cells (BM-MSCs) to promote bone regeneration in vitro and in vivo were evaluated. Fluorescence-activated cell sorting analysis and phenotypic expression were employed to characterize the in vitro BM-MSC response to bone marrow specific ECM (BM-ECM). BM-ECM encouraged cell proliferation and stemness maintenance. The efficacy of BM-ECM as an adjuvant in promoting bone regeneration was evaluated in an orthotopic, segmental critical-sized bone defect in the rat femur over 8 weeks. The groups evaluated were either untreated (negative control); packed with calcium phosphate granules or granules+BM-ECM free protein and stabilized by collagenous membrane. Bone regeneration in vivo was analyzed using microcomputed tomography and histology. in vivo results demonstrated improvements in mineralization, osteogenesis, and tissue infiltration (114 ± 15% increase) in the BM-ECM complex group from 4 to 8 weeks compared to mineral granules only (45 ± 21% increase). Histological observations suggested direct apposition of early bone after 4 weeks and mineral consolidation after 8 weeks implantation for the group supplemented with BM-ECM. Significant osteoid formation and greater functional bone formation (polar moment of inertia was 71 ± 0.2 mm4 with BM-ECM supplementation compared to 48 ± 0.2 mm4 in untreated defects) validated in vivo indicated support of osteoconductivity and increased defect site cellularity. In conclusion, these results suggest that BM-ECM free protein is potentially a therapeutic supplement for stemness maintenance and sustaining osteogenesis.
Collapse
Affiliation(s)
- Solaleh Miar
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Joseph Pearson
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Sergio Montelongo
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Rogelio Zamilpa
- StemBioSys Inc., San Antonio, Texas
- GenCure Inc., San Antonio, Texas
| | - Alejandro M. Betancourt
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Bharath Ram
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Christopher Navara
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Mark R. Appleford
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Joo L. Ong
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | | | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
6
|
Zhang C, Ao Y, Cao J, Yang L, Duan X. Donor Cell Fate in Particulated Juvenile Allograft Cartilage for the Repair of Articular Cartilage Defects. Am J Sports Med 2020; 48:3224-3232. [PMID: 32966105 DOI: 10.1177/0363546520958700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Particulated juvenile allograft cartilage (PJAC) has demonstrated good clinical efficacy in repairing articular cartilage defects, but the related repair mechanism after transplant and the biological characteristics of the transplanted cells are still unclear. PURPOSE To study the efficacy of PJAC in repairing full-thickness cartilage defects and the specific fate of donor cells to provide experimental evidence for its clinical application. STUDY DESIGN Controlled laboratory study. METHODS Twenty female Guizhou minipigs were randomly divided into an experimental group and a control group. An 8-mm cylindrical full-thickness cartilage defect was created in the femoral trochlea of 1 knee in all minipigs. The experimental group received transplant of PJAC from 5 male juvenile Guizhou minipigs (PJAC group; n = 10) and the control group received autologous cartilage chips (ACC group; n = 10). Follow-up assessments were conducted at 1 month and 3 months to track the transplanted cells by the male-specific sex-determining region Y-linked (SRY) gene; tissue sections were hybridized in situ, and O'Driscoll histological scoring was performed according to hematoxylin and eosin staining, safranin O and fast green staining, and toluidine blue O staining, as well as immunohistochemical evaluation of aggrecan and Sry-type HMG-box 9 (SOX9). RESULTS All 20 Guizhou minipigs were followed; no infection or incision healing disorder occurred after the operation. By SRY in situ hybridization, the SRY signal of the transplanted cells was positive in the repaired tissue of the defect, and the SRY positive signal could still be detected in repaired tissue at 3 months postoperatively. The average number of positive cells was 68.6 ± 11.91 at 1 month and 32.6 ± 3.03 at 3 months (confocal microscope: ×400), and the difference was statistically significant. The O'Driscoll histological scores were 14 ± 0.71 in the ACC group and 9.8 ± 0.84 in the PJAC group at 1 month, and 18 ± 1.20 in the ACC group and 17.4 ± 1.14 in the PJAC group at 3 months. The scores were statistically significant between the ACC group and PJAC group at 1 month. The positive rates of SOX9 in the PJAC and ACC groups at 1 month were 67.6% ± 3.78% and 63.4% ± 5.30%, respectively, and the difference was not statistically significant (P > .05). The positive rates of SOX9 in the PJAC and ACC groups at 3 months were 68.8% ± 2.69% and 17.1% ± 1.26%, respectively, and the difference was statistically significant (P < .05). The positive rates of aggrecan in the PJAC and ACC groups at 1 month were 40.5% ± 2.78% and 42.4% ± 0.54% respectively, and the difference was not statistically significant (P > .05). The positive rates of aggrecan in the PJAC and ACC groups at 3 months were 40.8% ± 1.50% and 30.1% ± 2.44%, respectively, and the difference was not statistically significant (P > .05). CONCLUSION An animal model was established with Guizhou minipigs, and the cartilage defect was repaired with PJAC from male minipigs. The SRY gene positive signal could be detected from the repaired tissue by in situ hybridization, indicating that the transplanted cells survived at least 3 months. The key genes of cartilage formation, SOX9 and aggrecan, were expressed at 1 month and 3 months, and SOX9 expression was stronger in the PJAC group than the ACC group at 3 months. CLINICAL RELEVANCE This study suggests that it is feasible to study the biological characteristics of transplanted cells in the cartilage region by the sex-determining gene.
Collapse
Affiliation(s)
- Changgui Zhang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yunong Ao
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jin Cao
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaojun Duan
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
7
|
Brunello G, Panda S, Schiavon L, Sivolella S, Biasetto L, Del Fabbro M. The Impact of Bioceramic Scaffolds on Bone Regeneration in Preclinical In Vivo Studies: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1500. [PMID: 32218290 PMCID: PMC7177381 DOI: 10.3390/ma13071500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Bioceramic scaffolds are appealing for alveolar bone regeneration, because they are emerging as promising alternatives to autogenous and heterogenous bone grafts. The aim of this systematic review is to answer to the focal question: in critical-sized bone defects in experimental animal models, does the use of a bioceramic scaffolds improve new bone formation, compared with leaving the empty defect without grafting materials or using autogenous bone or deproteinized bovine-derived bone substitutes? Electronic databases were searched using specific search terms. A hand search was also undertaken. Only randomized and controlled studies in the English language, published in peer-reviewed journals between 2013 and 2018, using critical-sized bone defect models in non-medically compromised animals, were considered. Risk of bias assessment was performed using the SYRCLE tool. A meta-analysis was planned to synthesize the evidence, if possible. Thirteen studies reporting on small animal models (six studies on rats and seven on rabbits) were included. The calvarial bone defect was the most common experimental site. The empty defect was used as the only control in all studies except one. In all studies the bioceramic materials demonstrated a trend for better outcomes compared to an empty control. Due to heterogeneity in protocols and outcomes among the included studies, no meta-analysis could be performed. Bioceramics can be considered promising grafting materials, though further evidence is needed.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza Italy; (G.B.); (L.B.)
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Sourav Panda
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Commenda 10, 20122 Milan, Italy;
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha O Anusandhan University, Bhubaneswar, 751003 Odisha, India
| | - Lucia Schiavon
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Stefano Sivolella
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Lisa Biasetto
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza Italy; (G.B.); (L.B.)
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Commenda 10, 20122 Milan, Italy;
- Dental Clinic, I.R.C.C.S. Orthopedic Institute Galeazzi, Via Galeazzi 4, 20161 Milan, Italy
| |
Collapse
|
8
|
Rahyussalim AJ, Ivansyah MD, Nugroho A, Wikanjaya R, Canintika AF, Kurniawati T. Vertebral body defects treated with umbilical-cord mesenchymal stem cells combined with hydroxyapatite scaffolds: The first case report. Int J Surg Case Rep 2019; 66:304-308. [PMID: 31901558 PMCID: PMC6940685 DOI: 10.1016/j.ijscr.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Vertebral body defects (VBDs) are one of the most frequent orthopaedic disorders. Such defects often require bone grafts or fusion procedures; however, both procedures often fail due to various factors. Mesenchymal stem cells (MSCs) have been used as a potential therapy to fill bone voids in bone defects, and they may be a potential treatment for VBDs. We reported VBDs treated with MSCs combined with hydroxyapatite scaffolds. PRESENTATION OF CASE A 27-year-old female presented with recurrent back pain. She had a history of decompression and stabilization procedure one year ago after diagnosed with spinal tuberculosis. Initially, she felt back pain that intensifies with activity and relieved with rest. She noticed that the pain begun when once she heard a crack sound on her back while trying to get up from sitting position. There was no history of numbness or tingling sensation. There were no walking problems. Other functions, including micturition and defecation, were within normal limits. The patient firstly underwent lumbotomy procedure, and the images were all confirmed with fluoroscopy X-ray. The vertebrae went debridement, and finally, the bone defect was filled with 20 millions of umbilical cord-mesenchymal stem cells (UC-MSCs) combined with hydroxyapatite in 2 cc of saline. DISCUSSION At three months postoperative, the patient could walk and had no pain. At six months of follow-up, no complications occurred. We also did not see any signs of neoplasm formation, which is consistent with previous studies that used MSCs for orthopaedic treatment. Moreover, no significant bone deformation or spinal cord compression was observed, which suggested the safety of the transplantation procedure. CONCLUSIONS We found that MSCs combined with hydroxyapatite represents a potential therapy for bone regeneration in VBD. Further clinical studies are required to investigate the safety and efficacy of this combination of therapy in VBDs.
Collapse
Affiliation(s)
- Ahmad Jabir Rahyussalim
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia; Divion of Spine, Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Muhammad Deryl Ivansyah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ahmad Nugroho
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Rio Wikanjaya
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Anissa Feby Canintika
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Tri Kurniawati
- Stem Cell Integrated Service Unit, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
9
|
Raafat SN. Response to: Letter to the editor: The sole and combined effect of simvastatin and platelet rich fibrin as a filling material in induced bone defect in tibia of albino rats. Bone 2019; 120:534. [PMID: 30711057 DOI: 10.1016/j.bone.2019.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shereen N Raafat
- Department of Pharmacology and Toxicology, Faculty of Dentistry, British University in Egypt.
| |
Collapse
|
10
|
Raafat SN. WITHDRAWN: Response to letter to the editor: The sole and combined effect of simvastatin and platelet rich fibrin as a filling material in induced bone defect in tibia of albino rats. Bone 2018:S8756-3282(18)30402-2. [PMID: 30612981 DOI: 10.1016/j.bone.2018.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/18/2018] [Indexed: 11/23/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.bone.2019.01.007. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
|
11
|
Maiti SK, Shivakumar MU, Mohan D, Kumar N, Singh KP. Mesenchymal Stem Cells of Different Origin-Seeded Bioceramic Construct in Regeneration of Bone Defect in Rabbit. Tissue Eng Regen Med 2018; 15:477-492. [PMID: 30603571 DOI: 10.1007/s13770-018-0129-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Stem cell is currently playing a major role in the treatment of number of incurable diseases via transplantation therapy. The objective of this study was to determine the osteogenic potential of allogenic and xenogenic bone-derived MSC seeded on a hydroxyapatite (HA/TCP) bioceramic construct in critical size bone defect (CSD) in rabbits. METHODS A 15 mm long radial osteotomy was performed unilaterally in thirty-six rabbits divided equally in six groups. Bone defects were filled with bioscaffold seeded with autologous, allogenic, ovine, canine BMSCs and cell free bioscaffold block in groups A, B, C, D and E respectively. An empty defect served as the control group. RESULTS The radiological, histological and SEM observations depicted better and early signs of new bone formation and bridging bone/implant interfaces in the animals of group A followed by B. Both xenogenous MSC-HA/TCP construct also accelerated the healing of critical sized bone defect. There was no sign of any inflammatory reaction in the xenogenic composite scaffold group of animals confirmed their well acceptance by the host body. CONCLUSION In vivo experiments in rabbit CSD model confirmed that autogenous, allogenous and xenogenous BMSC seeded on bioscaffold promoted faster healing of critical size defects. Hence, we may suggest that BMSCs are suitable for bone formation in fracture healing and non-union.
Collapse
Affiliation(s)
- Swapan Kumar Maiti
- 1Division of Surgery, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar-Pradesh 243122 India
| | - M U Shivakumar
- 1Division of Surgery, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar-Pradesh 243122 India
| | - Divya Mohan
- 1Division of Surgery, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar-Pradesh 243122 India
| | - Naveen Kumar
- 1Division of Surgery, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar-Pradesh 243122 India
| | - Karam Pal Singh
- 2Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar-Pradesh 243122 India
| |
Collapse
|
12
|
Wang YH, Chen J, Zhou J, Nong F, Lv JH, Liu J. Reduced inflammatory cell recruitment and tissue damage in spinal cord injury by acellular spinal cord scaffold seeded with mesenchymal stem cells. Exp Ther Med 2016; 13:203-207. [PMID: 28123490 PMCID: PMC5244979 DOI: 10.3892/etm.2016.3941] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/26/2016] [Indexed: 12/23/2022] Open
Abstract
Therapy using acellular spinal cord (ASC) scaffolds seeded with bone marrow stromal cells (BMSCs) has previously been shown to restore function of the damaged spinal cord and improve functional recovery in a rat model of acute hemisected spinal cord injury (SCI). The aim of the present study was to determine whether BMSCs and ASC scaffolds promote the functional recovery of the damaged spinal cord in a rat SCI model through regulation of apoptosis and immune responses. Whether this strategy regulates secondary inflammation, which is characterized by the infiltration of immune cells and inflammatory mediators to the lesion site, in SCI repair was investigated. Basso, Beattie, and Bresnahan scores revealed that treatment with BMSCs seeded into an ASC scaffold led to a significant improvement in motor function recovery compared with treatment with an ASC scaffold alone or untreated controls at 2 and 8 weeks after surgery (P<0.05). Two weeks after transplantation, the BMSCs seeded into an ASC scaffold significantly decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells, as compared with the ASC scaffold only and control groups. These results suggested that the use of BMSCs decreased the apoptosis of neural cells and thereby limited tissue damage at the lesion site. Notably, the use of BMSCs with an ASC scaffold also decreased the recruitment of macrophages (microglia; P<0.05) and T lymphocytes (P<0.05) around the SCI site, as indicated by immunofluorescent markers. By contrast, there was no inhibition of the inflammatory response in the control and ASC scaffold only groups. BMSCs regulated inflammatory cell recruitment to promote functional recovery. However, there was no significant difference in IgM-positive expression among the three groups (P>0.05). The results of this study demonstrated that BMSCs seeded into ASC scaffolds for repair of spinal cord hemisection defects promoted functional recovery through the early regulation of inflammatory cell recruitment with inhibition of apoptosis and secondary inflammation.
Collapse
Affiliation(s)
- Yu-Hai Wang
- Department of Orthopedics, Ningxia People's Hospital, First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, Ningxia 750000, P.R. China
| | - Jian Chen
- Department of Orthopedic Surgery, Chongqing Three Gorges Central Hospital, Chongqing 404000, P.R. China
| | - Jing Zhou
- Department of Anatomy, Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Feng Nong
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Jin-Han Lv
- Department of Orthopedics, Ningxia People's Hospital, First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, Ningxia 750000, P.R. China
| | - Jia Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|
13
|
Maiti SK, Ninu AR, Sangeetha P, Mathew DD, Tamilmahan P, Kritaniya D, Kumar N, Hescheler J. Mesenchymal stem cells-seeded bio-ceramic construct for bone regeneration in large critical-size bone defect in rabbit. J Stem Cells Regen Med 2016; 12:87-99. [PMID: 28096633 PMCID: PMC5227108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2023]
Abstract
Bone marrow derived mesenchymal stem cells (BMSC) represent an attractive cell population for tissue engineering purpose. The objective of this study was to determine whether the addition of recombinant human bone morphogenetic protein (rhBMP-2) and insulin-like growth factor (IGF-1) to a silica-coated calcium hydroxyapatite (HASi) - rabbit bone marrow derived mesenchymal stem cell (rBMSC) construct promoted bone healing in a large segmental bone defect beyond standard critical -size radial defects (15mm) in rabbits. An extensively large 30mm long radial ostectomy was performed unilaterally in thirty rabbits divided equally in five groups. Defects were filled with a HASi scaffold only (group B); HASi scaffold seeded with rBMSC (group C); HASi scaffold seeded with rBMSC along with rhBMP-2 and IGF-1 in groups D and E respectively. The same number of rBMSC (five million cells) and concentration of growth factors rhBMP-2 (50µg) and IGF-1 (50µg) was again injected at the site of bone defect after 15 days of surgery in their respective groups. An empty defect served as the control group (group A). Radiographically, bone healing was evaluated at 7, 15, 30, 45, 60 and 90 days post implantation. Histological qualitative analysis with microCT (µ-CT), haematoxylin and eosin (H & E) and Masson's trichrome staining were performed 90 days after implantation. All rhBMP-2-added constructs induced the formation of well-differentiated mineralized woven bone surrounding the HASi scaffolds and bridging bone/implant interfaces as early as eight weeks after surgery. Bone regeneration appeared to develop earlier with the rhBMP-2 constructs than with the IGF-1 added construct. Constructs without any rhBMP-2 or IGF-1 showed osteoconductive properties limited to the bone junctions without bone ingrowths within the implantation site. In conclusion, the addition of rhBMP-2 to a HASi scaffold could promote bone generation in a large critical-size-defect.
Collapse
Affiliation(s)
- Swapan Kumar Maiti
- Principal Scientist, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Ajantha Ravindran Ninu
- Ph.D Scholars, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Palakkara Sangeetha
- Ph.D Scholars, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Dayamon D Mathew
- Ph.D Scholars, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Paramasivam Tamilmahan
- Ph.D Scholars, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Deepika Kritaniya
- Senior Research Fellow, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Naveen Kumar
- Principal Scientist, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Jurgen Hescheler
- Director, Institute of Neurophysiology, Universität zu Köln, Robert-Koch-Strasse 39, D-50931, Köln, Germany
| |
Collapse
|
14
|
Maiti SK, Ninu AR, Sangeetha P, Mathew DD, Tamilmahan P, Kritaniya D, Kumar N, Hescheler J. Mesenchymal stem cells-seeded bio-ceramic construct for bone regeneration in large critical-size bone defect in rabbit. J Stem Cells Regen Med 2016. [PMID: 28096633 PMCID: PMC5227108 DOI: 10.46582/jsrm.1202013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bone marrow derived mesenchymal stem cells (BMSC) represent an attractive cell population for tissue engineering purpose. The objective of this study was to determine whether the addition of recombinant human bone morphogenetic protein (rhBMP-2) and insulin-like growth factor (IGF-1) to a silica-coated calcium hydroxyapatite (HASi) - rabbit bone marrow derived mesenchymal stem cell (rBMSC) construct promoted bone healing in a large segmental bone defect beyond standard critical -size radial defects (15mm) in rabbits. An extensively large 30mm long radial ostectomy was performed unilaterally in thirty rabbits divided equally in five groups. Defects were filled with a HASi scaffold only (group B); HASi scaffold seeded with rBMSC (group C); HASi scaffold seeded with rBMSC along with rhBMP-2 and IGF-1 in groups D and E respectively. The same number of rBMSC (five million cells) and concentration of growth factors rhBMP-2 (50µg) and IGF-1 (50µg) was again injected at the site of bone defect after 15 days of surgery in their respective groups. An empty defect served as the control group (group A). Radiographically, bone healing was evaluated at 7, 15, 30, 45, 60 and 90 days post implantation. Histological qualitative analysis with microCT (µ-CT), haematoxylin and eosin (H & E) and Masson’s trichrome staining were performed 90 days after implantation. All rhBMP-2-added constructs induced the formation of well-differentiated mineralized woven bone surrounding the HASi scaffolds and bridging bone/implant interfaces as early as eight weeks after surgery. Bone regeneration appeared to develop earlier with the rhBMP-2 constructs than with the IGF-1 added construct. Constructs without any rhBMP-2 or IGF-1 showed osteoconductive properties limited to the bone junctions without bone ingrowths within the implantation site. In conclusion, the addition of rhBMP-2 to a HASi scaffold could promote bone generation in a large critical-size-defect.
Collapse
Affiliation(s)
- Swapan Kumar Maiti
- Principal Scientist, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Ajantha Ravindran Ninu
- Ph.D Scholars, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Palakkara Sangeetha
- Ph.D Scholars, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Dayamon D Mathew
- Ph.D Scholars, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Paramasivam Tamilmahan
- Ph.D Scholars, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Deepika Kritaniya
- Senior Research Fellow, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Naveen Kumar
- Principal Scientist, Surgery Division, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar-Pradesh, India
| | - Jurgen Hescheler
- Director, Institute of Neurophysiology, Universität zu Köln, Robert-Koch-Strasse 39, D-50931, Köln, Germany
| |
Collapse
|
15
|
Spinal fusion in the next generation: gene and cell therapy approaches. ScientificWorldJournal 2014; 2014:406159. [PMID: 24672316 PMCID: PMC3927763 DOI: 10.1155/2014/406159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022] Open
Abstract
Bone fusion represents a challenge in the orthopedics practice, being especially indicated for spine disorders. Spinal fusion can be defined as the bony union between two vertebral bodies obtained through the surgical introduction of an osteoconductive, osteoinductive, and osteogenic compound. Autogenous bone graft provides all these three qualities and is considered the gold standard. However, a high morbidity is associated with the harvest procedure. Intensive research efforts have been spent during the last decades to develop new approaches and technologies for successful spine fusion. In recent years, cell and gene therapies have attracted great interest from the scientific community. The improved knowledge of both mesenchymal stem cell biology and osteogenic molecules allowed their use in regenerative medicine, representing attractive approaches to achieve bone regeneration also in spinal surgery applications. In this review we aim to describe the developing gene- and cell-based bone regenerative approaches as promising future trends in spine fusion.
Collapse
|
16
|
Vaněček V, Klíma K, Kohout A, Foltán R, Jiroušek O, Šedý J, Štulík J, Syková E, Jendelová P. The combination of mesenchymal stem cells and a bone scaffold in the treatment of vertebral body defects. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 22:2777-86. [PMID: 24013719 DOI: 10.1007/s00586-013-2991-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 01/23/2023]
Abstract
PURPOSE Vertebral body defects represent one of the most common orthopedic challenges. In order to advance the transfer of stem cell therapies into orthopedic clinical practice, we performed this study to evaluate the safety and efficacy of a composite bioartificial graft based on a hydroxyapatite bone scaffold (CEM-OSTETIC(®)) combined with human mesenchymal stem cells (MSCs) in a rat model of vertebral body defects. METHODS Under general isoflurane anesthesia, a defect in the body of the L2 vertebra was prepared and left to heal spontaneously (group 1), implanted with scaffold material alone (group 2), or implanted with a scaffold together with 0.5 million MSCs (group 3) or 5 million MSCs (group 4). The rats were killed 8 weeks after surgery. Histological and histomorphometrical evaluation of the implant as well as micro-CT imaging of the vertebrae were performed. RESULTS We observed a significant effect on the formation of new bone tissue in the defect in group 4 when compared to the other groups and a reduced inflammatory reaction in both groups receiving a scaffold and MSCs. We did not detect any substantial pathological changes or tumor formation after graft implantation. CONCLUSIONS MSCs in combination with a hydroxyapatite scaffold improved the repair of a model bone defect and might represent a safe and effective alternative in the treatment of vertebral bone defects.
Collapse
Affiliation(s)
- Václav Vaněček
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jin L, Feng G, Reames DL, Shimer AL, Shen FH, Li X. The effects of simulated microgravity on intervertebral disc degeneration. Spine J 2013; 13:235-42. [PMID: 23537452 PMCID: PMC3612270 DOI: 10.1016/j.spinee.2012.01.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 07/20/2011] [Accepted: 01/31/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Astronauts experience back pain, particularly low back pain, during and after spaceflight. Recent studies have described histologic and biochemical changes in rat intervertebral discs after space travel, but there is still no in vitro model to investigate the effects of microgravity on disc metabolism. PURPOSE To study the effects of microgravity on disc degeneration and establish an in vitro simulated microgravity study model. STUDY DESIGN Discs were cultured in static and rotating conditions in bioreactor, and the characteristics of disc degeneration were evaluated. METHODS The mice discs were cultured in a rotating wall vessel bioreactor where the microgravity condition was simulated. Intervertebral discs were cultured in static and microgravity condition. Histology, biochemistry, and immunohistochemical assays were performed to evaluate the characteristics of the discs in microgravity condition. RESULTS Intervertebral discs cultured in rotating bioreactors were found to develop changes of disc degeneration manifested by reduced red Safranin-O staining within the annulus fibrosus, downregulated glycosaminoglycan (GAG) content and GAG/hydroxyproline ratio, increased matrix metalloproteinase 3 expression, and upregulated apoptosis. CONCLUSIONS We conclude that simulated microgravity induces the molecular changes of disc degeneration. The rotating bioreactor model will provide a foundation to investigate the effects of microgravity on disc metabolism.
Collapse
Affiliation(s)
- Li Jin
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Gang Feng
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Davis L Reames
- Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Adam L Shimer
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Francis H Shen
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Xudong Li
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, Virginia, United States of America
| |
Collapse
|
18
|
Lin CS, Lin G, Lue TF. Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants. Stem Cells Dev 2012; 21:2770-8. [PMID: 22621212 DOI: 10.1089/scd.2012.0176] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are well known for their immunomodulatory capabilities. In particular, their immunosuppressive property is believed to permit their allogeneic or even xenogeneic transplantation into immunocompetent recipients without the use of immunosuppressants. Adipose-derived stem cell (ADSC), owing to its ease of isolation from an abundant tissue source, is a promising MSC for the treatment of a wide range of diseases. ADSC has been shown to lack major histocompatibility complex-II expression, and its immunosuppressive effects mediated by prostaglandin E2. Both preclinical and clinical studies have shown that allogeneic transplantation of ADSCs was able to control graft-versus-host disease. In regard to xenotransplantation a total of 27 preclinical studies have been published, with 20 of them performed with the investigators' intent. All 27 studies used ADSCs isolated from humans, possibly due to the wide availability of lipoaspirates. On the other hand, the recipients were mouse in 13 studies, rat in 11, rabbit in 2, and dog in 1. The targeted diseases varied greatly but all showed significant improvements after ADSC xenotransplantation. For clinical application in human medicine, ADSC xenotransplantation offers no obvious advantage over autotransplantation. But in veterinary medicine, xenotransplantation with porcine ADSC is a practical alternative to the costly and inconvenient autotransplantation.
Collapse
Affiliation(s)
- Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California 94143-0738, USA.
| | | | | |
Collapse
|
19
|
Cell-Based Therapies for Spinal Fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 760:148-73. [DOI: 10.1007/978-1-4614-4090-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Li XD, Wang JS, Chang B, Chen B, Guo C, Hou GQ, Huang DY, Du SX. Panax notoginseng saponins promotes proliferation and osteogenic differentiation of rat bone marrow stromal cells. JOURNAL OF ETHNOPHARMACOLOGY 2011; 134:268-74. [PMID: 21167926 DOI: 10.1016/j.jep.2010.11.075] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 11/04/2010] [Accepted: 11/21/2010] [Indexed: 02/05/2023]
Abstract
AIM OF THE STUDY Panax notoginseng saponins (PNS) is the main effective component of Panax notoginseng, have various pharmacologic activities such as antioxidant, anti-inflammatory, and estrogen-like bioactivities, have been shown to be an effective agent on anti-osteoporosis. Bone marrow stromal cells (BMSCs) play a crucial homeostatic role in skeletal modeling and remodeling due to their capability to differentiate into osteooblasts. Whether PNS has effect on osteogenic differentiation of BMSCs are unknown. This study was designed to investigate the effects of PNS on the proliferation and osteogenic differentiation of BMSCs in vitro. MATERIALS AND METHODS When BMSCs cultivated in the basal medium or the osteogenic induction medium (OS with or without PNS), cell proliferation was analyzed using an MTT assay, the mineralization was assessed using Alizarin red S staining, the alkaline phosphatase activity was measured using a commercial kit, the mRNA level of osteogenic gene and PPARγ2 gene were determined using RT-PCR, the protein level of PPARγ2 was analyzed by Western blotting. RESULTS BMSCs cultured in the basal medium with PNS caused a significant increase in proliferation. PNS treatment increased ALP activity, Alizarin red S staining and mRNA level of ALP, Cbfa 1, OC, and BSP, whereas decreased the mRNA level and protein expression of PPARγ2 during osteogenic induction. In addition, the effects of PNS treatment were dose-dependent relationship. CONCLUSION PNS could stimulate BMSCs proliferation and promote their osteogenic differentiation by up-regulation expression of osteogenic marker gene and down-regulation expression of adipogenic marker gene in a dose-dependent manner. Thus, PNS may play an important therapeutic role in osteoporosis patients by improving osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Xue-Dong Li
- Department of Orthopaedics, The First Affiliated Hospital, Shantou University Medical College, 57 Chang Ping Road, Shantou, Guangdong 515041, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chuang CK, Lin KJ, Lin CY, Chang YH, Yen TC, Hwang SM, Sung LY, Chen HC, Hu YC. Xenotransplantation of Human Mesenchymal Stem Cells into Immunocompetent Rats for Calvarial Bone Repair. Tissue Eng Part A 2010; 16:479-88. [DOI: 10.1089/ten.tea.2009.0401] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ching-Kuang Chuang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Yu Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Han Chang
- Department of Orthopaedic, Chang Gung University, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Chen Yen
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging, Chang Gung University, Taoyuan, Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Li-Yu Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Huang-Chi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|