1
|
Conlon JM, Owolabi BO, Flatt PR, Abdel-Wahab YHA. Amphibian host-defense peptides with potential for Type 2 diabetes therapy - an updated review. Peptides 2024; 175:171180. [PMID: 38401671 DOI: 10.1016/j.peptides.2024.171180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Investigations conducted since 2018 have identified several host-defense peptides present in frog skin secretions whose properties suggest the possibility of their development into a new class of agent for Type 2 diabetes (T2D) therapy. Studies in vitro have described peptides that (a) stimulate insulin release from BRIN-BD11 clonal β-cells and isolated mouse islets, (b) display β-cell proliferative activity and protect against cytokine-mediated apoptosis and (c) stimulate production of the anti-inflammatory cytokine IL-10 and inhibit production of the pro-inflammatory cytokines TNF-α and IL-1β. Rhinophrynin-27, phylloseptin-3.2TR and temporin F are peptides with therapeutic potential. Studies in vivo carried out in db/db and high fat-fed mice have shown that twice-daily administration of [S4K]CPF-AM1 and [A14K]PGLa-AM1, analogs of peptides first isolated from the octoploid frog Xenopus amieti, over 28 days lowers circulating glucose and HbA1c concentrations, increases insulin sensitivity and improves glucose tolerance and lipid profile. Peptide treatment produced potentially beneficial changes in the expression of skeletal muscle genes involved in insulin signaling and islet genes involved in insulin secretion in these murine models of T2D. Lead compounds uncovered by the study of frog HDPs may provide a basis for the design of new types of agents that can be used, alone or in combination with existing therapies, for the treatment of T2D.
Collapse
Affiliation(s)
- J Michael Conlon
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Bosede O Owolabi
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Yasser H A Abdel-Wahab
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
2
|
Demori I, El Rashed Z, De Negri Atanasio G, Parodi A, Millo E, Salis A, Costa A, Rosa G, Zanotti Russo M, Salvidio S, Cortese K, Grasselli E. First Evidence of Anti-Steatotic Action of Macrotympanain A1, an Amphibian Skin Peptide from Odorrana macrotympana. Molecules 2022; 27:7417. [PMID: 36364243 PMCID: PMC9656375 DOI: 10.3390/molecules27217417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2023] Open
Abstract
Many different amphibian skin peptides have been characterized and proven to exert various biological actions, such as wound-healing, immunomodulatory, anti-oxidant, anti-inflammatory and anti-diabetic effects. In this work, the possible anti-steatotic effect of macrotympanain A1 (MA1) (FLPGLECVW), a skin peptide isolated from the Chinese odorous frog Odorrana macrotympana, was investigated. We used a well-established in vitro model of hepatic steatosis, consisting of lipid-loaded rat hepatoma FaO cells. In this model, a 24 h treatment with 10 µg/mL MA1 exerted a significant anti-steatotic action, being able to reduce intracellular triglyceride content. Accordingly, the number and diameter of cytosolic lipid droplets (LDs) were reduced by peptide treatment. The expression of key genes of hepatic lipid metabolism, such as PPARs and PLINs, was measured by real-time qPCR. MA1 counteracted the fatty acid-induced upregulation of PPARγ expression and increased PLIN3 expression, suggesting a role in promoting lipophagy. The present data demonstrate for the first time a direct anti-steatotic effect of a peptide from amphibian skin secretion and pave the way to further studies on the use of amphibian peptides for beneficial actions against metabolic diseases.
Collapse
Affiliation(s)
- Ilaria Demori
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Zeinab El Rashed
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Giulia De Negri Atanasio
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Alice Parodi
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Andrea Costa
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Giacomo Rosa
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | | | - Sebastiano Salvidio
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine (DIMES), Cellular Electron Microscopy Laboratory, University of Genoa, Via Antonio de Toni 14, 16132 Genoa, Italy
| | - Elena Grasselli
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
3
|
Musale V, Moffett RC, Conlon JM, Flatt PR, Abdel-Wahab YH. Beneficial actions of the [A14K] analog of the frog skin peptide PGLa-AM1 in mice with obesity and degenerative diabetes: A mechanistic study. Peptides 2021; 136:170472. [PMID: 33338546 DOI: 10.1016/j.peptides.2020.170472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
The antidiabetic actions of [A14K]PGLa-AM1, an analog of peptide glycine-leucine-amide-AM1 isolated from skin secretions of the octoploid frog Xenopus amieti, were investigated in genetically diabetic-obese db/db mice. Twice daily administration of [A14K]PGLa-AM1 (75 nmol/kg body weight) for 28 days significantly (P < 0.05) decreased circulating blood glucose and HbA1c and increased plasma insulin concentrations leading to improvements in glucose tolerance. The elevated levels of triglycerides, LDL and cholesterol associated with the db/db phenotype were significantly reduced by peptide administration. Elevated plasma alanine transaminase, aspartic acid transaminase, and alkaline phosphatase activities and creatinine concentrations were also significantly decreased. Peptide treatment increased pancreatic insulin content and improved the responses of isolated islets to established insulin secretagogues. No significant changes in islet β-cell and α-cell areas were observed in [A14K]PGLa-AM1 treated mice but the loss of large and medium-size islets was prevented. Peptide administration resulted in a significant (P < 0.01) increase in islet expression of the gene encoding Pdx-1, a major transcription factor in islet cells determining β-cell survival and function, resulting in increased expression of genes involved with insulin secretion (Abcc8, Kcnj11, Slc2a2, Cacn1c) together with the genes encoding the incretin receptors Glp1r and Gipr. In addition, the elevated expression of insulin signalling genes (Slc2a4, Insr, Irs1, Akt1, Pik3ca, Ppm1b) in skeletal muscle associated with the db/db phenotype was downregulated by peptide treatment These data suggest that the anti-diabetic properties of [A14K]PGLa-AM1 are mediated by molecular changes that enhance both the secretion and action of insulin.
Collapse
Affiliation(s)
- Vishal Musale
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - R Charlotte Moffett
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - Peter R Flatt
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Yasser H Abdel-Wahab
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
4
|
Conlon JM, Mechkarska M, Abdel-Wahab YH, Flatt PR. Peptides from frog skin with potential for development into agents for Type 2 diabetes therapy. Peptides 2018; 100:275-281. [PMID: 28887047 DOI: 10.1016/j.peptides.2017.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
Abstract
Several frog skin peptides, first identified as result of their antimicrobial or immunomodulatory activities, have subsequently been shown to stimulate insulin release both in vitro and in vivo and so show potential for development into incretin-based drugs for treatment of patients with Type 2 diabetes mellitus. However, their therapeutic potential as anti-diabetic agents is not confined to this activity as certain frog skin-derived peptides, such as magainin-AM2 and CPF-SE1 and analogs of hymenochirin-1B, tigerinin-1R, and esculentin-2CHa, have been shown to increase insulin sensitivity, promote β-cell proliferation, suppress pancreatic and circulating glucagon concentrations, improve the lipid profile, and selectively alter expression of genes involved in insulin secretion and action in mice with diet-induced obesity, insulin resistance and impaired glucose tolerance. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Pipidae, Dicroglossidae, and Ranidae families, focusing upon work that has been carried out since 2014.
Collapse
Affiliation(s)
- J Michael Conlon
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Milena Mechkarska
- Department of Life Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Yasser H Abdel-Wahab
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
5
|
Chen X, Hu C, Huang Y, Chen Y. Role of Disulfide Bonds in Activity and Stability of Tigerinin-1R. Int J Mol Sci 2018; 19:ijms19020288. [PMID: 29360748 PMCID: PMC5855545 DOI: 10.3390/ijms19020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 01/10/2023] Open
Abstract
Tigerinin-1R (Arg–Val–Cys–Ser–Ala–Ile–Pro–Leu–Pro–Ile–Cys–His–NH2), a cationic 12-mer peptide containing a disulfide bond extracted from frog skin secretions, lacks antibacterial activity, but has the ability to stimulate insulin release both in vitro and in vivo. To study the structure–function relationships of tigerinin-1R, we designed and synthesized five analogs, including tigerinin-cyclic, tigerinin-1R-L4, tigerinin-linear, [C3K]tigerinin-1R, and [C11K]tigerinin-1R. Tigerinin-1R promoted insulin secretion in a concentration-dependent manner in INS-1 cells without obvious cytotoxicity. At a concentration of 10−5 M, [C11K]tigerinin-1R exhibited the highest stimulation ability, suggesting that the positive charge at the C-terminus may contribute to the in vitro insulin-releasing activity of tigerinin-1R. Tigerinin-1R peptides stimulated insulin release in INS-1 cells through a universal mechanism that involves mobilization of intracellular calcium without disrupting the cell membrane. In vivo experiments showed that both tigerinin-1R and [C11K]tigerinin-1R improved glucose tolerance in overnight-fasted mice. Due to its structural stability, tigerinin-1R showed superior hypoglycemic activity to [C11K]tigerinin-1R, which suggested a critical role of the disulfide bonds. In addition, we also identified a protective effect of tigerinin-1R peptides in apoptosis induced by oxidative stress. These results further confirm the potential for the development of tigerinin-1R as an anti-diabetic therapeutic agent in clinical practice.
Collapse
Affiliation(s)
- Xiaolong Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China.
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Cuihua Hu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China.
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China.
- College of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China.
- College of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
McLaughlin CM, Lampis S, Mechkarska M, Coquet L, Jouenne T, King JD, Mangoni ML, Lukic ML, Scorciapino MA, Conlon JM. Purification, Conformational Analysis, and Properties of a Family of Tigerinin Peptides from Skin Secretions of the Crowned Bullfrog Hoplobatrachus occipitalis. JOURNAL OF NATURAL PRODUCTS 2016; 79:2350-2356. [PMID: 27560386 DOI: 10.1021/acs.jnatprod.6b00494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Four host-defense peptides belonging to the tigerinin family (tigerinin-1O: RICTPIPFPMCY; tigerinin-2O: RTCIPIPLVMC; tigerinin-3O: RICTAIPLPMCL; and tigerinin-4O: RTCIPIPPVCF) were isolated from skin secretions of the African crowned bullfrog Hoplobatrachus occipitalis. In aqueous solution at pH 4.8, the cyclic domain of tigerinin-2O adopts a rigid amphipathic conformation that incorporates a flexible N-terminal tail. The tigerinins lacked antimicrobial (MIC > 100 μM) and hemolytic (LC50 > 500 μM) activities but, at a concentration of 20 μg/mL, significantly (P < 0.05) inhibited production of interferon-γ (IFN-γ) by peritoneal cells from C57BL/6 mice without affecting production of IL-10 and IL-17. Tigerinin-2O and -4O inhibited IFN-γ production at concentrations as low as 1 μg/mL. The tigerinins significantly (P ≤ 0.05) stimulated the rate of insulin release from BRIN-BD11 clonal β-cells without compromising the integrity of the plasma membrane. Tigerinin-1O was the most potent (threshold concentration 1 nM) and the most effective (395% increase over basal rate at a concentration of 1 μM). Tigerinin-4O was the most potent and effective peptide in stimulating the rate of glucagon-like peptide-1 release from GLUTag enteroendocrine cells (threshold concentration 10 nM; 289% increase over basal rate at 1 μM). Tigerinin peptides have potential for development into agents for the treatment of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Christopher M McLaughlin
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster , Coleraine, U.K
| | - Sandrina Lampis
- Department of Chemical and Geological Sciences and Department of Biomedical Sciences, Biochemistry Unit, University of Cagliari , Cagliari, Italy
| | - Milena Mechkarska
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster , Coleraine, U.K
| | - Laurent Coquet
- CNRS UMR 6270, PISSARO, University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB) , Mont-Saint-Aignan, France
| | - Thierry Jouenne
- CNRS UMR 6270, PISSARO, University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB) , Mont-Saint-Aignan, France
| | - Jay D King
- Rare Species Conservatory Foundation , St. Louis, Missouri, United States
| | - Maria Luisa Mangoni
- Instituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy
| | - Miodrag L Lukic
- Center for Molecular Medicine, Faculty of Medicine, University of Kragujevac , Kragujevac, Serbia
| | - Mariano A Scorciapino
- Department of Chemical and Geological Sciences and Department of Biomedical Sciences, Biochemistry Unit, University of Cagliari , Cagliari, Italy
| | - J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster , Coleraine, U.K
| |
Collapse
|
7
|
|
8
|
Ojo OO, Srinivasan DK, Owolabi BO, Vasu S, Conlon JM, Flatt PR, Abdel-Wahab YHA. Esculentin-2CHa-Related Peptides Modulate Islet Cell Function and Improve Glucose Tolerance in Mice with Diet-Induced Obesity and Insulin Resistance. PLoS One 2015; 10:e0141549. [PMID: 26512980 PMCID: PMC4626215 DOI: 10.1371/journal.pone.0141549] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/10/2015] [Indexed: 01/08/2023] Open
Abstract
The frog skin host-defense peptide esculentin-2CHa (GFSSIFRGVA10KFASKGLGK D20LAKLGVDLVA30CKISKQC) displays antimicrobial, antitumor, and immunomodulatory properties. This study investigated the antidiabetic actions of the peptide and selected analogues. Esculentin-2CHa stimulated insulin secretion from rat BRIN-BD11 clonal pancreatic β-cells at concentrations greater than 0.3 nM without cytotoxicity by a mechanism involving membrane depolarization and increase of intracellular Ca2+. Insulinotropic activity was attenuated by activation of KATP channels, inhibition of voltage-dependent Ca2+ channels and chelation of extracellular Ca2+. The [L21K], [L24K], [D20K, D27K] and [C31S,C37S] analogues were more potent but less effective than esculentin-2CHa whereas the [L28K] and [C31K] analogues were both more potent and produced a significantly (P < 0.001) greater maximum response. Acute administration of [L28K]esculentin-2CHa (75 nmol/kg body weight) to high fat fed mice with obesity and insulin resistance enhanced glucose tolerance and insulin secretion. Twice-daily administration of this dose of [L28K]esculentin-2CHa for 28 days had no significant effect on body weight, food intake, indirect calorimetry or body composition. However, mice exhibited decreased non-fasting plasma glucose (P < 0.05), increased non-fasting plasma insulin (P < 0.05) as well as improved glucose tolerance and insulin secretion (P < 0.01) following both oral and intraperitoneal glucose loads. Impaired responses of isolated islets from high fat fed mice to established insulin secretagogues were restored by [L28K]esculentin-2CHa treatment. Peptide treatment was accompanied by significantly lower plasma and pancreatic glucagon levels and normalization of α-cell mass. Circulating triglyceride concentrations were decreased but plasma cholesterol and LDL concentrations were not significantly affected. The data encourage further investigation of the potential of esculentin-2CHa related peptides for treatment of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Opeolu O. Ojo
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
- School of Sport, Health and Bioscience, University of East London, Stratford, E15 4LZ, United Kingdom
| | - Dinesh K. Srinivasan
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
| | - Bosede O. Owolabi
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
| | - Srividya Vasu
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
| | - J. Michael Conlon
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
| | - Peter R. Flatt
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
| | - Yasser H. A. Abdel-Wahab
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
- * E-mail:
| |
Collapse
|