1
|
Nofi CP, Prince JM, Wang P, Aziz M. Chromatin as alarmins in necrotizing enterocolitis. Front Immunol 2024; 15:1403018. [PMID: 38881893 PMCID: PMC11176418 DOI: 10.3389/fimmu.2024.1403018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily affecting premature neonates, marked by poorly understood pro-inflammatory signaling cascades. Recent advancements have shed light on a subset of endogenous molecular patterns, termed chromatin-associated molecular patterns (CAMPs), which belong to the broader category of damage-associated molecular patterns (DAMPs). CAMPs play a crucial role in recognizing pattern recognition receptors and orchestrating inflammatory responses. This review focuses into the realm of CAMPs, highlighting key players such as extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps (NETs), histones, and extracellular RNA. These intrinsic molecules, often perceived as foreign, have the potential to trigger immune signaling pathways, thus contributing to NEC pathogenesis. In this review, we unravel the current understanding of the involvement of CAMPs in both preclinical and clinical NEC scenarios. We also focus on elucidating the downstream signaling pathways activated by these molecular patterns, providing insights into the mechanisms that drive inflammation in NEC. Moreover, we scrutinize the landscape of targeted therapeutic approaches, aiming to mitigate the impact of tissue damage in NEC. This in-depth exploration offers a comprehensive overview of the role of CAMPs in NEC, bridging the gap between preclinical and clinical insights.
Collapse
Affiliation(s)
- Colleen P. Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Jose M. Prince
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
2
|
Lin X, Wu C. Identification and evaluation of probiotic potential of Bifidobacterium breve AHC3 isolated from chicken intestines and its effect on necrotizing enterocolitis (NEC) in newborn SD rats. PLoS One 2023; 18:e0287799. [PMID: 37917716 PMCID: PMC10621988 DOI: 10.1371/journal.pone.0287799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/13/2023] [Indexed: 11/04/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe intestinal disease of the newborn infants, associated with high morbidity and mortality. It has been reported that Bifidobacterium could protect the intestinal barrier function and reduce the risk of NEC. This study aimed to evaluate the probiotic potential of Bifidobacterium strains isolated from the chicken intestines and its effect on necrotizing enterocolitis in newborn SD rats. Out of 32 isolates, B. breve AHC3 not only exhibited excellent probiotic potential, including tolerance to artificial simulated gastric conditions, adhesion to HT-29 cells, antioxidant capacity and antibacterial activity, but also possessed reliable safety. Additionally, NEC model was established to further investigate the effect of B. breve AHC3 on necrotizing enterocolitis in newborn SD rats. It was illustrated that administration of B. breve AHC3 significantly not only reduced the incidence of NEC (from 81.25% to 34.38%) (P< 0.05), but also alleviated the severity of ileal injury (P< 0.05). Compared with NEC model, B. breve AHC3 could significantly decrease the level of proinflammatory factor TNF-α (P< 0.05) and increase the level of antiinflammatory factor IL-10 (P< 0.05) in the ileum of NEC rats. Through the intervention of B. breve AHC3, the gray value of inducible nitric oxide synthase (iNOS) in intestinal tissue of NEC rats was significantly reduced (P< 0.05). It was indicated that B. breve AHC3 exhibited prominent probiotic potential and reliable safety. In the neonatal SD rat model of NEC, B. breve AHC3 had an available protective effect on the intestinal injury of NEC, which might be related to reducing the inflammatory reaction in the ileum and inhibiting the expression of iNOS in intestinal tissue cells. B. breve AHC3 could be used as a potential treatment for human NEC.
Collapse
Affiliation(s)
- Xiaopei Lin
- Department of Pediatrics, Maternity and Child Health Care Hospital Affiliated to Anhui Medical University (Anhui Maternity and Child Health Care Hospital), Hefei, Anhui, China
| | - Changjun Wu
- Institute of Microbiology, Anhui Academy of Medical Sciences, Hefei, Anhui, China
| |
Collapse
|
3
|
Okano Y, Takeshita A, Yasuma T, Toda M, Nishihama K, Fridman D’Alessandro V, Inoue C, D’Alessandro-Gabazza CN, Kobayashi T, Yano Y, Gabazza EC. Protective Role of Recombinant Human Thrombomodulin in Diabetes Mellitus. Cells 2021; 10:2237. [PMID: 34571886 PMCID: PMC8470378 DOI: 10.3390/cells10092237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a global threat to human health. The ultimate cause of diabetes mellitus is insufficient insulin production and secretion associated with reduced pancreatic β-cell mass. Apoptosis is an important and well-recognized mechanism of the progressive loss of functional β-cells. However, there are currently no available antiapoptotic drugs for diabetes mellitus. This study evaluated whether recombinant human thrombomodulin can inhibit β-cell apoptosis and improve glucose intolerance in a diabetes mouse model. A streptozotocin-induced diabetes mouse model was prepared and treated with thrombomodulin or saline three times per week for eight weeks. The glucose tolerance and apoptosis of β-cells were evaluated. Diabetic mice treated with recombinant human thrombomodulin showed significantly improved glucose tolerance, increased insulin secretion, decreased pancreatic islet areas of apoptotic β-cells, and enhanced proportion of regulatory T cells and tolerogenic dendritic cells in the spleen compared to counterpart diseased mice treated with saline. Non-diabetic mice showed no changes. This study shows that recombinant human thrombomodulin, a drug currently used to treat patients with coagulopathy in Japan, ameliorates glucose intolerance by protecting pancreatic islet β-cells from apoptosis and modulating the immune response in diabetic mice. This observation points to recombinant human thrombomodulin as a promising antiapoptotic drug for diabetes mellitus.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cell Line, Tumor
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Hypoglycemic Agents/administration & dosage
- Injections, Intraperitoneal
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Male
- Mice, Inbred C57BL
- Proto-Oncogene Proteins c-akt/metabolism
- Recombinant Proteins/administration & dosage
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- Streptozocin
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thrombomodulin/administration & dosage
- Mice
Collapse
Affiliation(s)
- Yuko Okano
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Atsuro Takeshita
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Taro Yasuma
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Masaaki Toda
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Valeria Fridman D’Alessandro
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Chisa Inoue
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan;
| | - Yutaka Yano
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Esteban C. Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| |
Collapse
|
4
|
Cao H, Guo D. Association of High-Mobility Group Box 1 (HMGB1) Gene Polymorphisms with Susceptibility and Better Survival Prognosis in Chinese Han Neonatal Necrotizing Enterocolitis. Med Sci Monit 2021; 27:e930015. [PMID: 34054124 PMCID: PMC8176785 DOI: 10.12659/msm.930015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND High-mobility group box 1 (HMGB1) plays a crucial role in a variety of diseases, including neonatal necrotizing enterocolitis (NEC). The purpose of this study was to investigate the association of HMGB1 gene single-nucleotide polymorphisms (SNPs) with susceptibility and survival prognosis in Chinese Han neonates with NEC. MATERIAL AND METHODS The HMGB1 gene rs1360485, rs1045411, and rs2249825 site SNPs were genotyped in all participants. The mRNA expression of serum HMGB1 was examined using quantitative reverse transcription-polymerase chain reaction. The correlation of the HMGB1 rs1360485 SNP with NEC neonatal survival prognosis was evaluated by univariate analysis and logistic multivariate regression analysis. RESULTS The TC and CC genotype and C allele distribution frequencies of the rs1360485 SNP were lower in the NEC group, and the differences were statistically significant (all P<0.05). Individuals carrying the TC and CC genotype or C allele had a low risk of being affected by NEC. However, the genotype and allele distributions of rs1045411 and rs2249825 were not significantly different between the patient and control groups (P>0.05). NEC neonates with HMGB1 gene rs1360485 site mutations had lower mRNA levels of serum HMGB1 than those with rs1360485 site wild-type, and the rs1360485 genotypes TC and CC could independently predict better survival outcomes in NEC neonates. CONCLUSIONS This study demonstrated that the rs1360485 SNP of the HMGB1 gene is associated with susceptibility of NEC in neonates, and the rs1360485 genotypes TC and CC may affect HMGB1 expression and are associated with the survival prognosis of neonates with NEC.
Collapse
Affiliation(s)
- Huiling Cao
- Department of Neonatology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Defeng Guo
- Department of Gastroenterology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| |
Collapse
|
5
|
Kovler ML, Sodhi CP, Hackam DJ. Precision-based modeling approaches for necrotizing enterocolitis. Dis Model Mech 2020; 13:dmm044388. [PMID: 32764156 PMCID: PMC7328169 DOI: 10.1242/dmm.044388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in premature infants and remains stubbornly difficult to treat in many cases. Much of our understanding of NEC pathogenesis has been gained through the study of highly translational animal models. However, most models of NEC are limited by their overall complexity and by the fact that they do not incorporate human tissue. To address these limitations, investigators have recently developed precision-based ex vivo models of NEC, also termed 'NEC-in-a-dish' models, which provide the opportunity to increase our understanding of this disease and for drug discovery. These approaches involve exposing intestinal cells from either humans or animals with or without NEC to a combination of environmental and microbial factors associated with NEC pathogenesis. This Review highlights the current progress in the field of NEC model development, introduces NEC-in-a-dish models as a means to understand NEC pathogenesis and examines the fundamental questions that remain unanswered in NEC research. By answering these questions, and through a renewed focus on precision model development, the research community may finally achieve enduring success in improving the outcome of patients with this devastating disease.
Collapse
Affiliation(s)
- Mark L Kovler
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Liang S, Lai P, Li X, Xu J, Bao Y, Fang Y, Ding M. Ulinastatin Reduces the Severity of Intestinal Damage in the Neonatal Rat Model of Necrotizing Enterocolitis. Med Sci Monit 2019; 25:9123-9130. [PMID: 31786582 PMCID: PMC6904988 DOI: 10.12659/msm.919413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Ulinastatin is a protease inhibitor derived from urine that has shown anti-inflammatory effects in human disease, including in sepsis. Necrotizing enterocolitis (NEC) is a common gastrointestinal disease in premature infants. Our aim was to explore the effects of ulinastatin on a neonatal NEC rat model. Material/Methods Forty-five neonatal rats were divided into 3 groups: normal control; NEC+sepsis-induced kidney injury (SIRS); NEC/SIRS+ulinastatin. The NEC/SIRS model was induced by injection of intraperitoneal saline, enteral formula feeding, hypoxia-hyperoxide, and cold stress exposure. The NEC/SIRS neonatal rats were perfused with ulinastatin at a dose of 10 000 u/kg/day. Giemsa staining and hematoxylin and eosin (H&E) were performed to evaluate the severity of intestinal damage. To assess intestinal cell apoptosis, we examined the expression of caspase-3 by TUNEL staining and western blot analysis. Intestinal levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) were examined using ELISA assay. Results Rats in the NEC treated with ulinastatin group had better physiological status and histological score compared to the NEC/SIRS group. Ulinastatin reduced NEC-induced weight loss. Macroscopic and microscopic morphology analyses showed that rats in the NEC treated with ulinastatin group had lower severity of intestinal damage compared to the NEC/SIRS group. TUNEL staining and caspase-3 expression detection results revealed that ulinastatin significantly inhibited intestinal cell apoptosis of NEC. Furthermore, ulinastatin decreased the intestinal levels of IL-1β, IL-6, and TNF-α in NEC. Conclusions Ulinastatin could ameliorate the severity of intestinal damage in NEC and possess anti-apoptosis and anti-inflammation effects.
Collapse
Affiliation(s)
- Shuxia Liang
- Department of Ophthalmology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Panjian Lai
- Department of Pediatrics, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Xiaobing Li
- Department of Pediatrics, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Jie Xu
- Operating Room, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Yunguang Bao
- Department of Pediatrics, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China (mainland)
| | - Yuanshu Fang
- Department of Laboratory Animals Center, Jinhua Institute for Food and Drug Control, Jinhua, Zhejiang, China (mainland)
| | - Mingxing Ding
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang, China (mainland)
| |
Collapse
|