1
|
Hu P, Lin L, Chen G, Liu D, Guo H, Xiao M, Zhong Z, Yang G, Xu B, Huang D, Peng S, Li Y, Zhang Y, Huang T, Zhang F. Hydrogen-Generating Magnesium Alloy Seed Strand Sensitizes Solid Tumors to Iodine-125 Brachytherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412263. [PMID: 39656877 DOI: 10.1002/advs.202412263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Radioactive iodine-125 (125I) seed implantation, a brachytherapy technique, effectively kills tumor cells via X-rays and gamma rays, serving as an alternative therapeutic option following the failure of frontline treatments for various solid tumors. However, tumor radioresistance limits its efficacy. Hydrogen gas has anticancer properties and can enhance the efficacy of immunotherapy. However, its role in radiotherapy sensitization has rarely been reported. Many current hydrogen delivery methods involve hydrogen-generating nanomaterials, such as magnesium-based nanomaterials. This study introduces an AZ31 magnesium alloy 125I seed strand (termed AMASS) with pH-dependent slow-release hydrogen characteristics and excellent mechanical properties. AMASS can be implanted into tumors via minimally invasive surgery, releasing hydrogen around the 125I seeds. In vitro experiments showed that hydrogen from AMASS degradation significantly inhibited tumor proliferation, increased apoptosis, disrupted redox homeostasis and mitochondrial membrane potential, reduced adenosine triphosphate levels, and induced DNA damage due to 125I radiation. In mouse xenograft and rabbit liver tumor models, hydrogen from AMASS showed superior therapeutic effects compared with 125I seeds alone, with no noticeable side effects. In addition, AMASS has a uniform radiation dose distribution and simple implantation. Therefore, hydrogen from AMASS enhanced 125I seed efficacy, supporting the further promotion and application of 125I seed implantation in cancer therapy.
Collapse
Affiliation(s)
- Pan Hu
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Letao Lin
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Guanyu Chen
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Dengyao Liu
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Huanqing Guo
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Meigui Xiao
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhihui Zhong
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Guang Yang
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Bingchen Xu
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Dongcun Huang
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Sheng Peng
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, P. R. China
| | - Yanling Zhang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Tao Huang
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fujun Zhang
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| |
Collapse
|
2
|
Zhao Z, Ji H, Zhao Y, Liu Z, Sun R, Li Y, Ni T. Effectiveness and safety of hydrogen inhalation as an adjunct treatment in Chinese type 2 diabetes patients: A retrospective, observational, double-arm, real-life clinical study. Front Endocrinol (Lausanne) 2023; 13:1114221. [PMID: 36743938 PMCID: PMC9889559 DOI: 10.3389/fendo.2022.1114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Aim To analyze the effectiveness and safety of hydrogen inhalation (HI) therapy as an adjunct treatment in Chinese type 2 diabetes mellitus (T2DM) patients in a real-life clinical setting. Methods This observational, non-interventional, retrospective, double-arm, 6-month clinical study included T2DM patients receiving conventional anti-diabetes medication with or without HI initiation from 2018 to 2021. Patients were assigned to the HI group or non-HI group (control group) after 1:1 propensity score matching (PSM). The mean change in glycated hemoglobin (HbA1c) after 6 months in different groups was evaluated primarily. The secondary outcome was composed of the mean change of fasting plasma glucose (FPG), weight, lipid profile, and homeostasis model assessment. Logistics regression was performed to evaluate the likelihood of reaching different HbA1c levels after 6-month treatment between the groups. Adverse event (AE) was also evaluated in patients of both groups. Results In total, 1088 patients were selected into the analysis. Compared to the control group, subjects in HI group maintained greater improvement in the level of HbA1c (-0.94% vs -0.46%), FPG (-22.7 mg/dL vs -11.7 mg/dL), total cholesterol (-12.9 mg/dL vs -4.4 mg/dL), HOMA-IR (-0.76 vs -0.17) and HOMA-β (8.2% vs 1.98%) with all p< 0.001 post the treatment. Logistics regression revealed that the likelihood of reaching HbA1c< 7%, ≥ 7% to< 8% and > 1% reduction at the follow-up period was higher in the HI group, while patients in the control group were more likely to attain HbA1c ≥ 9%. Patients in HI group was observed a lower incidence of several AEs including hypoglycemia (2.0% vs 6.8%), vomiting (2.6% vs 7.4%), constipation (1.7% vs 4.4%) and giddiness (3.3% vs 6.3%) with significance in comparison to the control group. Conclusion HI as an adjunct therapy ameliorates glycemic control, lipid metabolism, insulin resistance and AE incidence of T2DM patients after 6-month treatment, presenting a noteworthy inspiration to existing clinical diabetic treatment.
Collapse
Affiliation(s)
- Ziyi Zhao
- School of Clinical Medicine, Department of Medicine, Qingdao University, Qingdao, China
| | - Hongxiang Ji
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Zhao
- Department of Endocrinology, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Zeyu Liu
- School of Clinical Medicine, Department of Medicine, Qingdao University, Qingdao, China
| | - Ruitao Sun
- School of Clinical Medicine, Department of Medicine, Qingdao University, Qingdao, China
| | - Yuquan Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tongshang Ni
- Center of Integrated Traditional Chinese and Western Medicine, Department of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Xie F, Jiang X, Yi Y, Liu ZJ, Ma C, He J, Xun ZM, Wang M, Liu MY, Mawulikplimi Adzavon Y, Zhao PX, Ma XM. Different effects of hydrogen-rich water intake and hydrogen gas inhalation on gut microbiome and plasma metabolites of rats in health status. Sci Rep 2022; 12:7231. [PMID: 35508571 PMCID: PMC9068821 DOI: 10.1038/s41598-022-11091-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
The potential for preventive and therapeutic applications of H2 have now been confirmed in various disease. However, the effects of H2 on health status have not been fully elucidated. Our previous study reported changes in the body weight and 13 serum biochemical parameters during the six-month hydrogen intervention. To obtain a more comprehensive understanding of the effects of long-term hydrogen consumption, the plasma metabolome and gut microbiota were investigated in this study. Compared with the control group, 14 and 10 differential metabolites (DMs) were identified in hydrogen-rich water (HRW) and hydrogen inhalation (HI) group, respectively. Pathway enrichment analysis showed that HRW intake mainly affected starch and sucrose metabolism, and DMs in HI group were mainly enriched in arginine biosynthesis. 16S rRNA gene sequencing showed that HRW intake induced significant changes in the structure of gut microbiota, while no marked bacterial community differences was observed in HI group. HRW intake mainly induced significant increase in the abundance of Lactobacillus, Ruminococcus, Clostridium XI, and decrease in Bacteroides. HI mainly induced decreased abundances of Blautia and Paraprevotella. The metabolic function was determined by metabolic cage analysis and showed that HI decreased the voluntary intake and excretions of rats, while HRW intake did not. The results of this study provide basic data for further research on hydrogen medicine. Determination of the effects of hydrogen intervention on microbiota profiles could also shed light on identification of mechanism underlying the biological effects of molecular hydrogen.
Collapse
Affiliation(s)
- Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.,Beijing Molecular Hydrogen Research Center, Beijing, 100124, China
| | - Xue Jiang
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.,Beijing Molecular Hydrogen Research Center, Beijing, 100124, China
| | - Yang Yi
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.,Beijing Molecular Hydrogen Research Center, Beijing, 100124, China
| | - Zi-Jia Liu
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.,Beijing Molecular Hydrogen Research Center, Beijing, 100124, China
| | - Chen Ma
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.,Beijing Molecular Hydrogen Research Center, Beijing, 100124, China
| | - Jin He
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.,Beijing Molecular Hydrogen Research Center, Beijing, 100124, China
| | - Zhi-Ming Xun
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.,Beijing Molecular Hydrogen Research Center, Beijing, 100124, China
| | - Meng Wang
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.,Beijing Molecular Hydrogen Research Center, Beijing, 100124, China
| | - Meng-Yu Liu
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.,Beijing Molecular Hydrogen Research Center, Beijing, 100124, China
| | - Yao Mawulikplimi Adzavon
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.,Beijing Molecular Hydrogen Research Center, Beijing, 100124, China
| | - Peng-Xiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.,Beijing Molecular Hydrogen Research Center, Beijing, 100124, China
| | - Xue-Mei Ma
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China. .,Beijing Molecular Hydrogen Research Center, Beijing, 100124, China.
| |
Collapse
|
4
|
Irrigation of peritoneal cavity with cold atmospheric plasma treated solution effectively reduces microbial load in rat acute peritonitis model. Sci Rep 2022; 12:3646. [PMID: 35256655 PMCID: PMC8901632 DOI: 10.1038/s41598-022-07598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/21/2022] [Indexed: 11/27/2022] Open
Abstract
Accurate and timely diagnosis of appendicitis in children can be challenging, which leads to delayed admittance or misdiagnosis that may cause perforation. Surgical management involves the elimination of the focus (appendectomy) and the reduction of the contamination with peritoneal irrigation to prevent sepsis. However, the validity of conventional irrigation methods is being debated, and novel methods are needed. In the present study, the use of cold plasma treated saline solution as an intraperitoneal irrigation solution for the management of acute peritonitis was investigated. Chemical and in vitro microbiological assessments of the plasma-treated solution were performed to determine the appropriate plasma treatment time to be used in in-vivo experiments. To induce acute peritonitis in rats, the cecal ligation and perforation (CLP) model was used. Sixty rats were divided into six groups, namely, sham operation, plasma irrigation, CLP, dry cleaning after CLP, saline irrigation after CLP, and plasma-treated saline irrigation after CLP group. The total antioxidant and oxidant status, oxidative stress index, microbiological, and pathological evaluations were performed. Findings indicated that plasma-treated saline contains reactive species, and irrigation with plasma-treated saline can effectively inactivate intraperitoneal contamination and prevent sepsis with no short-term local and/or systemic toxicity.
Collapse
|
5
|
Abstract
Since the late 18th century, molecular hydrogen (H2) has been shown to be well tolerated, firstly in animals, and then in humans. However, although research into the beneficial effects of molecular hydrogen in both plant and mammalian physiology is gaining momentum, the idea of utilising this electrochemically neutral and non-polar diatomic compound for the benefit of health has yet to be widely accepted by regulatory bodies worldwide. Due to the precise mechanisms of H2 activity being as yet undefined, the lack of primary target identification, coupled with difficulties regarding administration methods (e.g., dosage and dosage frequencies, long-term effects of treatment, and the patient’s innate antioxidant profile), there is a requirement for H2 research to evidence how it can reasonably and most effectively be incorporated into medical practice. This review collates and assesses the current information regarding the many routes of molecular hydrogen administration in animals and humans, whilst evaluating how targeted delivery methods could be integrated into a modern healthcare system.
Collapse
|