1
|
Lee SE, Jeong SE, Hong JS, Im H, Hwang SY, Oh JK, Kim SE. Gold-Nanoparticle-Coated Magnetic Beads for ALP-Enzyme-Based Electrochemical Immunosensing in Human Plasma. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196875. [PMID: 36234217 PMCID: PMC9573121 DOI: 10.3390/ma15196875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 05/14/2023]
Abstract
A simple and sensitive AuNP-coated magnetic beads (AMB)-based electrochemical biosensor platform was fabricated for bioassay. In this study, AuNP-conjugated magnetic particles were successfully prepared using biotin-streptavidin conjugation. The morphology and structure of the nanocomplex were characterized by scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX) and UV-visible spectroscopy. Moreover, cyclic voltammetry (CV) was used to investigate the effect of AuNP-MB on alkaline phosphatase (ALP) for electrochemical signal enhancement. An ALP-based electrochemical (EC) immunoassay was performed on the developed AuNP-MB complex with indium tin oxide (ITO) electrodes. Subsequently, the concentration of capture antibodies was well-optimized on the AMB complex via biotin-avidin conjugation. Lastly, the developed AuNP-MB immunoassay platform was verified with extracellular vesicle (EV) detection via immune response by showing the existence of EGFR proteins on glioblastoma multiforme (GBM)-derived EVs (108 particle/mL) spiked in human plasma. Therefore, the signal-enhanced ALP-based EC biosensor on AuNP-MB was favorably utilized as an immunoassay platform, revealing the potential application of biosensors in immunoassays in biological environments.
Collapse
Affiliation(s)
- Seo-Eun Lee
- Human IT Convergence Research Center, Convergence System R&D Division, Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Korea
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Korea
| | - Se-Eun Jeong
- Human IT Convergence Research Center, Convergence System R&D Division, Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Korea
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Korea
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sei-Young Hwang
- Human IT Convergence Research Center, Convergence System R&D Division, Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Korea
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Korea
| | - Seong-Eun Kim
- Human IT Convergence Research Center, Convergence System R&D Division, Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Korea
- Correspondence: ; Tel.: +82-31-789-7555
| |
Collapse
|
2
|
Biosensors and biopolymer-based nanocomposites for smart food packaging: Challenges and opportunities. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Miller K, Reichert CL, Schmid M. Biogenic Amine Detection Systems for Intelligent Packaging Concepts: Meat and Meat Products. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1961270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- K. Miller
- Department of Life Sciences, Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| | - C. L. Reichert
- Department of Life Sciences, Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| | - M. Schmid
- Department of Life Sciences, Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| |
Collapse
|
4
|
Vasconcelos H, Coelho LCC, Matias A, Saraiva C, Jorge PAS, de Almeida JMMM. Biosensors for Biogenic Amines: A Review. BIOSENSORS-BASEL 2021; 11:bios11030082. [PMID: 33805834 PMCID: PMC8000219 DOI: 10.3390/bios11030082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Biogenic amines (BAs) are well-known biomolecules, mostly for their toxic and carcinogenic effects. Commonly, they are used as an indicator of quality preservation in food and beverages since their presence in higher concentrations is associated with poor quality. With respect to BA’s metabolic pathways, time plays a crucial factor in their formation. They are mainly formed by microbial decarboxylation of amino acids, which is closely related to food deterioration, therefore, making them unfit for human consumption. Pathogenic microorganisms grow in food without any noticeable change in odor, appearance, or taste, thus, they can reach toxic concentrations. The present review provides an overview of the most recent literature on BAs with special emphasis on food matrixes, including a description of the typical BA assay formats, along with its general structure, according to the biorecognition elements used (enzymes, nucleic acids, whole cells, and antibodies). The extensive and significant amount of research that has been done to the investigation of biorecognition elements, transducers, and their integration in biosensors, over the years has been reviewed.
Collapse
Affiliation(s)
- Helena Vasconcelos
- School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; (H.V.); (C.S.)
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
| | - Luís C. C. Coelho
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
| | - Ana Matias
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
| | - Cristina Saraiva
- School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; (H.V.); (C.S.)
| | - Pedro A. S. Jorge
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
- Department. of Physics and Astronomy, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - José M. M. M. de Almeida
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
- Department of Physics, School of Science and Technology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
5
|
Du N, Dou Z, Wu Y, Wu Q, Zhang G, Liu X. Fluorescent nanoprobe array based on carbon nanodots for qualitative and quantitative determination of biogenic polyamine. Mikrochim Acta 2020; 187:522. [PMID: 32856102 DOI: 10.1007/s00604-020-04492-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
A nanoprobe array based on fluorescent nitrogen-rich carbon dots (N-CDs) and Ag+ was constructed for simultaneous qualitative and quantitative determination of seven kinds of biogenic polyamines (BAs), including tryptamine (Try), histamine (His), putrescine (Put), cadaverine (Cad), spermine (Spm), spermidine (Spd), and agmatine (Agm). Ag+ can specifically bind to the N-CDs and quench the fluorescence of the N-CDs through a static mechanism. BAs further statically quench the fluorescence of the N-CD@Ag+ composite by bridging two Ag+ centers of the N-CD@Ag+. The nanoprobe array was constructed based on the differential fluorescence response arising from the differential binding affinity of various BAs. BAs can be differentiated and analyzed by the nanoprobe array within the concentration range 0.5-500 μM. The preliminary diluted and artificially spiked commercial human serum was utilized to simulate the serum environment for assessing the performance of the nanoprobe array in real samples. The N-CD@Ag+ system can recognize BAs with 100% accuracy in simulated human serum samples. The quantitative determination of BAs - no matter in a one-component system or a three-component system - was also realized by using the N-CD@Ag+ system even in the simulated serum environment. The recovery rates from spiked serum samples were higher 99%, and the relative standard deviation (RSD) was less than 3%. Based on the excellent multi-BA determination performance, a BA-related disease model about cerebral ischemia was constructed. Healthy cases as well as mild, moderate, and severe cerebral ischemia cases can be well identified from the disease model based on the N-CD@Ag+ nanoprobe array. Schematic representation of fluorescent nanoprobe array constructed by carbon nanodots (N-CDs) and Ag+ for qualitative and quantitative analyses of biogenic polyamines (BAs) and diagnosis of cerebral ischemia (CI) through linear discriminant analysis (LDA) and support vector machine (SVM).
Collapse
Affiliation(s)
- Na Du
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Zhi Dou
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yapei Wu
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Qiuhua Wu
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Guolin Zhang
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Xue Liu
- Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China.
| |
Collapse
|
6
|
Danchuk AI, Komova NS, Mobarez SN, Doronin SY, Burmistrova NA, Markin AV, Duerkop A. Optical sensors for determination of biogenic amines in food. Anal Bioanal Chem 2020; 412:4023-4036. [PMID: 32382967 PMCID: PMC7320057 DOI: 10.1007/s00216-020-02675-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
This review presents the state-of-the-art of optical sensors for determination of biogenic amines (BAs) in food by publications covering about the last 10 years. Interest in the development of rapid and preferably on-site methods for quantification of BAs is based on their important role in implementation and regulation of various physiological processes. At the same time, BAs can develop in different kinds of food by fermentation processes or microbial activity or arise due to contamination, which induces toxicological risks and food poisoning and causes serious health issues. Therefore, various optical chemosensor systems have been devised that are easy to assemble and fast responding and low-cost analytical tools. If amenable to on-site analysis, they are an attractive alternative to existing instrumental analytical methods used for BA determination in food. Hence, also portable sensor systems or dipstick sensors are described based on various probes that typically enable signal readouts such as photometry, reflectometry, luminescence, surface-enhanced Raman spectroscopy, or ellipsometry. The quantification of BAs in real food samples and the design of the sensors are highlighted and the analytical figures of merit are compared. Future instrumental trends for BA sensing point to the use of cell phone-based fully automated optical evaluation and devices that could even comprise microfluidic micro total analysis systems.
Collapse
Affiliation(s)
- Alexandra I Danchuk
- Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040, Regensburg, Germany.,Institute of Chemistry, Saratov State University, Saratov, Russian Federation, 410012
| | - Nadezhda S Komova
- Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040, Regensburg, Germany.,Institute of Chemistry, Saratov State University, Saratov, Russian Federation, 410012
| | - Sarah N Mobarez
- Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040, Regensburg, Germany
| | - Sergey Yu Doronin
- Institute of Chemistry, Saratov State University, Saratov, Russian Federation, 410012
| | - Natalia A Burmistrova
- Institute of Chemistry, Saratov State University, Saratov, Russian Federation, 410012
| | - Alexey V Markin
- Institute of Chemistry, Saratov State University, Saratov, Russian Federation, 410012
| | - Axel Duerkop
- Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
7
|
Satheeshkumar M, Kumar ER, Indhumathi P, Srinivas C, Deepty M, Sathiyaraj S, Suriyanarayanan N, Sastry D. Structural, morphological and magnetic properties of algae/CoFe2O4 and algae/Ag-Fe-O nanocomposites and their biomedical applications. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Zinc(II) salphen complex-based fluorescence optical sensor for biogenic amine detection. Anal Bioanal Chem 2019; 411:6449-6461. [PMID: 31392436 DOI: 10.1007/s00216-019-02025-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023]
Abstract
Biogenic amines have attracted interest among researchers because of their importance as biomarkers in determining the quality of food freshness in the food industry. A rapid and simple technique that is able to detect biogenic amines is needed. In this work, a new optical sensing material for one of the biogenic amines, histamine, based on a new zinc(II) salphen complex was developed. The binding of zinc(II) complexes without an electron-withdrawing group (complex 1) and with electron-withdrawing groups (F, complex 2; Cl, complex 3) to histamine resulted in enhancement of fluorescence. All complexes exhibited high affinity for histamine [binding constant of (7.14 ± 0.80) × 104, (3.33 ± 0.03) × 105, and (2.35 ± 0.14) × 105 M-1, respectively]. Complex 2 was chosen as the sensing material for further development of an optical sensor for biogenic amines in the following step since it displayed enhanced optical properties in comparison with complexes 1 and 3. The optical sensor for biogenic amines used silica microparticles as the immobilisation support and histamine as the analyte. The optical sensor had a limit of detection for histamine of 4.4 × 10-12 M, with a linear working range between 1.0 × 10-11 and 1.0 × 10-6 M (R2 = 0.9844). The sensor showed good reproducibility, with a low relative standard deviation (5.5 %). In addition, the sensor exhibited good selectivity towards histamine and cadaverine over other amines, such as 1,2-phenylenediamine, triethylamine, and trimethylamine. Recovery and real sample studies suggested that complex 2 could be a promising biogenic amine optical sensing material that can be applied in the food industry, especially in controlling the safety of food for it to remain fresh and healthy for consumption.
Collapse
|
9
|
A Brief Overview of Medical Fiber Optic Biosensors and Techniques in the Modification for Enhanced Sensing Ability. Diagnostics (Basel) 2019; 9:diagnostics9010023. [PMID: 30818830 PMCID: PMC6468477 DOI: 10.3390/diagnostics9010023] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
In this paper, we provide a brief overview of fiber optic biosensors for use in MedTech, specifically to aid in the diagnoses and treatment of those with chronic medical conditions. Fiber optic cables as components of biological sensors make them especially effective in biological systems that may require ultra-sensitive detection of low-frequency signals in hard to reach areas. This systematic review focuses on the differentiating factors of fiber-optic biosensors, which are tailored to apply the sensor to specific health needs. The main components of FOBS (fiber optic biosensors) such as biosensing elements, fiber optic cables, optical element enhancements, transducers, sensing strategies, photodetectors, and signal processing are covered in detail by showcasing the recent developments in modifications to these components. This paper pays particular attention to the alterations made in biosensing elements including pH elements, enzymatic elements, as well as those sensors utilizing antibodies and whole-cell bacteria. This paper reviews and discusses several published examples in the research stage of development to give the reader an overall scope of the field. The need for research on biosensing equipment is increasing, as the number of individuals with chronic diseases and the geriatric population require more effective, accurate, and mobile sensing ability and reduced invasiveness. FOBS offer a sensing solution that is accurate, tailorable to almost any clinical need, has abundant and relatively cheap material requirements, and a well-established technological base in fiber optic technology. This small price tag and large market potential make FOBS a desirable research area.
Collapse
|
10
|
Simultaneous determination of steroid drugs in the ointment via magnetic solid phase extraction followed by HPLC-UV. J Pharm Anal 2018; 8:250-257. [PMID: 30140489 PMCID: PMC6104151 DOI: 10.1016/j.jpha.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/13/2018] [Accepted: 05/26/2018] [Indexed: 11/22/2022] Open
Abstract
The copper-coated iron oxide nanoparticles with core-shell were produced by deposition of a Cu shell on Fe3O4 NPs through reduction of Cu2+ ions in solution using NaBH4. Subsequently, the organosulfur compound, bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid (b-TMP-DTPA), was used to form self-assembled monolayer in order to modify sorbent's surface via covalent bonding between Cu and thiol (–SH) terminal groups. The prepared magnetic nanoparticles were characterized by using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and thermo gravimetric analysis (TGA). Then, the application of this new sorbent was investigated to extract the steroid drugs in ointment samples with the aid of ultrasound. An external magnetic field was applied to collect the magnetic nanoparticles (MNPs). The extracted analytes were desorbed using acetonitrile. The obtained extraction solution was analyzed by HPLC-UV. The main affecting factors on the extraction efficiency including pH, sonication time, amount of sorbent, salt concentration, and desorption conditions were optimized in detail. Under the optimum conditions, good linearity was obtained in the range of 2.5–250.0 µg/ L with reasonable linearity (R2 > 0.99) and the limits of detection (LODs) ranged between 0.5 and 1.0 µg/L (based on S/N = 3). Repeatability (intra-day precision) based on five replicates and preconcentration factors were calculated to be 3.6%–4.7% and 87–116, respectively. Relative recoveries in ointment samples at two spiked levels of the target analytes were obtained in the range of 90.0%–103.2%. The results illustrated that the Fe3O4@Cu@ b-TMP-DTPA NPs have the capability of extraction of steroid drugs from ointment samples.
Collapse
|
11
|
Nagarajan V, Thayumanavan A, Chandiramouli R. First-Principles Insights on Acetone Vapor Manganese Ferrite Solid Surface Interactions. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0694-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Schaude C, Meindl C, Fröhlich E, Attard J, Mohr GJ. Developing a sensor layer for the optical detection of amines during food spoilage. Talanta 2017; 170:481-487. [PMID: 28501199 DOI: 10.1016/j.talanta.2017.04.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
A colourimetric sensor layer has been developed for ammonia and biogenic amines. Amine exposure induces a traffic light colour change from green to red. Recognition is performed by a pH indicator dye, covalently immobilised onto cellulose microparticles. The sensor microparticles are embedded into food-grade silicone. Selectivity of the pH indicator dye towards gaseous amine is obtained by complete embedding of the sensor particles within the ion-impermeable silicone. A response time of 1.5h has been achieved, with a reverse response occurring after 20h. This time frame is considered sufficient for spoilage processes. Cytotoxicity studies confirm the layers are non-toxic.
Collapse
Affiliation(s)
- Cindy Schaude
- JOANNEUM RESEARCH Forschungsgesellschaft mbH - Materials, Franz-Pichler-Straße 30, A-8160 Weiz, Austria
| | - Claudia Meindl
- Medical University of Graz, Center for Medical Research, Stiftingtalstraße 24, A-8010 Graz, Austria
| | - Eleonore Fröhlich
- Medical University of Graz, Center for Medical Research, Stiftingtalstraße 24, A-8010 Graz, Austria
| | - Jennifer Attard
- Green Chemistry Centre of Excellence, University of York, York YO10 5DD, UK
| | - Gerhard J Mohr
- JOANNEUM RESEARCH Forschungsgesellschaft mbH - Materials, Franz-Pichler-Straße 30, A-8160 Weiz, Austria.
| |
Collapse
|
13
|
Pradenas J, Galarce-Bustos O, Henríquez-Aedo K, Mundaca-Uribe R, Aranda M. Occurrence of biogenic amines in beers from Chilean market. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.05.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Benito-Peña E, Valdés MG, Glahn-Martínez B, Moreno-Bondi MC. Fluorescence based fiber optic and planar waveguide biosensors. A review. Anal Chim Acta 2016; 943:17-40. [PMID: 27769374 PMCID: PMC7094704 DOI: 10.1016/j.aca.2016.08.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022]
Abstract
The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science.
Collapse
Affiliation(s)
- Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Mayra Granda Valdés
- Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana, Cuba
| | - Bettina Glahn-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Maria C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
15
|
Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4) and Zinc Ferrite (ZnFe2O4) Nanoparticles Synthesized by Sol-Gel Self-Combustion Method. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6090184] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
A Selective Chromatographic Method to Determine the Dynamic of Biogenic Amines During Brewing Process. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0526-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Banerjee S, Kelly C, Kerry JP, Papkovsky DB. High throughput non-destructive assessment of quality and safety of packaged food products using phosphorescent oxygen sensors. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Leonardo S, Campàs M. Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine, putrescine and cadaverine using magnetic beads as immobilisation supports. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1821-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Kanagesan S, Aziz SBA, Hashim M, Ismail I, Tamilselvan S, Alitheen NBBM, Swamy MK, Purna Chandra Rao B. Synthesis, Characterization and in Vitro Evaluation of Manganese Ferrite (MnFe2O4) Nanoparticles for Their Biocompatibility with Murine Breast Cancer Cells (4T1). Molecules 2016; 21:312. [PMID: 26978339 PMCID: PMC6273739 DOI: 10.3390/molecules21030312] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/29/2023] Open
Abstract
Manganese ferrite (MnFe2O4) magnetic nanoparticles were successfully prepared by a sol-gel self-combustion technique using iron nitrate and manganese nitrate, followed by calcination at 150 °C for 24 h. Calcined sample was systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrational sample magnetometry (VSM) in order to identify the crystalline phase, functional group, morphology, particle size, shape and magnetic behavior. It was observed that the resultant spinal ferrites obtained at low temperature exhibit single phase, nanoparticle size and good magnetic behavior. The study results have revealed the existence of a potent dose dependent cytotoxic effect of MnFe2O4 nanoparticles against 4T1 cell lines at varying concentrations with IC50 values of 210, 198 and 171 μg/mL after 24 h, 48 h and 72 h of incubation, respectively. Cells exposed to higher concentrations of nanoparticles showed a progressive increase of apoptotic and necrotic activity. Below 125 μg/mL concentration the nanoparticles were biocompatible with 4T1 cells.
Collapse
Affiliation(s)
- Samikannu Kanagesan
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Sidek Bin Ab Aziz
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Mansor Hashim
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Ismayadi Ismail
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| | - Subramani Tamilselvan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Noorjahan Banu Binti Mohammed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mallappa Kumara Swamy
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Department of Crop Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| | - Bandaru Purna Chandra Rao
- Department of Applied Science and Humanities, Sasi Intitute of Technology and Engineering, Tadepalligudem, West Godavari District 534101, Andhra Pradesh, India.
| |
Collapse
|
20
|
Determination of Putrescine in Tiger Prawn Using an Amperometric Biosensor Based on Immobilization of Diamine Oxidase onto Ceria Nanospheres. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1672-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Kivirand K, Sõmerik H, Oldekop ML, Rebane R, Rinken T. Effect of spermidine and its metabolites on the activity of pea seedlings diamine oxidase and the problems of biosensing of biogenic amines with this enzyme. Enzyme Microb Technol 2016; 82:133-137. [PMID: 26672459 DOI: 10.1016/j.enzmictec.2015.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
Spermidine is one of the several biogenic amines, produced during the microbial decarboxylation of proteins. Individual biogenic amines in the formed mixtures are frequently analyzed with oxygen sensor based biosensors, as their content serves as a good biomarker for the determination of food quality. In these biosensors, diamine oxidase from pea seedlings (PSAO), catalyzing the oxidation of various biogenic amines by dissolved oxygen is commonly used for the bio-recognition of amines. However, in the presence of spermidine and/or its metabolite 1,3-diaminopropane, the activity of PSAO and the sensitivity of PSAO-based biosensors decrease due to inhibition. The inhibition constant of soluble spermidine, acting as an inhibiting substrate toward PSAO, was found to be (40±15) mM in freshly prepared solution and (0.28±0.05) mM in solution, incubated 30 days at room temperature. The inhibition constant of 1,3-diaminopropane, acting as a competitive inhibitor, was (0.43±0.12) mM as determined through the oxidation reaction of cadaverine. The metabolic half-life of soluble spermidine was 7 days at room temperature and 186 days at 4 °C. The kinetic measurements were carried out with an oxygen sensor; the composition of the solution of degraded spermidine was analyzed with MS.
Collapse
Affiliation(s)
- K Kivirand
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, Estonia
| | - H Sõmerik
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, Estonia
| | - M-L Oldekop
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, Estonia
| | - R Rebane
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, Estonia
| | - T Rinken
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, Estonia.
| |
Collapse
|
22
|
Pospíšilová M, Kuncová G, Trögl J. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors. SENSORS (BASEL, SWITZERLAND) 2015; 15:25208-59. [PMID: 26437407 PMCID: PMC4634516 DOI: 10.3390/s151025208] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.
Collapse
Affiliation(s)
- Marie Pospíšilová
- Czech Technical University, Faculty of Biomedical Engeneering, Nám. Sítná 3105, 27201 Kladno, Czech Republic.
| | - Gabriela Kuncová
- Institute of Chemical Process Fundamentals, ASCR, Rozvojová 135, 16500 Prague, Czech Republic.
| | - Josef Trögl
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, KrálovaVýšina 3132/7, 40096 Ústí nad Labem, Czech Republic.
| |
Collapse
|
23
|
Smart packaging systems for food applications: a review. Journal of Food Science and Technology 2015; 52:6125-35. [PMID: 26396360 DOI: 10.1007/s13197-015-1766-7] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 10/24/2022]
Abstract
Changes in consumer preference for safe food have led to innovations in packaging technologies. This article reviews about different smart packaging systems and their applications in food packaging, packaging research with latest innovations. Active and intelligent packing are such packaging technologies which offer to deliver safer and quality products. Active packaging refers to the incorporation of additives into the package with the aim of maintaining or extending the product quality and shelf life. The intelligent systems are those that monitor the condition of packaged food to give information regarding the quality of the packaged food during transportation and storage. These technologies are designed to the increasing demand for safer foods with better shelf life. The market for active and intelligent packaging systems is expected to have a promising future by their integration into packaging materials or systems.
Collapse
|
24
|
Costa MP, Andrade CA, Montenegro RA, Melo FL, Oliveira MD. Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor. J Colloid Interface Sci 2014; 433:141-148. [DOI: 10.1016/j.jcis.2014.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 11/28/2022]
|
25
|
Cui X, Belo S, Krüger D, Yan Y, de Rosales RTM, Jauregui-Osoro M, Ye H, Su S, Mathe D, Kovács N, Horváth I, Semjeni M, Sunassee K, Szigeti K, Green MA, Blower PJ. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging. Biomaterials 2014; 35:5840-6. [PMID: 24768194 PMCID: PMC4026944 DOI: 10.1016/j.biomaterials.2014.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/01/2014] [Indexed: 12/02/2022]
Abstract
Magnetic nanoparticles (NPs) MnFe2O4 and Fe3O4 were stabilised by depositing an Al(OH)3 layer via a hydrolysis process. The particles displayed excellent colloidal stability in water and a high affinity to [(18)F]-fluoride and bisphosphonate groups. A high radiolabeling efficiency, 97% for (18)F-fluoride and 100% for (64)Cu-bisphosphonate conjugate, was achieved by simply incubating NPs with radioactivity solution at room temperature for 5 min. The properties of particles were strongly dependant on the thickness and hardness of the Al(OH)3 layer which could in turn be controlled by the hydrolysis method. The application of these Al(OH)3 coated magnetic NPs in molecular imaging has been further explored. The results demonstrated that these NPs are potential candidates as dual modal probes for MR and PET. In vivo PET imaging showed a slow release of (18)F from NPs, but no sign of efflux of (64)Cu.
Collapse
Affiliation(s)
- Xianjin Cui
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Salome Belo
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Dirk Krüger
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Yong Yan
- School of Chemistry, Nottingham University, Nottingham NG7 2RD, UK
| | - Rafael T M de Rosales
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Maite Jauregui-Osoro
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Haitao Ye
- School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
| | - Shi Su
- School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
| | - Domokos Mathe
- CROmed Ltd., Baross u. 91-95, Budapest H-1047, Hungary
| | - Noémi Kovács
- CROmed Ltd., Baross u. 91-95, Budapest H-1047, Hungary
| | | | | | - Kavitha Sunassee
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
| | - Krisztian Szigeti
- Department of Biophysics and Radiation Biology, Nanobiotechnology & In Vivo Imaging Center, Semmelweis University, IX. Tűzoltó u. 37-47, Budapest H-1094, Hungary
| | - Mark A Green
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK; King's College London, Department of Physics, Strand Campus, London WC2R 2LS, UK.
| | - Philip J Blower
- King's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK; King's College London, Division of Chemistry, Britannia House, 7 Trinity St, London SE1 1DB, UK.
| |
Collapse
|
26
|
Wang XD, Wolfbeis OS. Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 2014; 43:3666-761. [PMID: 24638858 DOI: 10.1039/c4cs00039k] [Citation(s) in RCA: 563] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review the current state of optical methods for sensing oxygen. These have become powerful alternatives to electrochemical detection and in the process of replacing the Clark electrode in many fields. The article (with 694 references) is divided into main sections on direct spectroscopic sensing of oxygen, on absorptiometric and luminescent probes, on polymeric matrices and supports, on additives and related materials, on spectroscopic schemes for read-out and imaging, and on sensing formats (such as waveguide sensing, sensor arrays, multiple sensors and nanosensors). We finally discuss future trends and applications and summarize the properties of the most often used indicator probes and polymers. The ESI† (with 385 references) gives a selection of specific applications of such sensors in medicine, biology, marine and geosciences, intracellular sensing, aerodynamics, industry and biotechnology, among others.
Collapse
Affiliation(s)
- Xu-dong Wang
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany.
| | | |
Collapse
|
27
|
|