1
|
Kuntamung K, Sangthong P, Jakmunee J, Ounnunkad K. Simultaneous immunodetection of multiple cervical cancer biomarkers based on a signal-amplifying redox probes/polyethyleneimine-coated gold nanoparticles/2D tungsten disulfide/graphene oxide nanocomposite platform. Bioelectrochemistry 2024; 160:108780. [PMID: 39018611 DOI: 10.1016/j.bioelechem.2024.108780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
To advance cervical cancer diagnostics, we propose a state-of-the-art label-free electrochemical immunosensor designed for the simultaneous detection of multiple biomarker proteins (p16INK4a, p53, and Ki67). This immunosensor is constructed using a polyethyleneimine-coated gold nanoparticles/2D tungsten disulfide/graphene oxide (PEI-AuNPs/2D WS2/GO) composite-modified three-screen-printed carbon electrode (3SPCE) array. The 2D WS2/GO hybrid provides a large specific surface area for supporting well-dispersed PEI-AuNPs and adsorbed redox-active species, enhancing overall performance. The PEI-AuNPs-decorated 2D WS2/GO composite not only improves electrode conductivity but also increases the antibody loading capacity. Redox-active species, including Cd2+ ions, 2,3-diaminophenazine (DAP), and methylene blue (MB), serve as distinct signaling compounds to quantitatively detect the cervical cancer biomarkers p16INK4a, p53, and Ki67, respectively. Additionally, the immunosensor demonstrates the detection with high sensitivity, good storage stability, high selectivity, and acceptable reproducibility. This immunosensor demonstrates a good linear relationship with the logarithm of protein concentrations. Additionally, the immunosensor also demonstrates high sensitivity, good storage stability, high selectivity, and acceptable reproducibility. Our promising results and the successful application of the immunosensor in detecting three tumor markers in human serum highlight its potential for clinical diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Kulrisa Kuntamung
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Occupational and Environmental Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Rathaur VS, Gokhale NA, Panda S. pH effects on capture efficiency and deposition patterns in sessile droplet immunoassays: An XDLVO analysis. BIOMICROFLUIDICS 2024; 18:054103. [PMID: 39280193 PMCID: PMC11401646 DOI: 10.1063/5.0219301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/25/2024] [Indexed: 09/18/2024]
Abstract
Immunosensors are crucial for various applications, with capture efficiency and detection time as key performance parameters. Sessile droplets on functionalized substrates have demonstrated potential as micro-reactors for antibody-antigen binding, reducing detection time and analyte volume due to the presence of convective currents. Tuning the surface charges by adjusting buffer pH can modulate antigen capture efficiency. While the impact of pH has been studied on antibody-antigen binding in flow and non-flow systems, the use of sessile droplets and the specific impact of buffer pH on the capture efficiency of surface-functionalized antibodies remains understudied. Understanding how pH affects capture and deposition patterns is vital for optimizing immunosensor design. Additionally, the mechanisms governing internal flow within the droplet and dominant driving forces require further investigation. We investigated the effect of varying buffer pH on prostate-specific antigen (PSA) capture by anti-PSA functionalized polydimethylsiloxane substrates. Capture efficiency was measured using the Brown-Anson model applied to cyclic voltammetry, validated with electrochemical impedance spectroscopy. pH significantly influenced PSA capture by surface-immobilized anti-PSA IgG. The extended Derjaguin-Landau-Verwey-Overbeek theory explained the interplay between pH and internal flow. Micro-particle image velocimetry (PIV) confirmed internal flow, primarily driven by Marangoni flow from solute concentration gradients. Controlling buffer pH in biosensors offers higher capture efficiency and desired deposition patterns. These insights advance immunosensor design and hold potential for biomedical and diagnostic applications.
Collapse
|
3
|
Wang P, Sun S, Bai G, Zhang R, Liang F, Zhang Y. Nanosized Prussian blue and its analogs for bioimaging and cancer theranostics. Acta Biomater 2024; 176:77-98. [PMID: 38176673 DOI: 10.1016/j.actbio.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Prussian blue (PB) nanoparticles (NPs) and Prussian blue analogs (PBAs) can form metal-organic frameworks through the programmable coordination of ferrous ions with cyanide. PB and PBAs represent a burgeoning class of hybrid functional nano-systems with a wide-ranging application spectrum encompassing biomedicine, cancer diagnosis, and therapy. A comprehensive overview of recent advancements is crucial for gaining insights for future research. In this context, we reviewed the synthesis techniques and surface modification strategies employed to tailor the dimensions, morphology, and attributes of PB NPs. Subsequently, we explored advanced biomedical utilities of PB NPs, encompassing photoacoustic imaging, magnetic resonance imaging, ultrasound (US) imaging, and multimodal imaging. In particular, the application of PB NPs-mediated photothermal therapy, photodynamic therapy, and chemodynamic therapy to cancer treatment was reviewed. Based on the literature, we envision an evolving trajectory wherein the future of Prussian blue-driven biological applications converge into an integrated theranostic platform, seamlessly amalgamating bioimaging and cancer therapy. STATEMENT OF SIGNIFICANCE: Prussian blue, an FDA-approved coordinative pigment with a centuries-long legacy, has paved the way for Prussian blue nanoparticles (PB NPs), renowned for their remarkable biocompatibility and biosafety. These PB NPs have found their niche in biomedicine, playing crucial roles in both diagnostics and therapeutic applications. The comprehensive review goes beyond PB NP-based cancer therapy. Alongside in-depth coverage of PB NP synthesis and surface modifications, the review delves into their cutting-edge applications in the realm of biomedical imaging, encompassing techniques such as photoacoustic imaging, magnetic resonance imaging, ultrasound imaging, and multimodal imaging.
Collapse
Affiliation(s)
- Pengfei Wang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Shaohua Sun
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guosheng Bai
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Ruiqi Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Fei Liang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics of Zhejiang Province, 218 Qingyi Road, Ningbo, 315103, China.
| |
Collapse
|
4
|
Kalyani T, Sangili A, Kotal H, Kaushik A, Chaudhury K, Jana SK. Ultra-sensitive label-free detection of haptoglobin using Au-rGO decorated electrochemical sensing platform: Towards endometriosis diagnostic application. BIOSENSORS AND BIOELECTRONICS: X 2023; 14:100353. [DOI: 10.1016/j.biosx.2023.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
5
|
Disposable label-free electrochemical immunosensor based on prussian blue nanocubes for four breast cancer tumor markers. Talanta 2023; 255:124229. [PMID: 36641867 DOI: 10.1016/j.talanta.2022.124229] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
A compact and low-cost multi-electrode array (MEA) is presented, comprising four working electrodes with shared reference and auxiliary electrodes. Prussian blue was electrodeposited on the MEA using chronoamperometry with a positive potential of 0.3 V. Prussian blue nanocubes (PBNCs) were formed, which were observed using scanning electron microscopy. The precision of the four working electrodes was demonstrated using ferric/ferro cyanide (RSD <5.8%). The surface roughness of the working electrodes of the fabricated MEA was investigated by atomic force microscopy and compared with that of a commercial MEA. The PBNCs were the platform for a label-free immunosensor that detected four breast cancer tumor markers (CEA, CA125, CA153, and CA199) using specific antibodies. The processes of antibody immobilization were investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The immunosensor was evaluated using real human serum samples, yielding acceptable recoveries (95.1-104.1%, RSD < 3.9) for the four tumor markers. These findings confirmed that our label-free immunosensor based on PBNCs could be a promising device for point-of-care testing and could pave the way for the establishment of new platforms for the screening of various breast cancer tumor markers.
Collapse
|
6
|
Manaf BAA, Hong SP, Rizwan M, Arshad F, Gwenin C, Ahmed MU. Recent advancement in sensitive detection of carcinoembryonic antigen using nanomaterials based immunosensors. SURFACES AND INTERFACES 2023; 36:102596. [DOI: 10.1016/j.surfin.2022.102596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Liu Z, Hua Q, Wang J, Liang Z, Zhou Z, Shen X, Lei H, Li X. Prussian blue immunochromatography with portable smartphone-based detection device for zearalenone in cereals. Food Chem 2022; 369:131008. [PMID: 34500205 DOI: 10.1016/j.foodchem.2021.131008] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022]
Abstract
In this study, we developed a prussian blue nanoparticles (PBNPs) immunochromatographic assay (ICA) integrated with smartphone-based detection device for ZEN in cereals. PBNPs, as probe labels, were synthesized with properties of controllable structure, environment friendliness, and high affinities to antibody (Ab). PBNPs-ICA quantitative analysis was performed with a hand-held smartphone-based device coupled with a user-friendly and self-programmed detection App. This integrated strategy demonstrated high sensitivity for ZEN with a cut-off value of 10 μg/kg, a detection limit of 0.12 μg/kg, a quantitation limit of 0.27 μg/kg, and recovery rates of 92.0%-105.0% and 88.0%-98.0% for maize and wheat, respectively. The results of 20 naturally contaminated cereal samples showed good correlation (R2>0.99) between LC-MS/MS and developed system. Moreover, the stability experiment revealed that PBNPs-ICA maintained high stability and bioactivity against competitive antigen (Ag). The proposed strategy exhibited great potential for the rapid monitoring of mycotoxins or other small molecule hazards.
Collapse
Affiliation(s)
- Zhiwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qicheng Hua
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zaoqing Liang
- College of Mathematics and Infromatics, College of Software Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Zexuan Zhou
- College of Mathematics and Infromatics, College of Software Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
In-situ redox-active hybrid graphene platform for label-free electrochemical biosensor: Insights from electrodeposition and electroless deposition. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Ultrasensitive electrochemiluminescence sensor based on nitrogen-decorated carbon dots for Listeria monocytogenes determination using a screen-printed carbon electrode. Biosens Bioelectron 2021; 188:113323. [PMID: 34030099 DOI: 10.1016/j.bios.2021.113323] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022]
Abstract
Current method for identification of foodborne pathogens suffers from its relatively poor performance, consequently limiting its use. Herein, we first describe an ultrasensitive electrochemiluminescence (ECL) sensor based on nitrogen-decorated carbon dots (NCDs) for Listeria monocytogenes (L. monocytogenes) determination using a screen-printed carbon electrode (SPCE). Citric acid serves as carbon source, and ethylenediamine, a molecule containing nitrogen atom, is employed to synthesize CDs. Approximately 4 nm NCD with homogenous size distribution can be produced via a single step green microwave-assisted methodology. The construction of ECL sensor is initiated by the immobilization of capture antibody (Ab1) onto the carboxyl graphene (GOOH)-modified SPCE, where immunocomplexes (antigen and the NCD-labelled secondary antibody (Ab2-NCD)) are formed, resulting in a substantial increment in the ECL signal response in the presence of K2S2O8. The GOOH allows direct formation of the capture antibodies and enhances the electrochemical properties. Under optimal parameters, this sensor exhibits wide linearity (2 to 1.0 × 106 CFU mL-1), high sensitivity (0.104 or 1.0 × 10-1 CFU mL-1) and specificity over the nontargeting studied pathogens and is successfully applied to determine L. monocytogenes in food products. These promising results together with its performance suggest that this proposed platform may serve as an alternative device to effectively control the spread of foodborne diseases.
Collapse
|
10
|
Kongkaew S, Joonyong K, Kanatharana P, Thavarungkul P, Limbut W. Fabrication and characterization of Prussian blue screen-printed working electrode and their application for free chlorine monitoring in swimming pool water. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
A novel label-free electrochemical immunesensor for ultrasensitive detection of LT toxin using prussian blue@gold nanoparticles composite as a signal amplification. Bioelectrochemistry 2021; 142:107887. [PMID: 34298495 DOI: 10.1016/j.bioelechem.2021.107887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
In the current study, a novel electrochemical label-free immunosensor is proposed for sensitive detection of heat-labile enterotoxin (LT) from Escherichia coli. Firstly, a glassy carbon electrode (GCE) was modified by a mixture containing reduced graphene oxide/room temperature ionic liquid (rGO/RTIL) composite. Then, simultaneous electrodeposition of prussian blue and gold nanoparticles led to formation of prussian blue@gold nanoparticles (PB@GNPs) composite on the electrode surface. The modified electrode was characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. After immobilization of anti-LT and blocking the unreacted sites with BSA (bovine serum albumin), the analytical performance of the proposed immunosensor was evaluated under optimal conditions (i.e. optimal pH, incubation time and temperature of incubation). Square wave voltammetry (SWV) was used to determine different concentrations of the LT antigen. The linear dynamic range of the proposed immunosensor was from 0.01 to 50 µg/mL and the detection limit of the immunosensor was found to be 0.0023 µg/mL. An acceptable selectivity in the real sample, long-term stability and goodreproducibility made the fabricated immunosensor a good candidate for detecting LT.
Collapse
|
12
|
Noh S, Kim J, Kim G, Park C, Jang H, Lee M, Lee T. Recent Advances in CRP Biosensor Based on Electrical, Electrochemical and Optical Methods. SENSORS 2021; 21:s21093024. [PMID: 33925825 PMCID: PMC8123455 DOI: 10.3390/s21093024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
C-reactive protein (CRP) is an acute-phase reactive protein that appears in the bloodstream in response to inflammatory cytokines such as interleukin-6 produced by adipocytes and macrophages during the acute phase of the inflammatory/infectious process. CRP measurement is widely used as a representative acute and chronic inflammatory disease marker. With the development of diagnostic techniques measuring CRP more precisely than before, CRP is being used not only as a traditional biomarker but also as a biomarker for various diseases. The existing commercialized CRP assays are dominated by enzyme-linked immunosorbent assay (ELISA). ELISA has high selectivity and sensitivity, but its limitations include requiring complex analytic processes, long analysis times, and professional manpower. To overcome these problems, nanobiotechnology is able to provide alternative diagnostic tools. By introducing the nanobio hybrid material to the CRP biosensors, CRP can be measured more quickly and accurately, and highly sensitive biosensors can be used as portable devices. In this review, we discuss the recent advancements in electrochemical, electricity, and spectroscopy-based CRP biosensors composed of biomaterial and nanomaterial hybrids.
Collapse
Affiliation(s)
- Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Gahyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Korea;
| | - Minho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
- Correspondence: (M.L.); (T.L.); Tel.: +82-2-820-8320 (M.L.); +82-2-940-5771 (T.L.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
- Correspondence: (M.L.); (T.L.); Tel.: +82-2-820-8320 (M.L.); +82-2-940-5771 (T.L.)
| |
Collapse
|
13
|
Abdollahiyan P, Mohammadzadeh A, Hasanzadeh M. Chemical binding of molecular-imprinted polymer to biotinilated antibody: Utilization of molecular imprinting polymer as intelligent synthetic biomaterials toward recognition of carcinoma embryonic antigen in human plasma sample. J Mol Recognit 2021; 34:e2897. [PMID: 33759263 DOI: 10.1002/jmr.2897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
In this study, a novel biosensor based on molecular imprinting polymer (MIP) methodology was fabricated toward recognition of carcinoembryonic antigen (CEA). For this purpose, poly (toluidine blue) (PTB) was electropolymerized on the surface of gold electrode in the absence and presence of CEA. So, the target molecules were entrapped into the imprinted specific cavities of MIP. Obtained results show that, the binding affinity of the MIP system was significantly higher than that of revealed for the nonimprinted polymer (NIP) system, MIP-based biosensor revealed linear response from (0.005 to 75 μg/L) and low limit of quantification of (0.005 μg/L) by using chronoamperometry technique, leading to CEA monitoring in real and clinical samples. Thus, a novel technique for rapid, simple, sensitive and affordable monitoring of CEA (LLOQ = 0.005 μg/L) has provided through developed biosensor. From a future perspective, moreover, this method can be considered as an applicable candidate in biomedical and clinical analysis for point-of-care usages.
Collapse
Affiliation(s)
- Parinaz Abdollahiyan
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Mohammadzadeh
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Huang X, Wu N, Liu W, Shang Y, Liu H, He Y, Meng H, Dong Y. Construction of electrochemical immunosensors based on redox hydrogels for ultrasensitive detection of carcinoembryonic antigens. NEW J CHEM 2021. [DOI: 10.1039/d1nj01282g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of cellulose nanocrystals (CNCs) endows a redox hydrogel with a larger specific surface area and better adhesion to an electrode.
Collapse
Affiliation(s)
- Xiangrong Huang
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Na Wu
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Wenxiu Liu
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Honglai Liu
- Key Laboratory for Advanced Materials
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yifan He
- Key Laboratory of Cosmetic
- China National Light Industry
- School of Science
- Beijing Technology and Business University
- Beijing 100048
| | - Hong Meng
- Key Laboratory of Cosmetic
- China National Light Industry
- School of Science
- Beijing Technology and Business University
- Beijing 100048
| | - Yinmao Dong
- Key Laboratory of Cosmetic
- China National Light Industry
- School of Science
- Beijing Technology and Business University
- Beijing 100048
| |
Collapse
|
15
|
Wang X, Cheng L. Multifunctional Prussian blue-based nanomaterials: Preparation, modification, and theranostic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213393] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Woodman C, Vundu G, George A, Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin Cancer Biol 2020; 69:349-364. [PMID: 32088362 DOI: 10.1016/j.semcancer.2020.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the second most common cancer and the leading cause of death in both men and women in the world. Lung cancer is heterogeneous in nature and diagnosis is often at an advanced stage as it develops silently in the lung and is frequently associated with high mortality rates. Despite the advances made in understanding the biology of lung cancer, progress in early diagnosis, cancer therapy modalities and considering the mechanisms of drug resistance, the prognosis and outcome still remains low for many patients. Nanotechnology is one of the fastest growing areas of research that can solve many biological problems such as cancer. A growing number of therapies based on using nanoparticles (NPs) have successfully entered the clinic to treat pain, cancer, and infectious diseases. Recent progress in nanotechnology has been encouraging and directed to developing novel nanoparticles that can be one step ahead of the cancer reducing the possibility of multi-drug resistance. Nanomedicine using NPs is continuingly impacting cancer diagnosis and treatment. Chemotherapy is often associated with limited targeting to the tumor, side effects and low solubility that leads to insufficient drug reaching the tumor. Overcoming these drawbacks of chemotherapy by equipping NPs with theranostic capability which is leading to the development of novel strategies. This review provides a synopsis of current progress in theranostic applications for lung cancer diagnosis and therapy using NPs including liposome, polymeric NPs, quantum dots, gold NPs, dendrimers, carbon nanotubes and magnetic NPs.
Collapse
Affiliation(s)
- Christopher Woodman
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Gugulethu Vundu
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Alex George
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; Jubilee Centre for Medical Research, Jubilee Mission Medical College & Research Institute, Thrissur, Kerala, India
| | - Cornelia M Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; University of Liverpool, Institute of Translation Medicine, Dept of Molecular & Clinical Cancer Medicine, United Kingdom; Novel Global Community Educational Foundation, Australia.
| |
Collapse
|
17
|
Multidimensional (0D-3D) nanostructures for lung cancer biomarker analysis: Comprehensive assessment on current diagnostics. Biosens Bioelectron 2019; 141:111434. [DOI: 10.1016/j.bios.2019.111434] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
|
18
|
Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2019; 206:120251. [PMID: 31514848 DOI: 10.1016/j.talanta.2019.120251] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. Lung cancer is the most common type of cancer, so that about 25% of all cancer deaths are related to the lung cancer. The lung cancer is classified as two different types with different treatment methodology: the small cell lung carcinoma and nonsmall cell lung carcinoma are two categories of the lung cancer. Since the lung cancer is often in the latent period in its early stages, therefore, early diagnosis of lung cancer has many challenges. Hence, there is a need for sensitive and reliable tools for preclinical diagnosis of lung cancer. Therefore, many detection methods have been employed for early detection of lung cancer. As lung cancer tumors growth in the body, the cancerous cells release numerous DNA, proteins, and metabolites as special biomarkers of the lung cancer. The levels of these biomarkers show the stages of the lung cancer. Therefore, detection of the biomarkers can be used for screening and clinical diagnosis of the lung cancer. There are numerous biomarkers for the lung cancer such as EGFR, CEA, CYFRA 21-1, ENO1, NSE, CA 19-9, CA 125 and VEGF. Nowadays, electrochemical methods are very attractive and useful in the lung cancer detections. So, in this paper, the recent advances and improvements (2010-2018) in the electrochemical detection of the lung cancer biomarkers have been reviewed.
Collapse
Affiliation(s)
- Akbar Khanmohammadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Aghaie
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ensieh Vahedi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Qazvini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Vienna, Austria
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Jampasa S, Lae-Ngee P, Patarakul K, Ngamrojanavanich N, Chailapakul O, Rodthongkum N. Electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for leptospirosis diagnosis. Biosens Bioelectron 2019; 142:111539. [PMID: 31376713 DOI: 10.1016/j.bios.2019.111539] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 01/20/2023]
Abstract
Leptospirosis is a critical human health problem in the tropical area, thus, a precise technique that can be used for point-of-care analysis is greatly required. This is the first report on electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for rapid, simple and sensitive determination of LipL32. The sensor consisted of two LipL32-specific antibodies: an unlabeled capture primary antibody (Anti-1°Ab) and an electrochemically detectable gold-conjugated secondary antibody (Au-2°Ab). The Anti-1°Ab was immobilized onto the modified screen-printed graphene electrode (SPGE) to form the anti-LipL32 surface. The electrochemical signal response was determined by differential pulse voltammetry (DPV). In the presence of LipL32, the sensor displayed a significant increase in current response in a concentration-dependent manner, but no observable signal was detected in the absence of LipL32. The linearity between LipL32 concentration and the measured current was found in a range of 1-100 ng/mL, and the limit of detection (LOD) (3SDblank/Slope) and limit of quantitation (LOQ) (10SDblank/Slope) were found to be 0.28 and 0.93 ng/mL, respectively. This sensor was successfully applied to detect pathogenic Leptospira whole cell lysates samples with the satisfactory results. The promissing results suggested that this immunosensor might be an alternative tool for diagnosis of leptospirosis.
Collapse
Affiliation(s)
- Sakda Jampasa
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Prayoon Lae-Ngee
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Nattaya Ngamrojanavanich
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand; National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
20
|
Chen M, Ma C, Zhao H, Yan Y. Exonuclease III-assisted fluorometric aptasensor for the carcinoembryonic antigen using graphene oxide and 2-aminopurine. Mikrochim Acta 2019; 186:500. [PMID: 31270630 DOI: 10.1007/s00604-019-3621-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/15/2019] [Indexed: 01/04/2023]
Abstract
A reliable fluorometric assay is described for the determination carcinoembryonic antigen (CEA) using exonuclease III (Exo III) and a 2-aminopurine binding aptamer. In the absence of CEA, dsDNA is degraded by Exo III, and free 2-AP (which has a blue fluorescence with excitation/emission maxima of 310/365 nm) is released. Strong fluorescence is generated after addition of graphene oxide (GO) to the solution. However, the 2-AP modified DNA (T2) cannot be degraded in the presence of CEA by Exo III due to the interaction between CEA and aptamer T1. Hence, only weak fluorescence can be detected after addition of GO. In this system, CEA can be quantified in the 0.05 - 2 ng·mL-1 concentration range with a detection limit of 30 pg·mL-1 (at S/N = 3). The method was successfully applied to analyze serum samples for CEA. Graphical Abstract An exonuclease III-assisted fluorometric aptasensor has been developed for the detection of carcinoembryonic antigen using graphene oxide and 2-aminopurine.
Collapse
Affiliation(s)
- Mingjian Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha, 410013, China.
| | - Han Zhao
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ying Yan
- School of Life Sciences, Central South University, Changsha, 410013, China
| |
Collapse
|
21
|
Boonkaew S, Chaiyo S, Jampasa S, Rengpipat S, Siangproh W, Chailapakul O. An origami paper-based electrochemical immunoassay for the C-reactive protein using a screen-printed carbon electrode modified with graphene and gold nanoparticles. Mikrochim Acta 2019; 186:153. [DOI: 10.1007/s00604-019-3245-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/05/2019] [Indexed: 01/21/2023]
|
22
|
Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens Bioelectron 2019; 126:773-784. [DOI: 10.1016/j.bios.2018.11.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
|
23
|
Hu Y, Huang Y, Wang Z, Wang Y, Ye X, Wong W, Li C, Sun D. Gold/WS 2 nanocomposites fabricated by in-situ ultrasonication and assembling for photoelectrochemical immunosensing of carcinoembryonic antigen. Mikrochim Acta 2018; 185:570. [PMID: 30506429 DOI: 10.1007/s00604-018-3100-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/15/2018] [Indexed: 01/30/2023]
Abstract
Tungsten disulfide (WS2) nanosheets were obtained by exfoliating WS2 bulk crystals in N-methylpyrrolidone by ultrasonication. Gold nanoparticles (GNPs) were synthesized by in-situ ultrasonication of sodium citrate and HAuCl4 while fabricating the WS2 nanosheets. In this way, the GNPs were self-assembled on WS2 nanosheets to form a GNPs/WS2 nanocomposite through interaction between sulfur and gold atoms. The photoelectrochemical response of WS2 nanosheets is significantly enhanced after integration of the GNPs. The GNPs/WS2 nanocomposite was coated onto a glassy carbon electrode (GCE) to construct a sensing interface which then was modified with an antibody against the carcinoembryonic antigen (CEA) to obtain a photoelectrochemical immunosensor for CEA. Under optimized conditions, the decline in relative photocurrent is linearly related to the logarithm of the CEA concentration in the range from 0.001 to 40 ng mL-1. The detection limit is 0.5 pg mL-1 (at S/N = 3). The assay is sensitive, selective, stable and reproducible. It was applied to the determination of CEA in clinical serum samples. Graphical abstract Schematic presentation of the fabrication of Au/WS2 nanocomposites by in-situ ultrasonication and the procedure for the CEA photoelectrochemical immunosensor preparation, and the photocurrent response towards the carcinoembryonic antigen.
Collapse
Affiliation(s)
- Ye Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yajiao Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhengguo Wang
- Institute of Food Science and Engineering Technology, Hezhou University, Hezhou, 542899, Guangxi, China
| | - Yanying Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiaoxue Ye
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - WingLeung Wong
- School of Chemical and Environmental Engineering, International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen, 529020, China
| | - Chunya Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Dong Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
24
|
Tran DT, Hoa VH, Tuan LH, Kim NH, Lee JH. Cu-Au nanocrystals functionalized carbon nanotube arrays vertically grown on carbon spheres for highly sensitive detecting cancer biomarker. Biosens Bioelectron 2018; 119:134-140. [DOI: 10.1016/j.bios.2018.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/23/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
|
25
|
Parnianchi F, Nazari M, Maleki J, Mohebi M. Combination of graphene and graphene oxide with metal and metal oxide nanoparticles in fabrication of electrochemical enzymatic biosensors. INTERNATIONAL NANO LETTERS 2018. [DOI: 10.1007/s40089-018-0253-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Zhu F, Zhao G, Dou W. A non-enzymatic electrochemical immunoassay for quantitative detection of Escherichia coli O157:H7 using Au@Pt and graphene. Anal Biochem 2018; 559:34-43. [PMID: 30144412 DOI: 10.1016/j.ab.2018.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 10/28/2022]
Abstract
Herein, a non-enzymatic sandwich-type electrochemical immunoassay was fabricated for quantitative monitoring of Escherichia coli O157:H7 (E. coli O157:H7). Silica coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) were modified with mouse anti-E. coli O157:H7 monoclonal antibody (Ab1) to act as capture probes to reduce detection time and increase the sensitivity of the immunoassay. The Au@Pt nanoparticles were loaded on neutral red (NR) functionalized graphene to form composite complex rGO-NR-Au@Pt. rGO-NR-Au@Pt has high specific surface area and good biocompatibility. rGO-NR-Au@Pt was used as the carriers of detection antibodies (Ab2). Au@Pt catalyzed the reduction of hydrogen peroxide (H2O2) to detection of E. coli O157:H7 with the thionine (TH) as electron mediator to effectually amply the current signal. Under the optimized conditions, a linear relationship between the reduction peak current change (ΔIpc) and the logarithm of the E. coli O157:H7 concentration is obtained in the range from 4.0 × 103 to 4.0 × 108 CFU mL-1 and the limit of detection (LOD) is 4.5 × 102 CFU mL-1 at a signal-to-noise ratio of 3. The immunoassay exhibits acceptable specificity, reproducibility and stability on the detection of E. coli O157:H7. Furthermore, the immunoassay showed good performance in pork and milk samples. The results suggest that this immunoassay will be promising in the food safety area.
Collapse
Affiliation(s)
- Fanjun Zhu
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
27
|
Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. J Pharm Biomed Anal 2018; 147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
28
|
Sensitive immunosensing of the carcinoembryonic antigen utilizing aptamer-based in-situ formation of a redox-active heteropolyacid and rolling circle amplification. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2522-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Pavithra M, Muruganand S, Parthiban C. Development of a Simple Isatin-Based Electrochemical Immunosensor on a Screen-Printed Gold Electrode for Highly Sensitive Detection of Carcinoembryonic Antigen. ChemistrySelect 2017. [DOI: 10.1002/slct.201700870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Masilamani Pavithra
- Department of Electronics and Instrumentation; Bharathiar University; Coimbatore India
| | - Shanmugam Muruganand
- Department of Electronics and Instrumentation; Bharathiar University; Coimbatore India
| | | |
Collapse
|
30
|
Pasinszki T, Krebsz M, Tung TT, Losic D. Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1919. [PMID: 28825646 PMCID: PMC5579959 DOI: 10.3390/s17081919] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
The early diagnosis of diseases, e.g., Parkinson's and Alzheimer's disease, diabetes, and various types of cancer, and monitoring the response of patients to the therapy plays a critical role in clinical treatment; therefore, there is an intensive research for the determination of many clinical analytes. In order to achieve point-of-care sensing in clinical practice, sensitive, selective, cost-effective, simple, reliable, and rapid analytical methods are required. Biosensors have become essential tools in biomarker sensing, in which electrode material and architecture play critical roles in achieving sensitive and stable detection. Carbon nanomaterials in the form of particle/dots, tube/wires, and sheets have recently become indispensable elements of biosensor platforms due to their excellent mechanical, electronic, and optical properties. This review summarizes developments in this lucrative field by presenting major biosensor types and variability of sensor platforms in biomedical applications.
Collapse
Affiliation(s)
- Tibor Pasinszki
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
| | - Melinda Krebsz
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | - Thanh Tran Tung
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| |
Collapse
|
31
|
Amperometric immunoassay for the tumor marker neuron-specific enolase using a glassy carbon electrode modified with a nanocomposite consisting of polyresorcinol and of gold and platinum nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2287-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Si Z, Xie B, Chen Z, Tang C, Li T, Yang M. Electrochemical aptasensor for the cancer biomarker CEA based on aptamer induced current due to formation of molybdophosphate. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2338-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Wang J, Guo J, Zhang J, Zhang W, Zhang Y. RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosens Bioelectron 2017; 95:100-105. [PMID: 28431362 DOI: 10.1016/j.bios.2017.04.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023]
Abstract
C-reactive protein (CRP) is a widely accepted biomarker of cardiovascular disease and inflammation. In this study, a RNA aptamer-based electrochemical sandwich type aptasensor for CRP detection was described using the functionalized silica microspheres as immunoprobes. Silica microspheres (Si MSs), which have good monodispersity and uniform shape, were firstly synthesized. The silica microspheres functionlized with gold nanoparticles (Au NPs) provided large surface area for immobilizing signal molecules (Zinc ions, Zn2+) and antibodies (Ab). RNA aptamers, which were specific recognized to CRP, were assembled on the surface of Au NPs modified electrode via gold-sulfur affinity. In the presence of CRP, a sandwich structure of aptamer-CRP-immunoprobe was formed. Square wave voltammetry (SWV) was employed to record the sensing signal, and a clearly reductive peak corresponding to Zn2+ at about -1.16V (vs. SCE) was obtained. Under optimal conditions, the aptasensor showed wide linear range (0.005ngmL-1 to 125ngmL-1) and low detection limit (0.0017ngmL-1 at a signal-to-noise ratio of 3). Some possible interfering substance was also investigated, and the results obtained showed that the aptasensor possessed good selectivity. When the aptasensor was applied to real serum samples analysis, the satisfied results were obtained, indicating that the aptasensor possessed potential real application ability.
Collapse
Affiliation(s)
- Junchun Wang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Jinjin Guo
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Junjun Zhang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Wenjuan Zhang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Yuzhong Zhang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| |
Collapse
|
34
|
Su S, Han X, Lu Z, Liu W, Zhu D, Chao J, Fan C, Wang L, Song S, Weng L, Wang L. Facile Synthesis of a MoS 2-Prussian Blue Nanocube Nanohybrid-Based Electrochemical Sensing Platform for Hydrogen Peroxide and Carcinoembryonic Antigen Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12773-12781. [PMID: 28325046 DOI: 10.1021/acsami.7b01141] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, an electrochemical detection platform was designed based on a Prussian blue nanocube-decorated molybdenum disulfide (MoS2-PBNCs) nanocomposite. Shape-controlled and high-dispersion PBNCs were supported on the MoS2 nanosheet surface, which would be simply controlled by varying the experimental conditions. Expectedly, such obtained MoS2-based nanocomposites possessed excellent electrocatalytic ability, which could be employed to construct an electrochemical sensor for nonenzymatic hydrogen peroxide (H2O2) detection. More interestingly, MoS2-PBNCs nanocomposites could be utilized to construct a sensor for label-free detection of carcinoembryonic antigen (CEA). The electrochemical response of the MoS2-based immunosensor was linear with the CEA concentration ranging from 0.005 to 10 ng mL-1. Moreover, the detection limit was calculated to be 0.54 pg mL-1. The acceptable selectivity and high stability made such immunosensors detect CEA in human serum with satisfactory results. All data indicated that this MoS2-PBNCs nanocomposite may be a promising electrochemical sensing platform for the detection of chemical and biological molecules.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunhai Fan
- Division of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Shiping Song
- Division of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | | | | |
Collapse
|
35
|
Ultrasensitive amperometric detection of the tumor biomarker cytokeratin antigen using a hydrogel composite consisting of phytic acid, Pb(II) ions and gold nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2101-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Hasanzadeh M, Shadjou N. Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Mikrochim Acta 2017. [DOI: 10.1007/s00604-016-2066-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Amperometric sandwich immunoassay for the carcinoembryonic antigen using a glassy carbon electrode modified with iridium nanoparticles, polydopamine and reduced graphene oxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2010-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Feng T, Wang Y, Qiao X. Recent Advances of Carbon Nanotubes-based Electrochemical Immunosensors for the Detection of Protein Cancer Biomarkers. ELECTROANAL 2016. [DOI: 10.1002/elan.201600512] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Taotao Feng
- School of Chemistry and Chemical Engineering; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps; Shihezi University; Shihezi 832003 PR China
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Yue Wang
- GRINM Semiconductor materials Co., Ltd.; General Research Institute for Nonferrous Metals; Beijing 100088 China
| | - Xiuwen Qiao
- School of Chemistry and Chemical Engineering; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps; Shihezi University; Shihezi 832003 PR China
| |
Collapse
|
39
|
Electrochemical immunosensor for the carcinoembryonic antigen based on a nanocomposite consisting of reduced graphene oxide, gold nanoparticles and poly(indole-6-carboxylic acid). Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1940-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
Sharma S, Raghav R, O’Kennedy R, Srivastava S. Advances in ovarian cancer diagnosis: A journey from immunoassays to immunosensors. Enzyme Microb Technol 2016; 89:15-30. [DOI: 10.1016/j.enzmictec.2016.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/01/2016] [Accepted: 03/06/2016] [Indexed: 01/12/2023]
|
41
|
Guo J, Wang J, Zhao J, Guo Z, Zhang Y. Ultrasensitive Multiplexed Immunoassay for Tumor Biomarkers Based on DNA Hybridization Chain Reaction Amplifying Signal. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6898-6904. [PMID: 26937717 DOI: 10.1021/acsami.6b00756] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, a novel electrochemical immunoassay protocol has been reported for simultaneous determination of multiple tumor biomarkers based on DNA hybridization chain reaction (HCR) for signal amplification. Alpha-fetoprotein (AFP) and prostate specific antigen (PSA) were selected as model biomarkers. The immunoassay protocol contained primary antibodies immobilized on gold nanoparticles (Au NPs), secondary antibodies conjugated with DNA concatemer from HCR of primer, auxiliary probe, and signal probe labeled with signal molecules (methyleneblue (MB) and ferrocene (Fc)). In the presence of target biomarkers, the sandwich immunocomplex was formed between the primary antibodies and secondary antibodies bioconjugates carrying numerous signal molecules. As a result, two well-resolved reduction peaks, one was at -0.35 V (corresponding to MB) and other was at 0.33 V (corresponding to Fc; both vs SCE), were obtained in differential pulse voltammetry, and peak currents changed were related to the level of biomarkers. Under optimal conditions, the electrochemical immunoassay exhibited a wide linear response range (0.5 pg mL(-1) to 50 ng mL(-1)) and low detection limits (PSA, 0.17 pg mL(-1); AFP, 0.25 pg mL(-1)) (at S/N = 3). In addition, the immunoassay was evaluated by analyzing simulate human serum sample, and the recoveries obtained were within 99.4-107.6% for PSA and 97.9-108.2% for AFP, indicating the immnuoassay could be applied to the simultaneous detection of AFP and PSA in human serum samples.
Collapse
Affiliation(s)
- Jinjin Guo
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University , Wuhu 241000, People's Republic of China
| | - Junchun Wang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University , Wuhu 241000, People's Republic of China
| | - Junqing Zhao
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University , Wuhu 241000, People's Republic of China
| | - Zilin Guo
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University , Wuhu 241000, People's Republic of China
| | - Yuzhong Zhang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University , Wuhu 241000, People's Republic of China
| |
Collapse
|
42
|
Moreira FTC, Ferreira MJMS, Puga JRT, Sales MGF. Screen-printed electrode produced by printed-circuit board technology. Application to Cancer Biomarker Detection by means of plastic antibody as sensing material. SENSORS AND ACTUATORS. B, CHEMICAL 2016; 223:927-935. [PMID: 30740000 PMCID: PMC6366552 DOI: 10.1016/j.snb.2015.09.157] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This research work presents, for the first time, a screen-printed electrode (SPE) made on a PCB board with silver tracks (Ag) and a three electrode configuration (AgxO-working, AgxO-counter and Ag/AgxO-reference electrodes), following the same approach as printed-circuit boards (PCBs). This low cost and disposable device was tested for screening a cancer biomarker in point-of-care. The selected biomarker was carcinogenic embryonic antigen (CEA) protein, routinely used to follow-up the progression of specific cancer diseases. The biosensor was constructed by assembling a plastic antibody on the Ag-working electrode area, acting as the biorecognition element of the device. The protein molecules that were entrapped on the polymer and positioned at the outer surface of the polypyrrole (PPy) film were removed by protease action. The imprinting effect was tested by preparing non-imprinted (NPPy) material, including only PPy as biorecognition element. Infrared and Raman studies confirmed the surface modification of these electrodes. The ability of the sensing material to rebind CEA was measured by several electrochemical techniques: cyclic voltammetry (CV), impedance spectroscopy (EIS) and square wave voltammetry (SWV). The linear response ranged from 0.05 to 1.25 pg/mL against logarithm concentration. Overall, producing screen-printed electrodes by means of conventional PCB technology showed promising features, mostly regarding cost and prompt availability. The plastic antibody-based biosensor also seems to be a promising tool for screening CEA in point-of-care, with low response time, low cost, good sensitivity and high stability.
Collapse
Affiliation(s)
- Felismina T C Moreira
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal
| | | | - José R T Puga
- TID-CINTESIS/ School of Engineering, Polytechnic Institute of Porto, Portugal
| | - M Goreti F Sales
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal
| |
Collapse
|
43
|
Tiwari JN, Vij V, Kemp KC, Kim KS. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS NANO 2016; 10:46-80. [PMID: 26579616 DOI: 10.1021/acsnano.5b05690] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The study of electrochemical behavior of bioactive molecules has become one of the most rapidly developing scientific fields. Biotechnology and biomedical engineering fields have a vested interest in constructing more precise and accurate voltammetric/amperometric biosensors. One rapidly growing area of biosensor design involves incorporation of carbon-based nanomaterials in working electrodes, such as one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide. In this review article, we give a brief overview describing the voltammetric techniques and how these techniques are applied in biosensing, as well as the details surrounding important biosensing concepts of sensitivity and limits of detection. Building on these important concepts, we show how the sensitivity and limit of detection can be tuned by including carbon-based nanomaterials in the fabrication of biosensors. The sensing of biomolecules including glucose, dopamine, proteins, enzymes, uric acid, DNA, RNA, and H2O2 traditionally employs enzymes in detection; however, these enzymes denature easily, and as such, enzymeless methods are highly desired. Here we draw an important distinction between enzymeless and enzyme-containing carbon-nanomaterial-based biosensors. The review ends with an outlook of future concepts that can be employed in biosensor fabrication, as well as limitations of already proposed materials and how such sensing can be enhanced. As such, this review can act as a roadmap to guide researchers toward concepts that can be employed in the design of next generation biosensors, while also highlighting the current advancements in the field.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Varun Vij
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - K Christian Kemp
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Kwang S Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| |
Collapse
|
44
|
Campuzano S, Pedrero M, Nikoleli GP, Pingarrón JM, Nikolelis DP. Hybrid 2D-nanomaterials-based electrochemical immunosensing strategies for clinical biomarkers determination. Biosens Bioelectron 2016; 89:269-279. [PMID: 26847843 DOI: 10.1016/j.bios.2016.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/18/2022]
Abstract
Owing to the outstanding conductivity and biocompatibility as well as numerous other fascinating properties of two-dimensional (2D)-nanomaterials, 2D-based nanohybrids have shown unparalleled superiorities in the field of electrochemical biosensors. This review highlights latest advances in electrochemical immunosensors for clinical biomarkers based on different hybrid 2D-nanomaterials. Particular attention will be given to hybrid nanostructures involving graphene and other graphene-like 2D-layered nanomaterials (GLNs). Several recent strategies for using such 2D-nanomaterial heterostructures in the development of modern immunosensors, both for tagging or modifying electrode transducers, are summarized and discussed. These hybrid nanocomposites, quite superior than their rival materials, will undoubtedly have an important impact within the near future and not only in clinical areas. Current challenges and future perspectives in this rapidly growing field are also outlined.
Collapse
Affiliation(s)
- S Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - M Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - G-P Nikoleli
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Dept 1, Chemical Sciences, National Technical University of Athens, 9 Iroon Polytechniou St., Athens 157 80, Greece.
| | - J M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - D P Nikolelis
- Laboratory of Environmental Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis-Kouponia, GR-15771 Athens, Greece
| |
Collapse
|
45
|
Sun XC, Lei C, Guo L, Zhou Y. Giant magneto-resistance based immunoassay for the tumor marker carcinoembryonic antigen. Mikrochim Acta 2016. [DOI: 10.1007/s00604-015-1686-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of graphene and Fe3O4/Au NPs. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.12.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Feng T, Qiao X, Wang H, Sun Z, Qi Y, Hong C. A porous CuO nanowire-based signal amplification immunosensor for the detection of carcinoembryonic antigens. RSC Adv 2016. [DOI: 10.1039/c5ra26828a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A novel electrochemical immunosensor was developed for the detection of CEA based on CNTs–AuNPs as a platform and pCuOw@Fc as labels. The immunosensor showed enhanced electrochemical performance toward the detection of CEA.
Collapse
Affiliation(s)
- Taotao Feng
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- PR China
| | - Xiuwen Qiao
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- PR China
| | - Haining Wang
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- PR China
| | - Zhao Sun
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- PR China
| | - Yu Qi
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- PR China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- PR China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
| |
Collapse
|
48
|
Feng D, Li L, Zhao J, Zhang Y. Simultaneous electrochemical detection of multiple biomarkers using gold nanoparticles decorated multiwall carbon nanotubes as signal enhancers. Anal Biochem 2015; 482:48-54. [DOI: 10.1016/j.ab.2015.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 11/24/2022]
|
49
|
Kong B, Selomulya C, Zheng G, Zhao D. New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chem Soc Rev 2015. [PMID: 26214277 DOI: 10.1039/c5cs00397k] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prussian blue (PB), the oldest synthetic coordination compound, is a classic and fascinating transition metal coordination material. Prussian blue is based on a three-dimensional (3-D) cubic polymeric porous network consisting of alternating ferric and ferrous ions, which provides facile assembly as well as precise interaction with active sites at functional interfaces. A fundamental understanding of the assembly mechanism of PB hetero-interfaces is essential to enable the full potential applications of PB crystals, including chemical sensing, catalysis, gas storage, drug delivery and electronic displays. Developing controlled assembly methods towards functionally integrated hetero-interfaces with adjustable sizes and morphology of PB crystals is necessary. A key point in the functional interface and device integration of PB nanocrystals is the fabrication of hetero-interfaces in a well-defined and oriented fashion on given substrates. This review will bring together these key aspects of the hetero-interfaces of PB nanocrystals, ranging from structure and properties, interfacial assembly strategies, to integrated hetero-structures for diverse sensing.
Collapse
Affiliation(s)
- Biao Kong
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | | | | | | |
Collapse
|
50
|
Tang J, Tang D. Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1567-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|