• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4624704)   Today's Articles (3565)   Subscriber (49418)
For: Afzali D, Fathirad F. Determination of zearalenone with a glassy carbon electrode modified with nanocomposite consisting of palladium nanoparticles and a conductive polymeric ionic liquid. Mikrochim Acta 2016;183:2633-8. [DOI: 10.1007/s00604-016-1907-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Number Cited by Other Article(s)
1
Georgescu-State R, van Staden JKF, Staden RISV, State RN. Electrochemical platform based on molecularly imprinted polymer with zinc oxide nanoparticles and multiwalled carbon nanotubes modified screen-printed carbon electrode for amaranth determination. Mikrochim Acta 2023;190:229. [PMID: 37204551 DOI: 10.1007/s00604-023-05811-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023]
2
Zeng Y, Camarada MB, Lu X, Tang K, Li W, Qiu D, Wen Y, Wu G, Luo Q, Bai L. Detection and electrocatalytic mechanism of zearalenone using nanohybrid sensor based on copper-based metal-organic framework/magnetic Fe3O4-graphene oxide modified electrode. Food Chem 2022;370:131024. [PMID: 34525426 DOI: 10.1016/j.foodchem.2021.131024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/04/2022]
3
MoS2 quantum dots and titanium carbide co-modified carbon nanotube heterostructure as electrode for highly sensitive detection of zearalenone. Mikrochim Acta 2021;189:15. [PMID: 34873654 DOI: 10.1007/s00604-021-05104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
4
Chen X, Wu H, Tang X, Zhang Z, Li P. Recent Advances in Electrochemical Sensors for Mycotoxin Detection in Food. ELECTROANAL 2021. [DOI: 10.1002/elan.202100223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
5
Radi A, Eissa A, Wahdan T. Molecularly Imprinted Impedimetric Sensor for Determination of Mycotoxin Zearalenone. ELECTROANAL 2020;32:1788-1794. [DOI: 10.1002/elan.201900528] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
6
Wang Y, Zhao G, Wang H, Zhang Y, Zhang N, Wei D, Feng R, Wei Q. Label-free electrochemical immunosensor based on biocompatible nanoporous Fe3O4and biotin–streptavidin system for sensitive detection of zearalenone. Analyst 2020;145:1368-1375. [DOI: 10.1039/c9an02543j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
7
Strip-shaped Co3O4 as a peroxidase mimic in a signal-amplified impedimetric zearalenone immunoassay. Mikrochim Acta 2019;187:75. [PMID: 31863215 DOI: 10.1007/s00604-019-4053-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
8
Electrocatalytic oxidation of zearalenone on cobalt phthalocyanine-modified screen-printed carbon electrode. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02532-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
9
Single-use sensor technology for monitoring of zearalenone in foods: ZentoSens. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
10
He B, Yan X. An amperometric zearalenone aptasensor based on signal amplification by using a composite prepared from porous platinum nanotubes, gold nanoparticles and thionine-labelled graphene oxide. Mikrochim Acta 2019;186:383. [PMID: 31140009 DOI: 10.1007/s00604-019-3500-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/12/2019] [Indexed: 11/29/2022]
11
Thin-layer MoS2 and thionin composite-based electrochemical sensing platform for rapid and sensitive detection of zearalenone in human biofluids. Biosens Bioelectron 2019;130:322-329. [DOI: 10.1016/j.bios.2019.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 11/17/2022]
12
Radi AE, Eissa A, Wahdan T. Voltammetric behavior of mycotoxin zearalenone at a single walled carbon nanotube screen-printed electrode. ANALYTICAL METHODS 2019;11:4494-4500. [DOI: 10.1039/c9ay01400d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
13
Llorent-Martínez E, Fernández-Poyatos M, Ruiz-Medina A. Automated fluorimetric sensor for the determination of zearalenone mycotoxin in maize and cereals feedstuff. Talanta 2019;191:89-93. [DOI: 10.1016/j.talanta.2018.08.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 02/04/2023]
14
Goud KY, Kailasa SK, Kumar V, Tsang YF, Lee SE, Gobi KV, Kim KH. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosens Bioelectron 2018;121:205-222. [PMID: 30219721 DOI: 10.1016/j.bios.2018.08.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022]
15
Fluorometric lateral flow immunochromatographic zearalenone assay by exploiting a quencher system composed of carbon dots and silver nanoparticles. Mikrochim Acta 2018;185:388. [PMID: 30046913 DOI: 10.1007/s00604-018-2916-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/13/2018] [Indexed: 01/21/2023]
16
Taghdisi SM, Danesh NM, Ramezani M, Emrani AS, Abnous K. Novel Colorimetric Aptasensor for Zearalenone Detection Based on Nontarget-Induced Aptamer Walker, Gold Nanoparticles, and Exonuclease-Assisted Recycling Amplification. ACS APPLIED MATERIALS & INTERFACES 2018;10:12504-12509. [PMID: 29565121 DOI: 10.1021/acsami.8b02349] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
17
Lhotská I, Gajdošová B, Solich P, Šatínský D. Molecularly imprinted vs. reversed-phase extraction for the determination of zearalenone: a method development and critical comparison of sample clean-up efficiency achieved in an on-line coupled SPE chromatography system. Anal Bioanal Chem 2018;410:3265-3273. [DOI: 10.1007/s00216-018-0920-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/16/2018] [Accepted: 01/25/2018] [Indexed: 01/11/2023]
18
Socas-Rodríguez B, González-Sálamo J, Hernández-Borges J, Rodríguez-Delgado MÁ. Recent applications of nanomaterials in food safety. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
19
Electrochemical indirect competitive immunoassay for ultrasensitive detection of zearalenone based on a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes and chitosan. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2342-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
20
Berthiller F, Brera C, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J, Tittlemier S. Developments in mycotoxin analysis: an update for 2015-2016. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2138] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA