1
|
S S, Sam S, Girish Kumar K. Polyethyleneimine capped silver nanoclusters based turn-off-on fluorescence sensor for the determination of glutathione. Talanta 2024; 278:126541. [PMID: 39018760 DOI: 10.1016/j.talanta.2024.126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
A polyethyleneimine capped silver nanoclusters (PEI-AgNCs) based turn-off-on fluorescence sensor has been developed to determine glutathione (GSH) effectively. The fluorescence intensity of silver nanoclusters (AgNCs) has been quenched by Cu(II) and recovered by adding GSH. The quenching of fluorescence intensity of PEI-AgNCs by Cu(II) and recovery of the emission intensity of PEI-AgNCs after the addition of GSH is supposed to be ground state adduct formation. Due to the greater affinity of Cu(II) towards GSH compared to that to PEI-AgNCs, the defragmentation of PEI-AgNCs-Cu(II) adduct occurs after the addition of GSH to the solution, resulting in the recovery of emission intensity of PEI-AgNCs. Characterisation studies of the probe have been done using FT-IR spectroscopy, XPS analysis, XRD analysis, UV-visible and Fluorescence spectrophotometry, EDX spectroscopy and TEM analysis. Different experimental parameters were optimised. Under optimised analytical conditions, the sensor showed a wide linear range for the quantification of GSH from 1.00 × 10-4 M to 3.00 × 10-6 M with a detection limit (LOD) of 8.00 × 10-7 M. Selectivity and interference studies were done in the presence of different structurally similar and coexisting species of GSH in blood. The practical utility of the proposed sensor has been validated in artificial blood serum.
Collapse
Affiliation(s)
- Swathy S
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, 682022, Kerala, India
| | - Sonia Sam
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, 682022, Kerala, India
| | - K Girish Kumar
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, 682022, Kerala, India.
| |
Collapse
|
2
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
3
|
Sharma D, Wangoo N, Sharma RK. Ultrasensitive NIR fluorometric assay for inorganic pyrophosphatase detection via Cu 2+-PPi interaction using bimetallic Au-Ag nanoclusters. Anal Chim Acta 2024; 1305:342584. [PMID: 38677840 DOI: 10.1016/j.aca.2024.342584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Inorganic pyrophosphatase (PPase) is key enzyme playing a key role in biochemical transformations such as biosynthesis of DNA and RNA, bone formation, metabolic pathways associated with lipid, carbohydrate and phosphorous. It has been reported that lung adenocarcinomas, colorectal cancer, and hyperthyroidism disorders can result from abnormal level of PPase. Therefore, it is of notable significance to develop simple and effective real time assay for PPase enzyme activity monitoring for screening of many metabolic pathways as well as for early disease diagnosis. RESULT The fluorometric detection of PPase enzyme in near infrared region-1 (NIR-1) has been carried out using bimetallic nanoclusters (LA@AuAg NCs). The developed sensing strategy was based on quenching of fluorescence intensity of LA@AuAg NCs upon interaction with copper (Cu2+) ions. The off state of LA@AuAg_Cu2+ ensemble was turned on upon addition of pyrophosphate anion (PPi) due to strong binding interaction between PPi and Cu2+. The catalytic conversion of PPi into phosphate anion (Pi) in the presence of PPase led to liberation of Cu2+ ions, and again quenched off state was retrieved due to interaction of free Cu2+ with LA@AuAg NCs. The ultrasensitive detection of PPase was observed in the linear range of 0.06-250 mU/mL with LOD as 0.0025 mU/mL. The designed scheme showed good selectivity towards PPase enzyme in comparison to other bio-substrates, along with good percentage recovery for PPase detection in real human serum samples. SIGNIFICANCE The developed NIR based assay is ultrasensitive, highly selective and robust for PPase enzyme and can be safely employed for other enzymes detection. This highly sensitive nature of biosensor was result of involvement of fluorescence-based technique and synergistic effect of dual metal in NIR based bimetallic NCs. Moreover, owing to the emission in NIR domain, in future, these nanoclusters can be safely employed for many biomedical applications for In vivo studies.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering and Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh, 160014, India
| | - Rohit K Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Dou S, Liu M, Zhang F, Li B, Zhang Y, Li F, Guo Y, Sun X. Silver/copper bimetallic nanoclusters integrating with cryonase-assisted target recycling amplification detection of Salmonella typhimurium. Mikrochim Acta 2023; 190:403. [PMID: 37728643 DOI: 10.1007/s00604-023-05973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023]
Abstract
An unsophisticated fluorescence-enabled strategy is brought forward to process the highly sensitive fluorescence detection of Salmonella typhimurium (S. typhimurium) which based on polyethyleneimine (PEI)-templated silver/copper nanoclusters (Ag/CuNCs) (λ excitation = 334 nm and λ emission = 466 nm) with cryonase-assisted target recycling amplification. The Ag/CuNCs nanoclusters are synthesized as fluorescent materials due to their strong and stable fluorescence characteristics and are modified with S. typhimurium aptamers to form aptamer-Ag/CuNCs probes. The probes can be adsorbed on the surface of quenching agents-polydopamine nanospheres (PDANSs), thereby inducing fluorescence quenching of the probes. Once the aptamers are bound to the target, the aptamers/targets complexes are separated from the PDANSs surface, and the Ag/CuNCs recover the fluorescence signal. The released complexes will immediately be transformed into a substrate digested by cryonase (an enzyme that can digest all types of nucleic acids), and the released targets are bound to another aptamers to initiate the next round of cleavage. This reaction will be repeated continuously until all relevant aptamers are consumed and all Ag/CuNCs are released, resulting in a significant amplification of the fluorescence signal and improved sensitivity. Using Ag/CuNCs as fluorescent probes combined with cryonase-assisted amplification strategy, the fluorescence aptasensor is constructed with detection limits as low as 3.8 CFU mL-1, which is tenfold better than without the cryonase assistance. The method developed has been applied to milk, orange juice, chicken, and egg white samples with excellent selectivity and accuracy providing an approach for the early and rapid detection of S. typhimurium in food.
Collapse
Affiliation(s)
- Shouyi Dou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Fengjuan Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Baoxin Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Yuhao Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Falan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
| |
Collapse
|
5
|
Chen T, Ge Z, Fang M, Zhu W, Li C. A Novel L-Arginine Functionalized CdTe Quantum Dots Fluorescence Probe for Pyrophosphate Anion Detection. J Fluoresc 2023; 33:2075-2084. [PMID: 36988782 DOI: 10.1007/s10895-023-03198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
Abstract
In this paper, a novel amino acid surface-functionalized semiconductor CdTe quantum dot fluorescent probe amidated by carboxyl and amide groups was synthesized to detect pyrophosphate ions (P2O74-, PPi). L-Arginine (L-Arg) was grafted onto cysteine modified CdTe quantum dots (Mea-CdTe QDs) to form a new L-Arginine-functionalized quantum dot fluorescent probe (L-Arg@Mea-CdTe). The prepared probe has good optical properties with multiple grafted functional groups on the surface. The guanidine group of the L-Arg@Mea-CdTe fluorescent probe is strongly basic and will be fully protonated under physiological conditions. The resulting hydrogen bonds bound to pyrophosphate lead to significant changes in the fluorescence of CdTe quantum dots. IR and XPS characterization were performed to confirm it. The addition of PPi induces a significant fluorescence quenching of L-Arg@Mea-CdTe in aqueous solution. The fluorescent QDs probe can also detect pyrophosphate with good sensitivity and anti-interference performance. The detection limit of the L-Arg@Mea-CdTe fluorescence probe for PPi is as low as 0.30 μM. In addition, the novel nano-fluorescent probe was successfully applied to detect PPi in water and in cell imaging.
Collapse
Affiliation(s)
- Ting Chen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, People's Republic of China
| | - Zicheng Ge
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, People's Republic of China
| | - Min Fang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, People's Republic of China.
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, Anhui University, Hefei, 230601, People's Republic of China.
| | - Weiju Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, People's Republic of China
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, People's Republic of China
| | - Cun Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, People's Republic of China.
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, People's Republic of China.
| |
Collapse
|
6
|
Park J, Han H, Park C, Ahn JK. Washing-Free and Label-Free Onsite Assay for Inorganic Pyrophosphatase Activity Using a Personal Glucose Meter. Anal Chem 2022; 94:11508-11513. [PMID: 35968937 DOI: 10.1021/acs.analchem.2c01412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we demonstrated a personal glucose meter-based method for washing-free and label-free inorganic pyrophosphatase (PPase) detection, which relies on the cascade enzymatic reaction (CER) promoted by hexokinase and pyruvate kinase. In principle, the absence of target PPase enables adenosine triphosphate sulfurylase to catalyze the conversion of pyrophosphate (PPi) to ATP, a substrate of CER, which results in the significant reduction of glucose levels by the effective CER process. In contrast, the PPi cleavage activity works in the presence of target PPase by decomposing PPi to orthophosphate (Pi). Therefore, the CER process cannot be effectively executed, leading to the maintenance of the initial high glucose level that may be measured by a portable personal glucose meter. Based on this novel strategy, a quantitative evaluation of the PPase activity may be achieved in a dynamic linear range of 1.5-25 mU/mL with a detection limit of 1.18 mU/mL. Compared with the previous PPase detection methods, this method eliminates the demand for expensive and bulky analysis equipment as well as a complex washing step. More importantly, the diagnostic capability of this method was also successfully verified by reliably detecting PPase present in an undiluted human serum sample with an excellent recovery ratio of 100 ± 2%.
Collapse
Affiliation(s)
- Junhyun Park
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea.,Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
| | - Hyogu Han
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea.,Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Chihyun Park
- Daejeon District Office, National Forensic Service, Daejeon 34054, Korea
| | - Jun Ki Ahn
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea
| |
Collapse
|
7
|
Babu Busi K, Palanivel M, Kanta Ghosh K, Basu Ball W, Gulyás B, Padmanabhan P, Chakrabortty S. The Multifarious Applications of Copper Nanoclusters in Biosensing and Bioimaging and Their Translational Role in Early Disease Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:301. [PMID: 35159648 PMCID: PMC8839130 DOI: 10.3390/nano12030301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
Nanoclusters possess an ultrasmall size, amongst other favorable attributes, such as a high fluorescence and long-term colloidal stability, and consequently, they carry several advantages when applied in biological systems for use in diagnosis and therapy. Particularly, the early diagnosis of diseases may be facilitated by the right combination of bioimaging modalities and suitable probes. Amongst several metallic nanoclusters, copper nanoclusters (Cu NCs) present advantages over gold or silver NCs, owing to their several advantages, such as high yield, raw abundance, low cost, and presence as an important trace element in biological systems. Additionally, their usage in diagnostics and therapeutic modalities is emerging. As a result, the fluorescent properties of Cu NCs are exploited for use in optical imaging technology, which is the most commonly used research tool in the field of biomedicine. Optical imaging technology presents a myriad of advantages over other bioimaging technologies, which are discussed in this review, and has a promising future, particularly in early cancer diagnosis and imaging-guided treatment. Furthermore, we have consolidated, to the best of our knowledge, the recent trends and applications of copper nanoclusters (Cu NCs), a class of metal nanoclusters that have been gaining much traction as ideal bioimaging probes, in this review. The potential modes in which the Cu NCs are used for bioimaging purposes (e.g., as a fluorescence, magnetic resonance imaging (MRI), two-photon imaging probe) are firstly delineated, followed by their applications as biosensors and bioimaging probes, with a focus on disease detection.
Collapse
Affiliation(s)
- Kumar Babu Busi
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| | - Mathangi Palanivel
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522502, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| |
Collapse
|
8
|
Mo M, Wang X, Ye L, Su Y, Zhong Y, Zhao L, Zhou Y, Peng J. A simple paper-based ratiometric luminescent sensor for tetracyclines using copper nanocluster-europium hybrid nanoprobes. Anal Chim Acta 2022; 1190:339257. [PMID: 34857135 DOI: 10.1016/j.aca.2021.339257] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022]
Abstract
Tetracyclines (TCs), as one of the broad-spectrum antibiotics, are widely used to treat bacterial infections. The residues of TCs in animal-origin foods and drinking water have raised safety concerns and affected the public health. Thus, there is a high demand to develop a simple and rapid method for the detection of TCs. In this work, we developed a ratiometric luminescence probe for the sensitive and visualized detection of TCs. Specifically, tannic acid-stabilized copper nanoclusters (TA-CuNCs) with blue emission at 433 nm were synthesized. The luminescence of TA-CuNCs attenuated partially by the europium ions (Eu3+) due to the aggregation-induced quenching. When TCs were added to the TA-CuNCs-Eu3+ system, the luminescence of TA-CuNCs at 433 nm can be further quenched by the inner-filter effect, and the characteristic luminescence of Eu3+ at 617 nm emerged due to the formation of Eu3+-TCs complex. The ratio of the luminescence at 617 nm-433 nm increased linearly to the concentration of TCs. Additionally, we demonstrated the detection of oxytetracycline in real samples such as tap and lake water, milk, pharmaceutical industry wastewater, honey and soil extract with high recovery rate (97.25%-103.44%). Furthermore, a portable paper device is fabricated by the luminescent probe to conduct the on-site analysis of TCs.
Collapse
Affiliation(s)
- Mengjiao Mo
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xueshen Wang
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Lingyue Ye
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yaoquan Su
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yang Zhong
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Yunyun Zhou
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
9
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
10
|
Pang J, Lu Y, Gao X, He L, Sun J, Yang F, Liu Y. Single-strand DNA-scaffolded copper nanoclusters for the determination of inorganic pyrophosphatase activity and screening of its inhibitor. Mikrochim Acta 2020; 187:672. [PMID: 33225389 DOI: 10.1007/s00604-020-04647-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/15/2020] [Indexed: 11/30/2022]
Abstract
A fluorescence method for the determination of inorganic pyrophosphatase (PPase) activity has been established based on copper nanoclusters (CuNCs). The polythymine of 40 mer (T40) acts as a template for the reduction reaction from Cu2+ to Cu0 by ascorbic acid (AA). This reaction leads to the formation of fluorescent CuNCs with excitation/emission peaks at 340/640 nm. However, the higher binding affinity between inorganic pyrophosphate (PPi) and Cu2+ hinders the effective formation of CuNCs. This shows low fluorescence intensity. PPase catalyzes the hydrolysis of PPi into Pi during which free Cu2+ ions are produced. This facilitates the formation of fluorescent CuNCs. Thus, the fluorescence intensity was restored. The fluorescence enhancement of the system has a linear relationship with PPase activity in the range 0.3 to 20 mU·mL-1, and the detection limit is0.2 mU·mL-1. The relative intensity (I/I0) at 640 nm for the analytical solution versus system is also employed to screen the inhibitor for PPase with high efficiency. Graphical abstract Schematic representation of a fluorescent assay for the determination of inorganic pyrophosphatase activity and screening its inhibitor based on single-strand polythymine-scaffolded copper nanoclusters.
Collapse
Affiliation(s)
- Jiawei Pang
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Yuexiang Lu
- Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xinyu Gao
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Liuying He
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Jingwei Sun
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Fengyi Yang
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Yueying Liu
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China.
| |
Collapse
|
11
|
Sam S, Anand SK, Mathew MR, Kumar KG. Tannic Acid Capped Copper Nanoclusters as a Cost-Effective Fluorescence Probe for Hemoglobin Determination. ANAL SCI 2020; 37:599-603. [PMID: 33071267 DOI: 10.2116/analsci.20p322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
For the first time, we report on a copper nanoclusters based fluorescence sensor for hemoglobin (Hgb). The aggregation-induced quenching of tannic acid capped copper nanoclusters' (TACuNCs) fluorescence by a Hgb-H2O2 mixture that mimics the Fenton's reagent is used here for the selective determination of Hgb. It is possible to effectively determine Hgb using this sensitive and cost-effective sensor in the linear range of 5.0 × 10-8 to 4.0 × 10-9 M with a detection limit of 5.6 × 10-10 M. The practical utility of the sensor is evident from the good recovery values obtained from Hgb spiked with artificial blood serum.
Collapse
Affiliation(s)
- Sonia Sam
- Department of Applied Chemistry, Cochin University of Science and Technology
| | - Sanu K Anand
- Department of Applied Chemistry, Cochin University of Science and Technology
| | - Manna Rachel Mathew
- Department of Applied Chemistry, Cochin University of Science and Technology
| | | |
Collapse
|
12
|
Wang H, Rao H, Xue X, An P, Gao M, Luo M, Liu X, Xue Z. Target-mediated surface chemistry of gold nanorods for breaking the low color resolution limitation of monocolorimetric sensor. Anal Chim Acta 2020; 1097:222-229. [DOI: 10.1016/j.aca.2019.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022]
|
13
|
Recent progress in copper nanocluster-based fluorescent probing: a review. Mikrochim Acta 2019; 186:670. [PMID: 31489488 DOI: 10.1007/s00604-019-3747-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
Copper nanoclusters (CuNCs) are an attractive alternative to other metal nanoclusters. The synthesis of CuNCs is highly efficient and fast, with low-cost and without any complicated manipulation. Because of their tunable fluorescence and low toxicity, CuNCs have been highly exploited for biochemical sensing. This review (with 172 refs.) summarizes the progress that has been made in the field in the past years. Following an introduction into the fundamentals of CuNCs, the review first focuses on synthetic methods and the fluorescence properties of CuNCs (with subsections on the use of proteins, peptides, DNA and other molecules as templates). This is followed by a section on the use of CuNCs in fluorometric assays, with subsections on the detection of small molecules, proteins, nucleic acids, various other biomolecules including drugs, and of pH values. A further large chapter summarizes the work related to environmental analyses, specifically on determination of metal ions, anions and pollutants. Graphical abstract Schematic representation of the synthesis and potential applications of copper nanocluster (CuNCs) in biochemical analysis, emphatically reflected in some vital areas such as small molecule analysis, biomacromolecule monitoring, cell imaging, ions detection, toxic pollutant, etc.
Collapse
|
14
|
Xia J, Wang W, Hai X, E S, Shu Y, Wang J. Improvement of antibacterial activity of copper nanoclusters for selective inhibition on the growth of gram-positive bacteria. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Electrostatically controlled fluorometric assay for differently charged biotargets based on the use of silver/copper bimetallic nanoclusters modified with polyethyleneimine and graphene oxide. Mikrochim Acta 2019; 186:70. [DOI: 10.1007/s00604-018-3179-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
|
16
|
Lu Q, Chen X, Liu D, Wu C, Liu M, Li H, Zhang Y, Yao S. A turn-on fluorescent probe for vitamin C based on the use of a silicon/CoOOH nanoparticle system. Mikrochim Acta 2019; 186:72. [DOI: 10.1007/s00604-018-3181-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
|