1
|
Pont L, Vergara-Barberán M, Carrasco-Correa EJ. A Comprehensive Review on Capillary Electrophoresis-Mass Spectrometry in Advancing Biomolecular Research. Electrophoresis 2024. [PMID: 39508247 DOI: 10.1002/elps.202400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
This review provides an in-depth exploration of capillary electrophoresis-mass spectrometry (CE-MS) in biomolecular research from 2020 to 2024. CE-MS emerges as a versatile and powerful tool due to its numerous advantages, facilitating the analysis of various biomolecules, including proteins, peptides, oligonucleotides, and other metabolites, such as lipids, carbohydrates, or amines, among others. The review extends to various CE modes and interfaces for the CE-MS coupling, offering comprehensive insights into their applications within biomolecular research. Furthermore, it effectively summarizes the conditions employed in CE-MS while also addressing critical aspects such as sample preparation requirements. Despite its advantages, the review highlights a gap between discovery and practical implementation, underscoring the need for large-scale validation and method standardization to fully realize the potential of CE-MS in biomolecular research.
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
- Serra Húnter Program, Generalitat de Catalunya, Barcelona, Spain
| | - María Vergara-Barberán
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, Valencia, Spain
| | | |
Collapse
|
2
|
Peruzza L, Cicala F, Milan M, Rovere GD, Patarnello T, Boffo L, Smits M, Iori S, De Bortoli A, Schiavon F, Zentilin A, Fariselli P, Cardazzo B, Bargelloni L. Preventing illegal seafood trade using machine-learning assisted microbiome analysis. BMC Biol 2024; 22:202. [PMID: 39256748 PMCID: PMC11389296 DOI: 10.1186/s12915-024-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Seafood is increasingly traded worldwide, but its supply chain is particularly prone to frauds. To increase consumer confidence, prevent illegal trade, and provide independent validation for eco-labelling, accurate tools for seafood traceability are needed. Here we show that the use of microbiome profiling (MP) coupled with machine learning (ML) allows precise tracing the origin of Manila clams harvested in areas separated by small geographic distances. The study was designed to represent a real-world scenario. Clams were collected in different seasons across the most important production area in Europe (lagoons along the northern Adriatic coast) to cover the known seasonal variation in microbiome composition for the species. DNA extracted from samples underwent the same depuration process as commercial products (i.e. at least 12 h in open flow systems). RESULTS Machine learning-based analysis of microbiome profiles was carried out using two completely independent sets of data (collected at the same locations but in different years), one for training the algorithm, and the other for testing its accuracy and assessing the temporal stability signal. Briefly, gills (GI) and digestive gland (DG) of clams were collected in summer and winter over two different years (i.e. from 2018 to 2020) in one banned area and four farming sites. 16S DNA metabarcoding was performed on clam tissues and the obtained amplicon sequence variants (ASVs) table was used as input for ML MP. The best-predicting performances were obtained using the combined information of GI and DG (consensus analysis), showing a Cohen K-score > 0.95 when the target was the classification of samples collected from the banned area and those harvested at farming sites. Classification of the four different farming areas showed slightly lower accuracy with a 0.76 score. CONCLUSIONS We show here that MP coupled with ML is an effective tool to trace the origin of shellfish products. The tool is extremely robust against seasonal and inter-annual variability, as well as product depuration, and is ready for implementation in routine assessment to prevent the trade of illegally harvested or mislabeled shellfish.
Collapse
Affiliation(s)
- Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Legnaro, 35020, Italy
| | - Francesco Cicala
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Legnaro, 35020, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Legnaro, 35020, Italy.
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Legnaro, 35020, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Legnaro, 35020, Italy
| | | | - Morgan Smits
- LEMAR, UMR 6539 CNRS/UBO/IRD/IFREMER, Institut Universitaire Européen de La Mer, Place Nicolas Copernic, Plouzané, 29280, France
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Legnaro, 35020, Italy
| | | | | | - Aurelio Zentilin
- Almar Soc. Coop. Agricola Arl, Via G. Raddi, 2, Marano Lagunare, 33050, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Torino, Via Santena 19, Turin, 10126, Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Legnaro, 35020, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Legnaro, 35020, Italy
| |
Collapse
|
3
|
Fusco V, Fanelli F, Chieffi D. Recent and Advanced DNA-Based Technologies for the Authentication of Probiotic, Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) Fermented Foods and Beverages. Foods 2023; 12:3782. [PMID: 37893675 PMCID: PMC10606304 DOI: 10.3390/foods12203782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The authenticity of probiotic products and fermented foods and beverages that have the status of protected designation of origin (PDO) or geographical indication (PGI) can be assessed via numerous methods. DNA-based technologies have emerged in recent decades as valuable tools to achieve food authentication, and advanced DNA-based methods and platforms are being developed. The present review focuses on the recent and advanced DNA-based techniques for the authentication of probiotic, PDO and PGI fermented foods and beverages. Moreover, the most promising DNA-based detection tools are presented. Strain- and species-specific DNA-based markers of microorganisms used as starter cultures or (probiotic) adjuncts for the production of probiotic and fermented food and beverages have been exploited for valuable authentication in several detection methods. Among the available technologies, propidium monoazide (PMA) real-time polymerase chain reaction (PCR)-based technologies allow for the on-time quantitative detection of viable microbes. DNA-based lab-on-a-chips are promising devices that can be used for the on-site and on-time quantitative detection of microorganisms. PCR-DGGE and metagenomics, even combined with the use of PMA, are valuable tools allowing for the fingerprinting of the microbial communities, which characterize PDO and PGI fermented foods and beverages, and they are necessary for authentication besides permitting the detection of extra or mislabeled species in probiotic products. These methods, in relation to the authentication of probiotic foods and beverages, need to be used in combination with PMA, culturomics or flow cytometry to allow for the enumeration of viable microorganisms.
Collapse
Affiliation(s)
- Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (F.F.); (D.C.)
| | | | | |
Collapse
|
4
|
Kulkarni MB, Goel S. Mini-thermal platform integrated with microfluidic device with on-site detection for real-time DNA amplification. Biotechniques 2023; 74:158-171. [PMID: 37139914 DOI: 10.2144/btn-2022-0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The recent cases of COVID-19 have brought the prospect of and requirement for point-of-care diagnostic devices into the limelight. Despite all the advances in point-of-care devices, there is still a huge requirement for a rapid, accurate, easy-to-use, low-cost, field-deployable and miniaturized PCR assay device to amplify and detect genetic material. This work aims to develop an Internet-of-Things automated, integrated, miniaturized and cost-effective microfluidic continuous flow-based PCR device capable of on-site detection. As a proof of application, the 594-bp GAPDH gene was successfully amplified and detected on a single system. The presented mini thermal platform with an integrated microfluidic device has the potential to be used for the detection of several infectious diseases.
Collapse
Affiliation(s)
- Madhusudan B Kulkarni
- MEMS, Microfluidics & Nano Electronics (MMNE) Lab, Department of Electrical & Electronics Engineering, Birla Institute of Technology & Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India
| | - Sanket Goel
- MEMS, Microfluidics & Nano Electronics (MMNE) Lab, Department of Electrical & Electronics Engineering, Birla Institute of Technology & Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India
| |
Collapse
|
5
|
de Olazarra AS, Wang SX. Advances in point-of-care genetic testing for personalized medicine applications. BIOMICROFLUIDICS 2023; 17:031501. [PMID: 37159750 PMCID: PMC10163839 DOI: 10.1063/5.0143311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Breakthroughs within the fields of genomics and bioinformatics have enabled the identification of numerous genetic biomarkers that reflect an individual's disease susceptibility, disease progression, and therapy responsiveness. The personalized medicine paradigm capitalizes on these breakthroughs by utilizing an individual's genetic profile to guide treatment selection, dosing, and preventative care. However, integration of personalized medicine into routine clinical practice has been limited-in part-by a dearth of widely deployable, timely, and cost-effective genetic analysis tools. Fortunately, the last several decades have been characterized by tremendous progress with respect to the development of molecular point-of-care tests (POCTs). Advances in microfluidic technologies, accompanied by improvements and innovations in amplification methods, have opened new doors to health monitoring at the point-of-care. While many of these technologies were developed with rapid infectious disease diagnostics in mind, they are well-suited for deployment as genetic testing platforms for personalized medicine applications. In the coming years, we expect that these innovations in molecular POCT technology will play a critical role in enabling widespread adoption of personalized medicine methods. In this work, we review the current and emerging generations of point-of-care molecular testing platforms and assess their applicability toward accelerating the personalized medicine paradigm.
Collapse
Affiliation(s)
- A. S. de Olazarra
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - S. X. Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
6
|
Advances in Nucleic Acid Amplification-Based Microfluidic Devices for Clinical Microbial Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accurate and timely detection of infectious pathogens is urgently needed for disease treatment and control of possible outbreaks worldwide. Conventional methods for pathogen detection are usually time-consuming and labor-intensive. Novel strategies for the identification of pathogenic nucleic acids are necessary for practical application. The advent of microfluidic technology and microfluidic devices has offered advanced and miniaturized tools to rapidly screen microorganisms, improving many drawbacks of conventional nucleic acid amplification-based methods. In this review, we summarize advances in the microfluidic approach to detect pathogens based on nucleic acid amplification. We survey microfluidic platforms performing two major types of nucleic acid amplification strategies, namely, polymerase chain reaction (PCR) and isothermal nucleic acid amplification. We also provide an overview of nucleic acid amplification-based platforms including studies and commercialized products for SARS-CoV-2 detection. Technologically, we focus on the design of the microfluidic devices, the selected methods for sample preparation, nucleic acid amplification techniques, and endpoint analysis. We also compare features such as analysis time, sensitivity, and specificity of different platforms. The first section of the review discusses methods used in microfluidic devices for upstream clinical sample preparation. The second section covers the design, operation, and applications of PCR-based microfluidic devices. The third section reviews two common types of isothermal nucleic acid amplification methods (loop-mediated isothermal amplification and recombinase polymerase amplification) performed in microfluidic systems. The fourth section introduces microfluidic applications for nucleic acid amplification-based detection of SARS-CoV-2. Finally, the review concludes with the importance of full integration and quantitative analysis for clinical microbial identification.
Collapse
|
7
|
Cunha ML, da Silva SS, Stracke MC, Zanette DL, Aoki MN, Blanes L. Sample Preparation for Lab-on-a-Chip Systems in Molecular Diagnosis: A Review. Anal Chem 2021; 94:41-58. [PMID: 34870427 DOI: 10.1021/acs.analchem.1c04460] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and low-cost molecular analysis is especially required for early and specific diagnostics, quick decision-making, and sparing patients from unnecessary tests and hospitals from extra costs. One way to achieve this objective is through automated molecular diagnostic devices. Thus, sample-to-answer microfluidic devices are emerging with the promise of delivering a complete molecular diagnosis system that includes nucleic acid extraction, amplification, and detection steps in a single device. The biggest issue in such equipment is the extraction process, which is normally laborious and time-consuming but extremely important for sensitive and specific detection. Therefore, this Review focuses on automated or semiautomated extraction methodologies used in lab-on-a-chip devices. More than 15 different extraction methods developed over the past 10 years have been analyzed in terms of their advantages and disadvantages to improve extraction procedures in future studies. Herein, we are able to explain the high applicability of the extraction methodologies due to the large variety of samples in which different techniques were employed, showing that their applications are not limited to medical diagnosis. Moreover, we are able to conclude that further research in the field would be beneficial because the methodologies presented can be affordable, portable, time efficient, and easily manipulated, all of which are strong qualities for point-of-care technologies.
Collapse
Affiliation(s)
- Mylena Lemes Cunha
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Stella Schuster da Silva
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Cassaboni Stracke
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| |
Collapse
|
8
|
Aljabali AAA, Pal K, Serrano-Aroca A, Takayama K, Dua K, Tambuwala MM. Clinical utility of novel biosensing platform: Diagnosis of coronavirus SARS-CoV-2 at point of care. MATERIALS LETTERS 2021; 304:130612. [PMID: 34381287 PMCID: PMC8343387 DOI: 10.1016/j.matlet.2021.130612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Early detection is the first step in the fight against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, an efficient, rapid, selective, specific, and inexpensive SARS-CoV-2 diagnostic method is the need of the hour. The reverse transcription-polymerase chain reaction (RT-PCR) technology is massively utilized to detect infection with SARS-CoV-2. However, scientists continue to strive to create enhanced technology while continually developing nanomaterial-enabled biosensing methods that can provide new methodologies, potentially fulfilling the present demand for rapid and early identification of coronavirus disease 2019 (COVID-19) patients. Our review presents a summary of the recent diagnosis of SARS-CoV-2 of COVID-19 pandemic and nanomaterial-available biosensing methods. Although limited research on nanomaterials-based nanosensors has been published, allowing for biosensing approaches for diagnosing SARS-CoV-2, this study highlights nanomaterials that provide an enhanced biosensing strategy and potential processes that lead to COVID-19 diagnosis.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University-Faculty of Pharmacy, Irbid 566, Jordan
| | - Kaushik Pal
- Federal University of Rio de Janeiro, Cidade Universitária, Laboratório de Biopolímeros e Sensores/LaBioS Centro de Tecnologia - Cidade Universitária, Rio de Janeiro, RJ 21941-901, Brazil
| | - Angel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente M'artir, c/Guillem de Castro 94, 46001 Valencia, Spain
| | - Kazuo Takayama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| |
Collapse
|
9
|
Trinh TND, Lee NY. Nucleic acid amplification-based microfluidic approaches for antimicrobial susceptibility testing. Analyst 2021; 146:3101-3113. [PMID: 33876805 DOI: 10.1039/d1an00180a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Because of the global spread of antimicrobials, there is an urgent need to develop rapid and effective tools for antimicrobial susceptibility testing to help clinicians prescribe accurate and appropriate antibiotic doses sooner. The conventional methods for antimicrobial susceptibility testing are usually based on bacterial culture methods, which are time-consuming, complicated, and labor-intensive. Therefore, other approaches are needed to address these issues. Recently, microfluidic technology has gained significant attention in infection management due to its advantages including rapid detection, high sensitivity and specificity, highly automated assay, simplicity, low cost, and potential for point-of-care testing in low-resource areas. Microfluidic advances for antimicrobial susceptibility testing can be classified into phenotypic (usually culture-based) and genotypic tests. Genotypic antimicrobial susceptibility testing is the detection of resistant genes in a microorganism using methods such as nucleic acid amplification. This review (with 107 references) surveys the different forms of nucleic acid amplification-based microdevices used for genotypic antimicrobial susceptibility testing. The first section reviews the serious threat of antimicrobial-resistant microorganisms and the urgent need for fast check-ups. Next, several conventional antimicrobial susceptibility testing methods are discussed, and microfluidic technology as a promising candidate for rapid detection of antimicrobial-resistant microorganisms is briefly introduced. The next section highlights several advancements of microdevices, with an emphasis on their working principles and performance. The review concludes with the importance of fully integrated microdevices and a discussion on future perspectives.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| |
Collapse
|
10
|
Kameyama N, Yoshida H, Fukagawa H, Yamada K, Fukuda M. Thin-Film Processing of Polypropylene and Polystyrene Sheets by a Continuous Wave CO 2 Laser with the Cu Cooling Base. Polymers (Basel) 2021; 13:polym13091448. [PMID: 33946138 PMCID: PMC8124593 DOI: 10.3390/polym13091448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
Carbon dioxide (CO2) laser is widely used in commercial and industrial fields to process various materials including polymers, most of which have high absorptivity in infrared spectrum. Thin-film processing by the continuous wave (CW) laser is difficult since polymers are deformed and damaged by the residual heat. We developed the new method to make polypropylene (PP) and polystyrene (PS) sheets thin. The sheets are pressed to a Cu base by extracting air between the sheets and the base during laser processing. It realizes to cut the sheets to around 50 µm thick with less heat effects on the backside which are inevitable for thermal processing using the CW laser. It is considered that the boundary between the sheets and the base is in thermal equilibrium and the base prevents the sheets from deforming to support the backside. The method is applicable to practical use since it does not need any complex controls and is easy to install to an existing equipment with a minor change of the stage.
Collapse
Affiliation(s)
- Nobukazu Kameyama
- Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagito, Gifu City 501-1193, Japan;
- Correspondence:
| | - Hiroki Yoshida
- Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagito, Gifu City 501-1193, Japan;
| | - Hitoshi Fukagawa
- Institute for Advanced Technology, Heiwadori, Seki City 501-3874, Japan;
| | - Kotaro Yamada
- ATHEN KOGYO CO.LTD, Shimouchi, Seki City 501-3217, Japan; (K.Y.); (M.F.)
| | - Mitsutaka Fukuda
- ATHEN KOGYO CO.LTD, Shimouchi, Seki City 501-3217, Japan; (K.Y.); (M.F.)
| |
Collapse
|
11
|
Deskilled and Rapid Drug-Resistant Gene Detection by Centrifugal Force-Assisted Thermal Convection PCR Device. SENSORS 2021; 21:s21041225. [PMID: 33572363 PMCID: PMC7916093 DOI: 10.3390/s21041225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Here we report the improved Cyclo olefin polymer (COP) microfluidic chip and polymerase chain reaction (PCR) amplification system for point-of-care testing (POCT) in rapid detection of Carbapenem-resistant Enterobacteriaceae (CRE). The PCR solution and thermal cycling is controlled by the relative gravitational acceleration (7G) only and is expected to pose minimal problem in operation by non-expert users. Detection is based on identifying the presence of carbapenemase encoding gene through the corresponding fluorescence signal after amplification. For preliminary tests, the device has been demonstrated to detect blaIMP-6 from patients stool samples. From the prepared samples, 96.4 fg/µL was detected with good certainty within 15 min (~106 thermocycles,) which is significantly faster than the conventional culture plate method. Moreover, the device is expected to detect other target genes in parallel as determination of the presence of blaNDM-1 and blaOXA-23 from control samples has also been demonstrated. With the rising threat of drug-resistant bacteria in global healthcare, this technology can greatly aid the health sector by enabling the appropriate use of antibiotics, accelerating the treatment of carriers, and suppressing the spread.
Collapse
|
12
|
Highly efficient fluorescence sensing of kanamycin using Endo IV-powered DNA walker and hybridization chain reaction amplification. Mikrochim Acta 2020; 187:193. [PMID: 32124067 DOI: 10.1007/s00604-020-4167-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Abstract
An ultrasensitive fluorescence sensing strategy for kanamycin (KANA) determination using endonuclease IV (Endo IV)-powered DNA walker, and hybridization chain reaction (HCR) amplification was reported. The sensing system consists of Endo IV-powered 3D DNA walker using for the specific recognition of KANA and the formation of the initiators, two metastable hairpin probes as the substrates of HCR and a tetrahydrofuran abasic site (AP site)-embeded fluorescence-quenched probe for fluorescence signal output. On account of this skilled design of sensing system, the specific binding between KANA and its aptamer activates DNA walker, in which the swing arm can move autonomously along the 3D track via Endo IV-mediated hydrolysis of the anchorages, inducing the formation of initiators that initiates HCR and the following Endo IV-assisted cyclic cleavage of fluorescence reporter probes. The use of Endo IV offers the advantages of simplified and accessible design without the need of specific sequence in DNA substrates. Under the optimal experimental conditions, the fluorescence biosensor shows excellent sensitivity toward KANA detection with a detection limit as low as 1.01 pM (the excitation wavelength is 486 nm). The practical applicability of this strategy is demonstrated by detecting KANA in spiked milk samples with recovery in the range of 98 to 102%. Therefore, this reported strategy might create an accurate and robust fluorescence sensing platform for trace amounts of antibiotic residues determination and related safety analysis. Graphical abstract Highly efficient fluorescence sensing of kanamycin using Endo IV-powered DNA Walker and hybridization chain, reaction amplification, Xiaonan Qu, Jingfeng Wang, Rufeng Zhang, Yihan Zhao, Shasha Li, Yu Wang, Su Liu*, Jiadong Huang, and Jinghua Yu, an ultrasensitive fluorescence sensing strategy for kanamycin determination using endonuclease IV-powered DNA walker, and hybridization chain reaction amplification is reported.
Collapse
|
13
|
Hirama H, Sugiura Y, Komazaki Y, Torii T. Robotic Fabrication of Microchannels for Microfluidic Analysis by Hydrogel Molding. CHEM LETT 2019. [DOI: 10.1246/cl.190301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hirotada Hirama
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Yusuke Sugiura
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Yusuke Komazaki
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology, Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Toru Torii
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| |
Collapse
|
14
|
Zhang L, Peng J, Hong MF, Chen JQ, Liang RP, Qiu JD. Cobalt phosphide nanowires for fluorometric detection and in-situ imaging of telomerase activity via hybridization chain reactions. Mikrochim Acta 2019; 186:309. [DOI: 10.1007/s00604-019-3391-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
|
15
|
Shi B, He G, Wu W. A PCR microreactor machinery with passive micropump and battery-powered heater for thermo-cycled amplifications of clinical-level and multiplexed DNA targets. Mikrochim Acta 2018; 185:467. [DOI: 10.1007/s00604-018-3007-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
|
16
|
Determination of bacterial DNA based on catalytic oxidation of cysteine by G-quadruplex DNAzyme generated from asymmetric PCR: Application to the colorimetric detection of Staphylococcus aureus. Mikrochim Acta 2018; 185:410. [DOI: 10.1007/s00604-018-2935-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 02/01/2023]
|