1
|
Biedrzycka A, Skwarek E. Composites of hydroxyapatite and their application in adsorption, medicine and as catalysts. Adv Colloid Interface Sci 2024; 334:103308. [PMID: 39396420 DOI: 10.1016/j.cis.2024.103308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Composites of hydroxyapatite, recognized by its peculiar crystal architecture and distinctive attributes showcased the potential in adsorbing heavy metal ions and radioactive elements as well as selected organic substances. In this paper, the intrinsic mechanism of adsorption by composites hydroxyapatite was proved for the first time. Subsequently, selectivity and competitiveness of composites of hydroxyapatite for a variety of environments containing various interferences from cations, anions, and organic molecules are elucidated. Next, composites of hydroxyapatite were further categorized according to their morphological dimensions. Adsorption properties and intrinsic mechanisms were investigated based on different morphologies. It was shown that although composites of hydroxyapatite were characterized by excellent adsorption capacity and cost-effectiveness, their application is often challenging due to inherent fragility and agglomeration, technical problems required for their handling as well as difficulty in recycling. Finally, to address these issues, the paper discusses the tendency of hydroxyapatite composites to adsorb heavy metal ions and radioactive elements as well as the limitations of their applications. Summarizing the limitations and future directions of modification of HAP in the field of heavy metal ions and different substances contamination abatement, the paper provides insightful perspectives for its gradual improvement and rational application.
Collapse
Affiliation(s)
- Adrianna Biedrzycka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20 031 Lublin, Poland
| | - Ewa Skwarek
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20 031 Lublin, Poland.
| |
Collapse
|
2
|
Wang L, Yan X, Chen X, Li Y, Wu D. Magnetic polyimide nanocomposite for analysis of parabens in cooking wine by magnetic solid-phase extraction coupled with gas chromatography - Mass spectrometry. J Chromatogr A 2024; 1720:464814. [PMID: 38490140 DOI: 10.1016/j.chroma.2024.464814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
A magnetic polyimide (PI) nanocomposite has been synthesized by phase inversion of PI and simultaneous encapsulation of Fe3O4 nanoparticles. The Fe3O4/PI nanocomposite was characterized by a variety of characterization techniques, including infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, and vibrating sample magnetometry. The results showed that the prepared nanocomposite had a homogeneous structure, adequate specific surface area (76.1 m2/g) and high saturation magnetization (42.9 emu/g). Using parabens as model analytes, the performance of the Fe3O4/PI nanocomposite as an adsorbent for magnetic solid-phase extraction (MSPE) was evaluated. The extracted parabens were desorbed and determined by gas chromatography-mass spectrometry (GC-MS). The parameters affecting the extraction and desorption efficiency of parabens were optimized. Under the optimal conditions, the developed MSPE/GC-MS method was successfully applied to the determination of parabens in cooking wine. The MSPE/GC-MS method exhibited broad linearity (0.2-100 µg/L), low detection limits (0.04-0.05 µg/L), and satisfactory extraction recoveries (79.2 %-113.3 %) with relative standard deviations (RSDs) ranging from 0.7 % to 10.4 %. For real cooking wine samples, the spiked recoveries ranged from 91.7 % to 118.7 % with RSDs of 1.0 %-11.2 %. The results demonstrated that the Fe3O4/PI nanocomposite was an effective adsorbent, and this work provides a novel reference for the easy preparation of magnetic adsorbent materials.
Collapse
Affiliation(s)
- Liuxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaohui Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Xianzhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanshuo Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dapeng Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
3
|
Chen X, Cui Y, Wang S. Corrosion Behavior of Carbon Steel in Diethylenetriamine Solution for Post-combustion CO 2 Capture. ACS OMEGA 2024; 9:13067-13080. [PMID: 38524427 PMCID: PMC10955713 DOI: 10.1021/acsomega.3c09540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/13/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
In the realm of postcombustion carbon capture, diethylenetriamine (DETA), recognized for its substantial CO2 absorption capacity, presents a formidable challenge due to its corrosive impact on equipment. This study delves into the corrosion behavior of 20# carbon steel immersed in DETA solutions under varying conditions, employing weight loss and electrochemical methods. The investigation incorporates scanning electron microscopy/energy-dispersive spectroscopy and X-ray diffraction analyses for characterization. Corrosion experiments were also conducted in monoethanolamine (MEA) solutions for a comparative analysis. Results from the corrosion tests in DETA solutions mirror the temperature-dependent corrosion rate (CR) observed in MEA. However, a distinctive trend emerges as the CO2 loading of DETA increases from 0.2 mol CO2/mol amine to 1.2 mol CO2/mol amine, leading to a continuous decrease in the CR of carbon steel-contrary to MEA solutions. This anomaly is attributed to DETA's robust complexing ability with metal ions and its elevated solubility of Fe2+ in solution. Additionally, an examination of the corrosion mechanism in the presence of oxygen was conducted through characterizing the specimen surface and solution precipitates postexperiment. The absence of a protective FeCO3 layer can be attributed to insufficient concentrations of free Fe2+ and CO32- in the solution, failing to achieve the minimum saturation required for protective film formation. The insights gained from studying the corrosion behavior of carbon steel in DETA solutions lay the groundwork for subsequent developments in corrosion inhibitors.
Collapse
Affiliation(s)
- Xinyue Chen
- Department
of Energy and Power Engineering, Tsinghua
University, Beijing 100084, China
- Key
Laboratory of Thermal Science and Power Engineering of Ministry of
Education, Tsinghua University, Beijing 100084, China
| | - Yongkang Cui
- Department
of Energy and Power Engineering, Tsinghua
University, Beijing 100084, China
- Key
Laboratory of Thermal Science and Power Engineering of Ministry of
Education, Tsinghua University, Beijing 100084, China
| | - Shujuan Wang
- Department
of Energy and Power Engineering, Tsinghua
University, Beijing 100084, China
- Key
Laboratory of Thermal Science and Power Engineering of Ministry of
Education, Tsinghua University, Beijing 100084, China
- Engineering
Research Center for Ecological Restoration and Carbon Fixation of
Saline-Alkaline and Desert Land, Tsinghua
University, Beijing 100084, China
- Shanxi
Research Institute for Clean Energy, Tsinghua
University, Taiyuan 030000, China
| |
Collapse
|
4
|
Pezhhanfar S, Farajzadeh MA, Kheirkhah Ghaleh M, Hosseini-Yazdi SA, Afshar Mogaddam MR. MIL-68 (Ga) for the extraction of derivatized and non-derivatized parabens from healthcare products. Sci Rep 2023; 13:21304. [PMID: 38042936 PMCID: PMC10693546 DOI: 10.1038/s41598-023-48880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/30/2023] [Indexed: 12/04/2023] Open
Abstract
This study was the first-ever attempt to apply MIL-68 (Ga) in developing an analytical method. The method extracts and preconcentrates some parabens from mouthwash and hydrating gel samples. The variable extraction parameters were optimized, and the figures of merit were documented. Avogadro software was used besides discussing intermolecular interactions to clarify the absorption process. ComplexGAPI software was also exploited to assess the greenness of the method. After the derivatization of the parabens using acetic anhydride in the presence of sodium carbonate, sodium chloride was added to the solution and vortexed to dissolve. A few milligrams of MIL-68 (Ga) were added into the solution and vortexed. Centrifugation separated the analyte-loaded absorbent, which was treated with mL volume of methanol through vortexing for desorption aim. A few microliters of 1,2-dibromoethane were merged with the methanolic phase and injected into a sodium chloride solution. One microliter of the extracted phase was injected into a gas chromatograph equipped with a flame ionization detector. High enrichment factors (200-330), reasonable extraction recoveries (40-66%), wide linear ranges (265-30,000 µg L-1), and appreciable coefficients of determination (0.996-0.999) were documented. The applicability of dispersive solid phase extraction for extracting polar analytes, imposing no additional step for performing derivatization, the capability of MIL-68 (Ga) for the absorption of both derivatized and non-derivatized parabens, the use of only 10 mg absorbent, and one-pot synthesis besides no high temperature or long reaction time in the sorbent provision are the highlights of the method.
Collapse
Affiliation(s)
- Sakha Pezhhanfar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
- Engineering Faculty, Near East University, Mersin 10, 99138, Nicosia, North Cyprus, Turkey.
| | - Mahdi Kheirkhah Ghaleh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Effect of ionic Fe(III) doping on montmorillonite for photocatalytic reduction of Cr(VI) in wastewater. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Disposable screen-printed carbon-based electrodes in amperometric detection for simultaneous determination of parabens in complex-matrix personal care products by HPLC. Talanta 2022; 245:123459. [DOI: 10.1016/j.talanta.2022.123459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/31/2022] [Accepted: 04/03/2022] [Indexed: 01/02/2023]
|
7
|
Cao J, Wang C, Shi L, Cheng Y, Hu H, Zeng B, Zhao F. Water based-deep eutectic solvent for ultrasound-assisted liquid-liquid microextraction of parabens in edible oil. Food Chem 2022; 383:132586. [PMID: 35247725 DOI: 10.1016/j.foodchem.2022.132586] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/07/2022] [Accepted: 02/25/2022] [Indexed: 01/05/2023]
Abstract
A novel water-based deep eutectic solvent was synthesized and used for the ultrasound-assisted liquid-liquid microextraction of parabens in edible oil and for their determination by high performance liquid chromatography. Herein, the water-based deep eutectic solvent was formulated at room temperature by tetrabutylammonium chloride as hydrogen bond acceptor and water as hydrogen bond donor at the molar ratio of 1:5. As component, water has the effect on tailoring the physicochemical properties of water-based deep eutectic solvent and assisting tetrabutylammonium chloride (hydrogen bond acceptor) capturing parabens (hydrogen bond donor) through in-situ deep eutectic solvent formation. The developed method has satisfactory linearity (1.5-500 μg/L), limits of detections (0.2-0.4 μg/L), precisions (RSDs ≤ 5.8%), and was fruitfully applied to detect parabens in edible oil with excellent recoveries (85.1-106.8%). The feature of the procedure lies in simplicity, low cost and high sensitivity, and this can be extended for the efficient separation of other hydrophobic compounds.
Collapse
Affiliation(s)
- Jiangping Cao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Caiyun Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Lei Shi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yonglong Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Hua Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China.
| |
Collapse
|
8
|
Pasupuleti RR, Tsai PC, Ponnusamy VK, Chen NC. Green sample pre-treatment technique coupled with UHPLC-MS/MS for the rapid biomonitoring of dietary poly-unsaturated (omega) fatty acids to predict health risks. CHEMOSPHERE 2022; 291:132685. [PMID: 34743796 DOI: 10.1016/j.chemosphere.2021.132685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/05/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) consumption indicates beneficial effects on cardiovascular disease (CVD) and physiological processes in humans. However, the inappropriate ratio of omega-(ω)-PUFA levels in human blood is considered as raising the risk of CVD. Therefore, monitoring dietary ω-FAs in human serum is vital for early diagnosis for individuals to predict CVD risk. This work reports a fast green sample pre-treatment protocol for sensitive and simultaneous monitoring of ω-3-FAs and ω-6-FAs in serum by novel in-syringe-based ultrasonication-assisted alkaline hydrolysis coupled with vortex-induced liquid-liquid microextraction (IS-USAH-VI-LLME) technique connected with UHPLC-MS/MS analysis. Factors affecting extraction recoveries of ten ω-PUFAs by the presented method were well-studied. ω-3 and ω-6 PUFAs demonstrated excellent linearities between the concentrations between 0.1-10,000 ng mL-1 with good regression coefficients between 0.9910-0.9997. The detection and quantification limits were between 0.05-0.35 and 0.16-1.07 ng mL-1, demonstrating that the presented method is highly sensitive and versatile. The precision of the technique was <8.2% that deemed acceptable in clinical analysis. Further, the proposed method was applied for ω-PUFAs analysis in human blood samples, and spiked recoveries showed between 80.32-119.34% with <9.82% precision. Results proved that the developed method is green, sensitive, and reliable to simultaneously determine ten ω-PUFAs in human blood samples for clinical diagnosis applications for predicting health hazards.
Collapse
Affiliation(s)
- Raghavendra Rao Pasupuleti
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City, 804, Taiwan; Program of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, 833, Taiwan.
| |
Collapse
|
9
|
Ning T, Yang H, Shi C, Yu J, Yu H, Chen P, Di S, Wang J, Zhu S. An in vitro assessment for human skin exposure to parabens using magnetic solid phase extraction coupled with HPLC. CHEMOSPHERE 2022; 286:131593. [PMID: 34293573 DOI: 10.1016/j.chemosphere.2021.131593] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Skin contact was a significant source of human exposure to parabens during the use of personal care products. In this study, a novel and simple in vitro evaluation method for human skin exposure to parabens was established for the first time. Firstly, magnetic porous carbon (MPC) derived from discarded cigarette butts was prepared as an adsorbent of magnetic solid-phase extraction (MSPE), which provided a fast and efficient sample preparation method with satisfactory extraction performance for parabens in cosmetics and was easy to couple with high performance liquid chromatography. Secondly, the extraction conditions were optimized including the etching ratio of KOH, amount of MPC, extraction time, pH, salt concentration, desorption solvent volume and desorption time. Under the optimized conditions, the limits of detection were between 0.25 and 0.34 ng mL-1 and the spiked recoveries were in the range of 85.8-112.6%. Thirdly, the developed method was successfully employed to determine five typical parabens in real unspiked cosmetic samples, and two parabens were detected at a relatively high level. Then, the developed method was applied to in vitro assays. The absorbable dose of parabens in cream was investigated and in vitro experiments were further designed with agarose-simulated skin to demonstrate the penetration ability of parabens. In conclusion, these results indicated that parabens did have the risk of entering the body through the skin and the exposure was preferably no more than 3 h with skin contact.
Collapse
Affiliation(s)
- Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Chunxiang Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Gemmological Institute, China University of Geosciences, Wuhan, 430074, China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jiahao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
10
|
SiO2 based nanocomposite for simultaneous magnetic removal and discrimination of small pollutants in water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Salehpour N, Bayatloo MR, Nojavan S. Magnetic solid-phase extraction of high molecular weight peptides using stearic acid-functionalized magnetic hydroxyapatite nanocomposite: determination of some hypothalamic agents in biological samples. Anal Bioanal Chem 2021; 413:7609-7623. [PMID: 34668043 DOI: 10.1007/s00216-021-03725-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Therapeutic peptides have an important effect on physiological function and human health, so it is momentous to quantify and detect low levels of these biomolecules in biological samples for treatment and diagnostic purposes. In the present study, an efficient magnetic solid-phase extraction (MSPE) method was developed based on stearic acid-functionalized magnetic hydroxyapatite nanocomposite (MHAP/SA) as a novel and cost-effective adsorbent for extraction of five hypothalamic-related peptides (goserelin, octreotide, triptorelin, somatostatin, and cetrorelix) from biological samples. To characterize the morphology and physicochemical properties of MHAP/SA, Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS), field emission scanning microscopy (FE-SEM), CHNS elemental analysis, Brunauer-Emmett-Teller (BET), and vibrating sample magnetometry (VSM) were applied. Under optimum conditions, the proposed method (MSPE-HPLC-UV) represented favorable linearity with R2 ≥ 0.9987, suitable intra- and inter-day precisions (RSD ≤ 6.9% and RSD ≤ 8.1%, respectively, n = 3), and limits of detection and quantification in the range of 0.75-1.12 ng mL-1 and 2.50-3.75 ng mL-1, respectively. Eventually, the proposed method was used for the extraction and quantification of target therapeutic peptides in plasma and urine samples, and satisfactory relative recoveries were achieved in the range of 90.6-110.3%.
Collapse
Affiliation(s)
- Niloofar Salehpour
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, 1983969411, Tehran, Iran
| | - Mohammad Reza Bayatloo
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, 1983969411, Tehran, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, 1983969411, Tehran, Iran.
| |
Collapse
|
12
|
Biedrzycka A, Skwarek E, Hanna UM. Hydroxyapatite with magnetic core: Synthesis methods, properties, adsorption and medical applications. Adv Colloid Interface Sci 2021; 291:102401. [PMID: 33773102 DOI: 10.1016/j.cis.2021.102401] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
This review presents the actual state of knowledge and recent research results on the magnetic composite synthesized from iron oxide (γ-Fe2O3 or Fe3O4) and hydroxyapatite. It can be obtained applying some methods, i.e. chemical precipitation, hydrothermal, sol-gel, and biomimetic or combined techniques which exhibit characteristic properties affecting the form of the prepared product. More specific details are discussed in this paper. A comparison of the discussed synthesis methods is presented. On the basis of selected publications, a comparison of the results of the analysis by XRD, FTIR, SEM and EDX methods for hydroxyapatite with a magnetic core was also presented. Moreover, the characteristics large adsorption capacity and specific area allow employing nanocomposites as adsorbents particularly in removal of toxic metal ions. Nowadays this issue is extremely vital due to large amounts of pollutants in the environment and greater ecological awareness of people. Moreover, magnetic hydroxyapatite can be also applied as a catalyst in various syntheses or oxidation reactions as well as in medicine in magnetic resonance imaging, hyperthermia treatment, drug delivery and release, bone regeneration or cell therapy.
Collapse
|
13
|
Pajewska-Szmyt M, Biniewska E, Buszewski B, Gadzała-Kopciuch R. Synthesis of Magnetic Molecularly Imprinted Polymer Sorbents for Isolation of Parabens from Breast Milk. MATERIALS 2020; 13:ma13194328. [PMID: 33003301 PMCID: PMC7579064 DOI: 10.3390/ma13194328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022]
Abstract
Magnetic molecularly imprinted polymers (MMIPs) are an invaluable asset in the development of many methods in analytical chemistry, particularly sample preparation. Novel adsorbents based on MMIPs are characterized by high selectivity towards a specific analyte due to the presence of a specific cavity on their polymer surface, enabling the lock-key model interactions to occur. In addition, the magnetic core provides superparamagnetic properties that allow rapid separation of the sorbent from the sample solution. Such a combination of imprinted polymers with a magnetic core has an innovative influence on the development of separation techniques. Hence, the present study describes the synthesis of MMIPs with 17β-estradiol used as a template molecule in the production of imprinted polymers. The as-prepared sorbent was used for a sorption/desorption study of five parabens from breast milk samples. The obtained results were characterized by sorption efficiency exceeding 92%, which shows the high affinity of the analytes to the functional groups on the sorbent. The final determination of the selected analytes was done with high-performance liquid chromatography using a fluorometric detector. The determined linearity ranges for selected parabens were characterized by high determination coefficients (r2 from 0.9992 to 0.9999), and the calculated limit of detection (LOD) and limit of quantification (LOQ) for the identified compounds were low (LOD from 1.1-2.7 ng mL-1; LOQ from 3.6-8.1 ng mL-1), which makes their quantitative analysis in real samples feasible.
Collapse
Affiliation(s)
- Martyna Pajewska-Szmyt
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87100 Toruń, Poland; (M.P.-S.); (E.B.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St, 87100 Toruń, Poland
| | - Ewelina Biniewska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87100 Toruń, Poland; (M.P.-S.); (E.B.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St, 87100 Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87100 Toruń, Poland; (M.P.-S.); (E.B.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St, 87100 Toruń, Poland
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin St, 87100 Toruń, Poland; (M.P.-S.); (E.B.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St, 87100 Toruń, Poland
- Correspondence:
| |
Collapse
|
14
|
Grau J, Benedé JL, Chisvert A. Use of Nanomaterial-Based (Micro)Extraction Techniques for the Determination of Cosmetic-Related Compounds. Molecules 2020; 25:molecules25112586. [PMID: 32498443 PMCID: PMC7321223 DOI: 10.3390/molecules25112586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
The high consumer demand for cosmetic products has caused the authorities and the industry to require rigorous analytical controls to assure their safety and efficacy. Thus, the determination of prohibited compounds that could be present at trace level due to unintended causes is increasingly important. Furthermore, some cosmetic ingredients can be percutaneously absorbed, further metabolized and eventually excreted or bioaccumulated. Either the parent compound and/or their metabolites can cause adverse health effects even at trace level. Moreover, due to the increasing use of cosmetics, some of their ingredients have reached the environment, where they are accumulated causing harmful effects in the flora and fauna at trace levels. To this regard, the development of sensitive analytical methods to determine these cosmetic-related compounds either for cosmetic control, for percutaneous absorption studies or for environmental surveillance monitoring is of high interest. In this sense, (micro)extraction techniques based on nanomaterials as extraction phase have attracted attention during the last years, since they allow to reach the desired selectivity. The aim of this review is to provide a compilation of those nanomaterial-based (micro)extraction techniques for the determination of cosmetic-related compounds in cosmetic, biological and/or environmental samples spanning from the first attempt in 2010 to the present.
Collapse
|