1
|
Xue S, Gao L, Yin L, El-Seedi HR, Abolibda TZ, Zou X, Guo Z. SERS aptasensor for simultaneous detection of ochratoxin A and zearalenone utilizing a rigid enhanced substrate (ITO/AuNPs/GO) combined with Au@AgNPs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124991. [PMID: 39163773 DOI: 10.1016/j.saa.2024.124991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
The contamination of mycotoxins poses a serious threat to global food security, hence the urgent need for simultaneous detection of multiple mycotoxins. Herein, two SERS nanoprobes were synthesized by embedded SERS tags (4-mercaptopyridine, 4MPy; 4-mercaptobenzonitrile, TBN) into the Au and Ag core-shell structure, and each was coupled with the aptamers specific to ochratoxin A (OTA) and zearalenone (ZEN). Meanwhile, a rigid enhanced substrate Indium tin oxide glass/AuNPs/Graphene oxide (ITO/AuNPs/GO) was combined with aptamer functionalized Au@AgNPs via π-π stacking interactions between the aptamer and GO to construct a surface-enhanced Raman spectroscopy (SERS) aptasensor, thereby inducing a SERS enhancement effect for the effective and swift simultaneous detection of both OTA and ZEN. The presence of OTA and ZEN caused signal probes dissociation, resulting in an inverse correlation between Raman signal intensity (1005 cm-1 and 2227 cm-1) and the concentrations of OTA and ZEN, respectively. The SERS aptasensor exhibited wide linear detection ranges of 0.001-20 ng/mL for OTA and 0.1-100 ng/mL for ZEN, with low detection limits (LOD) of 0.94 pg/mL for OTA and 59 pg/mL for ZEN. Furthermore, the developed SERS aptasensor demonstrated feasible applicability in the detection of OTA and ZEN in maize, showcasing its substantial potential for practical implementation.
Collapse
Affiliation(s)
- Shanshan Xue
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lingbo Gao
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Tariq Z Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
2
|
Amini-Nogorani E, Zare HR, Jahangiri-Dehaghani F, Benvidi A. Quantification of ochratoxin A in a coffee sample utilizing an electrochemical aptasensor fabricated through encapsulation of toluidine blue within a Zn-based metal-organic framework. Mikrochim Acta 2024; 192:27. [PMID: 39710829 DOI: 10.1007/s00604-024-06863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
An electrochemical aptasensor has been developed specifically for the sensitive and selective determination of ochratoxin A (OTA), one of the most important mycotoxins. The aptasensor utilizes a glassy carbon electrode that has been modified with toluidine blue (TB) encapsulated in a Zn-based metal-organic framework (TB@Zn-MOF). The results demonstrate that in the presence of OTA, the peak current of the differential pulse voltammogram (DPV) related to TB oxidation is notably decreased. The changes in the oxidation peak current of TB encapsulated in Zn-MOF, both in the absence and presence of OTA, serve as an analytical signal for accurately measuring its concentration. With the proposed aptasensor, OTA can be determined within a linear concentration range 1.0 × 10-4 - 200.0 ng mL-1, with a detection limit of 2.1 × 10-5 ng mL-1. The aptasensor design is suitable for measuring OTA concentration in coffee powder samples. This represents the first report to utilize TB@Zn-MOF in designing an applicable aptasensor to OTA measurement. The high porosity of the Zn-MOF allows for a large number of TB molecules to be encapsulated in its cavities, while its large surface area enables more OTA aptamers to be immobilized on the electrode surface. These two key features significantly enhance the sensitivity of the aptasensor in measuring OTA concentration.
Collapse
Affiliation(s)
| | - Hamid R Zare
- Department of Chemistry, Yazd University, Yazd, 89195-741, Iran.
| | | | - Ali Benvidi
- Department of Chemistry, Yazd University, Yazd, 89195-741, Iran
| |
Collapse
|
3
|
Xu C, Tan J, Li Y. Application of Electrospun Nanofiber-Based Electrochemical Sensors in Food Safety. Molecules 2024; 29:4412. [PMID: 39339407 PMCID: PMC11434313 DOI: 10.3390/molecules29184412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Food safety significantly impacts public health and social welfare. Recently, issues such as heavy metal ions, drug residues, food additives, and microbial contamination in food have become increasingly prominent. Electrochemical sensing technology, known for its low cost, simplicity, rapid response, high sensitivity, and excellent selectivity, has been crucial in food safety detection. Electrospun nanofibers, with their high specific surface area, superior mechanical properties, and design flexibility, offer new insights and technical platforms for developing electrochemical sensors. This study introduces the fundamental principles, classifications, and detection mechanisms of electrochemical sensors, along with the principles and classifications of electrospinning technology. The applications of electrospun nanofiber-based electrochemical sensors in food safety detection over the past five years are detailed, and the limitations and future research prospects are discussed. Continuous innovation and optimization are expected to make electrospun nanofiber-based electrochemical sensors a key technology in rapid food safety detection, providing valuable references for expanding their application and advancing food safety detection methods.
Collapse
Affiliation(s)
- Changdong Xu
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
| | - Jianfeng Tan
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
| | - Yingru Li
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
4
|
Phamonpon W, Hinestroza JP, Puthongkham P, Rodthongkum N. Surface-engineered natural fibers: Emerging alternative substrates for chemical sensor applications: A review. Int J Biol Macromol 2024; 269:132185. [PMID: 38723830 DOI: 10.1016/j.ijbiomac.2024.132185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Natural fiber has become one of the most widely used alternative materials for chemical sensor fabrication due to its advantages, such as biocompatibility, flexibility, and self-microfluidic properties. Enhanced natural fiber surface has been used as a substrate in colorimetric and electrochemical sensors. This review focuses on improving the natural fiber properties for preparation as a substrate for chemical sensors. Various methods for natural fiber extraction are discussed and compared. Bleaching and decolorization is important for preparation of colorimetric sensors, while carbonization and nanoparticle doping are favorable for increasing their electrical conductivity for electrochemical sensor fabrication. Also, example fabrications and applications of natural fiber-based chemical sensors for chemical and biomarker detection are discussed. The selectivity of the sensors can be introduced and improved by surface modification of natural fiber, such as enzyme immobilization and biorecognition element functionalization, illustrating the adaptability of natural fiber as a smart sensing device, e.g., wearable and portable sensors. Ultimately, the high performances of natural fiber-based chemical sensors indicate the potential uses of natural fiber as a renewable and eco-friendly substrate material in the field of chemical sensors and biosensors for clinical diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Wisarttra Phamonpon
- Nanoscience and Technology Program, Graduate School, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Juan P Hinestroza
- Department of Fiber Science, College of Human Ecology, Cornell University, Ithaca, NY 14850, United States
| | - Pumidech Puthongkham
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Akhavan-Mahdavi S, Mirbagheri MS, Assadpour E, Sani MA, Zhang F, Jafari SM. Electrospun nanofiber-based sensors for the detection of chemical and biological contaminants/hazards in the food industries. Adv Colloid Interface Sci 2024; 325:103111. [PMID: 38367336 DOI: 10.1016/j.cis.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Food contamination reveals a major health risk globally and presents a significant challenge for the food industry. It can stem from biological contaminants like pathogens, parasites, and viruses, or chemical contaminants such as heavy metals, pesticides, drugs, and hormones. There is also the possibility of naturally occurring hazardous chemicals. Consequently, the development of sensing platforms has become crucial to accurately and rapidly identify contaminants and hazards in food products. Electrospun nanofibers (NFs) offer a promising solution due to their unique three-dimensional architecture, large specific surface area, and ease of preparation. Moreover, NFs exhibit excellent biocompatibility, degradability, and adaptability, making monitoring more convenient and environmentally friendly. These characteristics also significantly reduce the detection process of contaminants. NF-based sensors have the ability to detect a wide range of biological, chemicals, and physical hazards. Recent research on NFs-based sensors for the detection of various food contaminants/hazards, such as pathogens, pesticide/drugs residues, toxins, allergens, and heavy metals, is presented in this review.
Collapse
Affiliation(s)
- Sahar Akhavan-Mahdavi
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mahnaz Sadat Mirbagheri
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
6
|
Chen Z, Liu Z, Liu J, Xiao X. Research progress in the detection of common foodborne hazardous substances based on functional nucleic acids biosensors. Biotechnol Bioeng 2023; 120:3501-3517. [PMID: 37723667 DOI: 10.1002/bit.28555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
With the further improvement of food safety requirements, the development of fast, highly sensitive, and portable methods for the determination of foodborne hazardous substances has become a new trend in the food industry. In recent years, biosensors and platforms based on functional nucleic acids, along with a range of signal amplification devices and methods, have been established to enable rapid and sensitive determination of specific substances in samples, opening up a new avenue of analysis and detection. In this paper, functional nucleic acid types including aptamers, deoxyribozymes, and G-quadruplexes which are commonly used in the detection of food source pollutants are introduced. Signal amplification elements include quantum dots, noble metal nanoparticles, magnetic nanoparticles, DNA walkers, and DNA logic gates. Signal amplification technologies including nucleic acid isothermal amplification, hybridization chain reaction, catalytic hairpin assembly, biological barcodes, and microfluidic system are combined with functional nucleic acids sensors and applied to the detection of many foodborne hazardous substances, such as foodborne pathogens, mycotoxins, residual antibiotics, residual pesticides, industrial pollutants, heavy metals, and allergens. Finally, the potential opportunities and broad prospects of functional nucleic acids biosensors in the field of food analysis are discussed.
Collapse
Affiliation(s)
- Zijie Chen
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Zhen Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Jingjing Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, the People's Republic of China
| | - Xilin Xiao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, the People's Republic of China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, the People's Republic of China
| |
Collapse
|
7
|
El-Moghazy AY, Amaly N, Nitin N, Sun G. A label-free electrochemical immunosensor based on decorated cellulose nanofibrous membrane for point-of-care diagnosis of amanitin poisoning via human urine. LAB ON A CHIP 2023; 23:5009-5017. [PMID: 37905598 PMCID: PMC11042792 DOI: 10.1039/d3lc00508a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
α-Amanitin (AMN) is one of the deadliest toxins from mushrooms, present in the deadly mushroom species Amanita phalloides. It is a bicyclic octapeptide and represents up to 40% of the amatoxins in mushrooms, damaging the liver and kidneys. Current methods of detecting amatoxins are time-consuming and require the use of expensive equipment. A novel label-free electrochemical immunosensor was successfully developed for rapid detection of α-amanitin, which was fabricated by immobilization of anti-α-amanitin antibodies onto a functionalized cellulose nanofibrous membrane-modified carbon screen-printed electrode. An oxidation peak of the captured amanitin on the tethered antibodies was observed at 0.45 V. The performance of the nanofibrous membrane on the electrode and necessary fabrication steps were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Due to its unique structural features and properties such as high specific surface area and microporous structure, the nanofibrous membrane as an immunosensor matrix for antibody tethering improved the electrochemical performance of the immunosensor by more than 3 times compared with cast membranes. Under the optimal conditions, the assembled immunosensor exhibited high sensitivity toward α-amanitin detection in the range of 0.009-2 ng mL-1 with a limit of detection of 8.3 pg mL-1. The results clearly indicate that the fabricated nanofiber-based-immunosensor is suitable for point-of-care detection of lethal α-amanitin in human urine without any pretreatment within 30 min.
Collapse
Affiliation(s)
- Ahmed Y El-Moghazy
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA.
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA.
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Nitin Nitin
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA.
- Food Science and Technology, University of California, Davis, USA
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Berkal MA, Nardin C. Pesticide biosensors: trends and progresses. Anal Bioanal Chem 2023; 415:5899-5924. [PMID: 37668672 DOI: 10.1007/s00216-023-04911-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
Pesticides, chemical substances extensively employed in agriculture to optimize crop yields, pose potential risks to human and environmental health. Consequently, regulatory frameworks are in place to restrict pesticide residue concentrations in water intended for human consumption. These regulations are implemented to safeguard consumer safety and mitigate any adverse effects on the environment and public health. Although gas chromatography- and liquid chromatography-mass spectrometry (GC-MS and LC-MS) are highly efficient techniques for pesticide quantification, their use is not suitable for real-time monitoring due to the need for sophisticated laboratory pretreatment of samples prior to analysis. Since they would enable analyte detection with selectivity and sensitivity without sample pretreatment, biosensors appear as a promising alternative. These consist of a bioreceptor allowing for specific recognition of the target and of a detection platform, which translates the biological interaction into a measurable signal. As early detection systems remain urgently needed to promptly alert and act in case of pollution, we review here the biosensors described in the literature for pesticide detection to advance their development for use in the field.
Collapse
Affiliation(s)
| | - Corinne Nardin
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
9
|
Rukhlyada KA, Matytcina VV, Baldina AA, Volkova O, Kozodaev DA, Barakova NV, Orlova OY, Smirnov E, Skorb EV. Universal Method Based on Layer-by-Layer Assembly for Aptamer-Based Sensors for Small-Molecule Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10820-10827. [PMID: 37490765 DOI: 10.1021/acs.langmuir.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Development of a fast and accurate pesticide analysis system is a challenging task, as a large amount of commonly used pesticide has negative effects on humans' health. Detection of pesticide residues is crucial for food safety management and environmental protection. Aptamers─short single-stranded oligonucleotides (RNA or DNA) selected by aptamer selection method SELEX─can selectively bind to their target pesticide molecules with high affinity. Thus, in the present study, we developed an electrochemical biosensor based on aptamers to detect the commonly used pesticide, glyphosate. Carbon fibers were used as the platform to assemble polyelectrolyte layers with the incorporated aptamers selectively binding with glyphosate molecules for electrochemical detection. The best limit of detection of 0.3 μM was achieved at open-circuit potential measurements, which is comparable to the current need in detection of glyphosate. The developed method can be implemented into existing systems for the determination of pesticides on farms to control residual concentrations of glyphosate in soil and water.
Collapse
Affiliation(s)
- Ksenia A Rukhlyada
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| | | | - Anna A Baldina
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| | - Olga Volkova
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| | | | - Nadezhda V Barakova
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| | - Olga Yu Orlova
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| | - Evgeny Smirnov
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| | - Ekaterina V Skorb
- ITMO University, Lomonosova str. 9, Saint Petersburg 191002, Russian Federation
| |
Collapse
|
10
|
Zhao Y, Huang M, Gao Z, He H, Chen Y, He F, Lin Y, Yan B, Chen S. Preparation of polyaniline/cellulose nanofiber composites with enhanced anticorrosion performance for waterborne epoxy resin coatings. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Bauer M, Duerkop A, Baeumner AJ. Critical review of polymer and hydrogel deposition methods for optical and electrochemical bioanalytical sensors correlated to the sensor's applicability in real samples. Anal Bioanal Chem 2023; 415:83-95. [PMID: 36280625 PMCID: PMC9816278 DOI: 10.1007/s00216-022-04363-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023]
Abstract
Sensors, ranging from in vivo through to single-use systems, employ protective membranes or hydrogels to enhance sample collection or serve as filters, to immobilize or entrap probes or receptors, or to stabilize and enhance a sensor's lifetime. Furthermore, many applications demand specific requirements such as biocompatibility and non-fouling properties for in vivo applications, or fast and inexpensive mass production capabilities for single-use sensors. We critically evaluated how membrane materials and their deposition methods impact optical and electrochemical systems with special focus on analytical figures of merit and potential toward large-scale production. With some chosen examples, we highlight the fact that often a sensor's performance relies heavily on the deposition method, even though other methods or materials could in fact improve the sensor. Over the course of the last 5 years, most sensing applications within healthcare diagnostics included glucose, lactate, uric acid, O2, H+ ions, and many specific metabolites and markers. In the case of food safety and environmental monitoring, the choice of analytes was much more comprehensive regarding a variety of natural and synthetic toxicants like bacteria, pesticides, or pollutants and other relevant substances. We conclude that more attention must be paid toward deposition techniques as these may in the end become a major hurdle in a sensor's likelihood of moving from an academic lab into a real-world product.
Collapse
Affiliation(s)
- Meike Bauer
- grid.7727.50000 0001 2190 5763Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Axel Duerkop
- grid.7727.50000 0001 2190 5763Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Antje J. Baeumner
- grid.7727.50000 0001 2190 5763Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany ,grid.5386.8000000041936877XDepartment of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
12
|
Banitaba SN, Ebadi SV, Salimi P, Bagheri A, Gupta A, Arifeen WU, Chaudhary V, Mishra YK, Kaushik A, Mostafavi E. Biopolymer-based electrospun fibers in electrochemical devices: versatile platform for energy, environment, and health monitoring. MATERIALS HORIZONS 2022; 9:2914-2948. [PMID: 36226580 DOI: 10.1039/d2mh00879c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical power tools are regarded as essential keys in a world that is becoming increasingly reliant on fossil fuels in order to meet the challenges of rapidly depleting fossil fuel supplies. Additionally, due to the industrialization of societies and the growth of diseases, the need for sensitive, reliable, inexpensive, and portable sensors and biosensors for noninvasive monitoring of human health and environmental pollution is felt more than ever before. In recent decades, electrospun fibers have emerged as promising candidates for the fabrication of highly efficient electrochemical devices, such as actuators, batteries, fuel cells, supercapacitors, and biosensors. Meanwhile, the use of synthetic polymers in the fabrication of versatile electrochemical devices has raised environmental concerns, leading to an increase in the quest for natural polymers. Natural polymers are primarily derived from microorganisms and plants. Despite the challenges of processing bio-based electrospun fibers, employing natural nanofibers in the fabrication of electrochemical devices has garnered tremendous attention in recent years. Here, various natural polymers and the strategies employed to fabricate various electrospun biopolymers are briefly covered. The recent advances and research strategies used to apply the bio-based electrospun membranes in different electrochemical devices are carefully summarized, along with the scopes in various advanced technologies. A comprehensive and critical discussion about the use of biopolymer-based electrospun fibers as the potential alternative to non-renewable ones in future technologies is briefly highlighted. This review will serve as a field opening platform for using different biopolymer-based electrospun fibers to advance the electrochemical device-based renewable and sustainable technologies, which will be of high interest to a large community. Accordingly, future studies should focus on feasible and cost-effective extraction of biopolymers from natural resources as well as fabrication of high-performance nanofibrous biopolymer-based components applicable in various electrochemical devices.
Collapse
Affiliation(s)
- Seyedeh Nooshin Banitaba
- Department of Textile Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran.
| | - Seyed Vahid Ebadi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Pejman Salimi
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, I-16146 Genova, Italy
| | - Ahmad Bagheri
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
- Faculty of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universitate Dresden, Dresden 01062, Germany
| | - Ashish Gupta
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana, India
| | - Waqas Ul Arifeen
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi 110043, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, Smart Materials, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, Florida, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
El-Moghazy AY, Amaly N, Sun G, Nitin N. Development and clinical evaluation of commercial glucose meter coupled with nanofiber based immuno-platform for self-diagnosis of SARS-CoV-2 in saliva. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection. Food Chem 2022; 390:133105. [DOI: 10.1016/j.foodchem.2022.133105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
|
15
|
Chen Z, Xie M, Zhao F, Han S. Application of Nanomaterial Modified Aptamer-Based Electrochemical Sensor in Detection of Heavy Metal Ions. Foods 2022; 11:1404. [PMID: 35626973 PMCID: PMC9140949 DOI: 10.3390/foods11101404] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023] Open
Abstract
Heavy metal pollution resulting from significant heavy metal waste discharge is increasingly serious. Traditional methods for the detection of heavy metal ions have high requirements on external conditions, so developing a sensitive, simple, and reproducible detection method is becoming an urgent need. The aptamer, as a new kind of artificial probe, has received more attention in recent years for its high sensitivity, easy acquisition, wide target range, and wide use in the detection of various harmful substances. The detection platform that an aptamer-based electrochemical biosensor (E-apt sensor) provides is a new approach for the detection of heavy metal ions. Nanomaterials are particularly important in the construction of E-apt sensors, as they can be used as aptamer carriers or sensitizers to stimulate or inhibit electrochemical signals, thus significantly improving the detection sensitivity. This review summarizes the application of different types of nanomaterials in E-apt sensors. The construction methods and research progress of the E-apt sensor based on different working principles are systematically introduced. Moreover, the advantages and challenges of the E-apt sensor in heavy metal ion detection are summarized.
Collapse
Affiliation(s)
- Zanlin Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.C.); (M.X.)
| | - Miaojia Xie
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.C.); (M.X.)
| | - Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.C.); (M.X.)
| |
Collapse
|
16
|
El-Moghazy AY, Wisuthiphaet N, Yang X, Sun G, Nitin N. Electrochemical biosensor based on genetically engineered bacteriophage T7 for rapid detection of Escherichia coli on fresh produce. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Electrochemical aptasensing for the detection of mycotoxins in food commodities. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Chen P, Li C, Ma X, Wang Z, Zhang Y. A surface-enhanced Raman scattering aptasensor for ratiometric detection of aflatoxin B1 based on graphene oxide-Au@Ag core-shell nanoparticles complex. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Villalonga A, Sánchez A, Mayol B, Reviejo J, Villalonga R. Electrochemical biosensors for food bioprocess monitoring. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Li YL, Xie FT, Yao C, Zhang GQ, Guan Y, Yang YH, Yang JM, Hu R. A DNA tetrahedral nanomaterial-based dual-signal ratiometric electrochemical aptasensor for the detection of ochratoxin A in corn kernel samples. Analyst 2022; 147:4578-4586. [DOI: 10.1039/d2an00934j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ochratoxin A (OTA) is a highly toxic food contaminant and is harmful to human beings.
Collapse
Affiliation(s)
- Yu-Long Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Fa-Ting Xie
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Cao Yao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Gui-Qun Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Jian-Mei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| |
Collapse
|
21
|
Xie M, Zhao F, Zhang Y, Xiong Y, Han S. Recent advances in aptamer-based optical and electrochemical biosensors for detection of pesticides and veterinary drugs. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108399] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Development of a novel liquid crystal Apta-sensing platform using P-shape molecular switch. Biosens Bioelectron 2021; 199:113882. [PMID: 34923309 DOI: 10.1016/j.bios.2021.113882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022]
Abstract
Described herein is a liquid crystal (LC)-based aptasensor via employing the reorientation of LC triggered by the conformational changes of a P-shaped DNA structure. The structure consists of a short linker sequence as an immobilizer probe with ability to hybridize with the central part of the intact aptamer (Apt) sequence and an Apt terminal-locker (ATL) strand with complementary segments of the Apt terminal fragments. Bindings of two arm segments of the Apt sequence with the ATL strand enforces it to form a P-shaped configuration on the sensing platform. The selective interaction between the Apt strand and OTA leads to the disassembly of the Apt-ATL hybrid, collapse of the P-shaped structure, and consequently, transition of the optical appearance of the aptasensor texture. Determination of Ochratoxin A (OTA) in foods is an urgent demand in attempt to minimize food safety risks. To demonstrate the feasibility of our aptasensing design, the OTA specific aptamer was selected as a model. The developed LC aptasensor possesses a wide linear range from 0.01 aM to 100 pM, ultra-low limit of detection (LOD) of 0.0078 aM, and quantitative recoveries of 91-103.51% for OTA in rice and grape juice samples. This study proposes a novel and universal LC-based platform for facile, ultra-sensitive, and precision sensing of hazardous analytes in real samples.
Collapse
|
23
|
Halicka K, Cabaj J. Electrospun Nanofibers for Sensing and Biosensing Applications-A Review. Int J Mol Sci 2021; 22:6357. [PMID: 34198611 PMCID: PMC8232165 DOI: 10.3390/ijms22126357] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.
Collapse
Affiliation(s)
| | - Joanna Cabaj
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|
24
|
Divya, Mahapatra S, Srivastava VR, Chandra P. Nanobioengineered Sensing Technologies Based on Cellulose Matrices for Detection of Small Molecules, Macromolecules, and Cells. BIOSENSORS 2021; 11:168. [PMID: 34073910 PMCID: PMC8225109 DOI: 10.3390/bios11060168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Recent advancement has been accomplished in the field of biosensors through the modification of cellulose as a nano-engineered matrix material. To date, various techniques have been reported to develop cellulose-based matrices for fabricating different types of biosensors. Trends of involving cellulosic materials in paper-based multiplexing devices and microfluidic analytical technologies have increased because of their disposable, portable, biodegradable properties and cost-effectiveness. Cellulose also has potential in the development of cytosensors because of its various unique properties including biocompatibility. Such cellulose-based sensing devices are also being commercialized for various biomedical diagnostics in recent years and have also been considered as a method of choice in clinical laboratories and personalized diagnosis. In this paper, we have discussed the engineering aspects of cellulose-based sensors that have been reported where such matrices have been used to develop various analytical modules for the detection of small molecules, metal ions, macromolecules, and cells present in a diverse range of samples. Additionally, the developed cellulose-based biosensors and related analytical devices have been comprehensively described in tables with details of the sensing molecule, readout system, sensor configuration, response time, real sample, and their analytical performances.
Collapse
Affiliation(s)
| | | | | | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India; (D.); (S.M.); (V.R.S.)
| |
Collapse
|
25
|
Amaly N, El-Moghazy AY, Sun G. Fabrication of polydopamine-based NIR-light responsive imprinted nanofibrous membrane for effective lysozyme extraction and controlled release from chicken egg white. Food Chem 2021; 357:129613. [PMID: 33864996 DOI: 10.1016/j.foodchem.2021.129613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
The development of highly efficient performance matrix for protein adsorption and scalable throughput adsorbent is highly desired, especially in pharmaceuticals and food industries. In this work, we present a simple methodology to prepare a nanofibrous membrane based surface molecular imprinted matrix (MIP) for selective separation of lysozyme. The MIP was developed by coating carboxylated poly (vinyl alcohol-co-ethylene) nanofibrous mat (EVOH-CCA NFM) with a near infrared (NIR)-light responsive polydopamine (PDA) layer. The open porous nanofibrous structure and a thin PDA layer endowed the MIPs with adsorption capacity (500 mg.g-1) within 150 min. The developed surface MIPs not only showed imprinting factor (IF = 4) with reusability upon 5 cycles, but also capability of extracting lysozyme from egg-white directly. The MIPs showed controlled release of extracted lysozyme triggered by the NIR-light responsive property of the PDA layer. Moreover, the released lysozyme possesses good bioactivity, evidenced by efficient decomposition of micrococcus bacterial cell wall.
Collapse
Affiliation(s)
- Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt.
| | - Ahmed Y El-Moghazy
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
26
|
Wang Y, Song W, Zhao H, Ma X, Yang S, Qiao X, Sheng Q, Yue T. DNA walker-assisted aptasensor for highly sensitive determination of Ochratoxin A. Biosens Bioelectron 2021; 182:113171. [PMID: 33773380 DOI: 10.1016/j.bios.2021.113171] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
Ochratoxin A (OTA), a toxic secondary metabolite produced via various fungus, poses a serious threat to the health of human beings and animals. In this paper, an aptasensor for OTA detection based on gold nanoparticles decorated molybdenum oxide (AuNPs-MoOx) nanocomposites, hybridization chain reaction (HCR) and a restriction endonuclease (Nb.BbvCI)-aided walker DNA machine was successfully constructed. In this electrochemical platform, the HCR was also used to embed more electrical signal molecules of methylene blue (MB) on silver nanoparticles (AgNPs) to achieve signal amplification. Under the optimum conditions, after adding OTA and Nb.BbvCI in turn and responding adequately under appropriate conditions, aptamer-DNA (6-DNA) carries the OTA away from the electrode surface, and walker DNA was hybridized autonomously with 5-DNA, releasing a large amount of 5'-DNA with the help of Nb.BBVCI. Finally, the electrochemical signal obtained by differential pulse voltammetry (DPV) was weakened. As an artificial and popular signal amplification technique, the DNA walking machine greatly improved the sensitivity. The proposed biosensor exhibited excellent analytical performance in the range of 0.01-10000 pg mL-1 with a detection limit as low as 3.3 fg mL-1. Furthermore, direct comparison with ultraperformance liquid chromatography (UPLC) indicates excellent agreement to actual samples such as apple juice, orange juice, red wine and serum.
Collapse
Affiliation(s)
- Yahui Wang
- College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
| | - Haiyan Zhao
- College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xin Ma
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
| | - Shuying Yang
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
| | - Xiujuan Qiao
- College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Qinglin Sheng
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China; College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
27
|
Khataee A, Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR. Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for Ochratoxin A analysis in foodstuffs: A review. Food Chem Toxicol 2021; 149:112030. [DOI: 10.1016/j.fct.2021.112030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/22/2022]
|