1
|
Luo X, Yan S, Chen G, Wang Y, Zhang X, Lan J, Chen J, Yao X. A cavity induced mode hybridization plasmonic sensor for portable detection of exosomes. Biosens Bioelectron 2024; 261:116492. [PMID: 38870828 DOI: 10.1016/j.bios.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/20/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Exosomes have been considered as promising biomarkers for cancer diagnosis due to their abundant information from originating cells. However, sensitive and reliable detection of exosomes is still facing technically challenges due to the lack of a sensing platform with high sensitivity and reproducibility. To address the challenges, here we propose a portable surface plasmon resonance (SPR) sensing of exosomes with a three-layer Au mirror/SiO2 spacer/Au nanohole sensor, fabricated by an economical polystyrene nanosphere self-assembly method. The SiO2 spacer can act as an optical cavity and induce mode hybridization, leading to excellent optimization of both sensitivity and full width at half maximum compared with normal single layer Au nanohole sensors. When modified with CD63 or EpCAM aptamers, a detection of limit (LOD) of as low as 600 particles/μL was achieved. The sensors showed good capability to distinguish between non-tumor derived L02 exosomes and tumor derived HepG2 exosomes. Additionally, high reproducibility was also achieved in detection of artificial serum samples with RSD as low as 2%, making it feasible for clinical applications. This mode hybridization plasmonic sensor provides an effective approach to optimize the detection sensitivity of exosomes, pushing SPR sensing one step further towards cancer diagnosis.
Collapse
Affiliation(s)
- Xinming Luo
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guanyu Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China
| | - Yuxin Wang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China
| | - Xi Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, 350108, China
| | - Jianming Lan
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, 350108, China
| | - Jinghua Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, 350108, China.
| | - Xu Yao
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Huo Z, Chen B, Wang Z, Li Y, He L, Hu B, Li H, Wang P, Yao J, Xu F, Li Y, Yang X. Enhanced plasmonic scattering imaging via deep learning-based super-resolution reconstruction for exosome imaging. Anal Bioanal Chem 2024:10.1007/s00216-024-05550-z. [PMID: 39316091 DOI: 10.1007/s00216-024-05550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Exosome analysis plays pivotal roles in various physiological and pathological processes. Plasmonic scattering microscopy (PSM) has proven to be an excellent label-free imaging platform for exosome detection. However, accurately detecting images scattered from exosomes remains a challenging task due to noise interference. Herein, we proposed an image processing strategy based on a new blind super-resolution deep learning neural network, named ESRGAN-SE, to improve the resolution of exosome PSI images. This model can obtain super-resolution reconstructed images without increasing experimental complexity. The trained model can directly generate high-resolution plasma scattering images from low-resolution images collected in experiments. The results of experiments involving the detection of light scattered by exosomes showed that the proposed super-resolution detection method has strong generalizability and robustness. Moreover, ESRGAN-SE achieved excellent results of 35.52036, 0.09081, and 8.13176 in terms of three reference-free image quality assessment metrics, respectively. These results show that the proposed network can effectively reduce image information loss, enhance mutual information between pixels, and decrease feature differentiation. And, the single-image SNR evaluation score of 3.93078 also showed that the distinction between the target and the background was significant. The suggested model lays the foundation for a potentially successful approach to imaging analysis. This approach has the potential to greatly improve the accuracy and efficiency of exosome analysis, leading to more accurate cancer diagnosis and potentially improving patient outcomes.
Collapse
Affiliation(s)
- Zhaochen Huo
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhan Wang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yu Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lei He
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Boheng Hu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Haoliang Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Pengfei Wang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jianning Yao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaonan Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
3
|
Peng L, Gu S, Hou M, Hou X. DNA Hydrogels for Cancer Diagnosis and Therapy. Chembiochem 2024:e202400494. [PMID: 39166348 DOI: 10.1002/cbic.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Nucleic acids, because of their precise pairing and simple composition, have emerged as excellent materials for the formation of gels. The application of DNA hydrogels in the diagnosis and therapy of cancer has expanded significantly through research on the properties and functions of nucleic acids. Functional nucleic acids (FNAs) such as aptamers, Small interfering RNA (siRNA), and DNAzymes have been incorporated into DNA hydrogels to enhance their diagnostic and therapeutic capabilities. This review discusses various methods for forming DNA hydrogels, with a focus on pure DNA hydrogels. We then explore the innovative applications of DNA hydrogels in cancer diagnosis and therapy. DNA hydrogels have become essential biomedical materials, and this review provides an overview of current research findings and the status of DNA hydrogels in the diagnosis and therapy of cancer, while also exploring future research directions.
Collapse
Affiliation(s)
- Li Peng
- Oncology, The Affiliated XiangTan Central Hospital of Hunan University, Xiangtan 411199, P. R. China, Changsha 410082, China
| | - Shuang Gu
- Oncology, The Affiliated XiangTan Central Hospital of Hunan University, Xiangtan 411199, P. R. China, Changsha 410082, China
| | - Min Hou
- School of Physics and Chemistry, Hunan First Normal University, Changsha, 410205, P. R. China
| | - Xiaohua Hou
- Neurology, Ningxiang City Hospital of Traditional Chinese Medicine, Changsha, 410600, P. R. China
| |
Collapse
|
4
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
5
|
Valizadeh Shahbazlou S, Vandghanooni S, Dabirmanesh B, Eskandani M, Hasannia S. Ultrasensitive Quantification of MUC16 Antigen/Amine-Terminated Aptamer Interaction by Surface Plasmon Resonance: Kinetic and Thermodynamic Studies. Adv Pharm Bull 2024; 14:388-399. [PMID: 39206405 PMCID: PMC11347734 DOI: 10.34172/apb.2024.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/13/2023] [Accepted: 01/07/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose MUC16 is a commonly employed biomarker to identify and predict ovarian cancer (OC). Precise measurement of MUC16 levels is essential for the accurate diagnosis, prediction, and management of OC. This research seeks to introduce a new surface plasmon resonance (SPR) biosensor design that utilizes aptamer-based technology to enable the sensitive and real-time detection of MUC16. Methods In this study, the sensor chip was immobilized with an anti-MUC16 aptamer (Ap) by utilizing 11-mercaptoundecanoic acid (MUA) as a linker to attach the amine-terminated Ap to the chip using EDC/NHS chemistry. Results The results indicated that the newly created aptasensor had a detection limit of 0.03 U/mL for MUC16 concentration, with a linear range of 0.09 to 0.27 U/mL. The findings demonstrate good precision and accuracy (<15%) for each MUC16 concentration, with recoveries ranging from 93% to 96%. Additionally, the aptasensor exhibited high selectivity, good repeatability, stability, and applicability in real human serum samples, indicating its potential as a valuable tool for the diagnosis and treatment of OC. Conclusion According to the outcomes, the designed aptasensor exhibited acceptable specificity to detect the CA125 antigen and could be utilized for the serum detection of target antigen by SPR method.
Collapse
Affiliation(s)
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Nurrohman DT, Chiu NF, Hsiao YS, Lai YJ, Nanda HS. Advances in Nanoplasmonic Biosensors: Optimizing Performance for Exosome Detection Applications. BIOSENSORS 2024; 14:307. [PMID: 38920611 PMCID: PMC11201745 DOI: 10.3390/bios14060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
The development of sensitive and specific exosome detection tools is essential because they are believed to provide specific information that is important for early detection, screening, diagnosis, and monitoring of cancer. Among the many detection tools, surface-plasmon resonance (SPR) biosensors are analytical devices that offer advantages in sensitivity and detection speed, thereby making the sample-analysis process faster and more accurate. In addition, the penetration depth of the SPR biosensor, which is <300 nm, is comparable to the size of the exosome, making the SPR biosensor ideal for use in exosome research. On the other hand, another type of nanoplasmonic sensor, namely a localized surface-plasmon resonance (LSPR) biosensor, has a shorter penetration depth of around 6 nm. Structural optimization through the addition of supporting layers and gap control between particles is needed to strengthen the surface-plasmon field. This paper summarizes the progress of the development of SPR and LSPR biosensors for detecting exosomes. Techniques in signal amplification from two sensors will be discussed. There are three main parts to this paper. The first two parts will focus on reviewing the working principles of each sensor and introducing several methods that can be used to isolate exosomes. This article will close by explaining the various sensor systems that have been developed and the optimizations carried out to obtain sensors with better performance. To illustrate the performance improvements in each sensor system discussed, the parameters highlighted include the detection limit, dynamic range, and sensitivity.
Collapse
Affiliation(s)
- Devi Taufiq Nurrohman
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Yu-Sheng Hsiao
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Da-an District, Taipei 10607, Taiwan;
| | - Yun-Ju Lai
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Laboratory, Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing, Jabalpur 482005, India;
| |
Collapse
|
7
|
Yasamineh S, Nikben N, Hamed Ahmed M, Abdul Kareem R, Kadhim Al-Aridhy A, Hosseini Hooshiar M. Increasing the sensitivity and accuracy of detecting exosomes as biomarkers for cancer monitoring using optical nanobiosensors. Cancer Cell Int 2024; 24:189. [PMID: 38816782 PMCID: PMC11138050 DOI: 10.1186/s12935-024-03379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
The advancement of nanoscience and material design in recent times has facilitated the creation of point-of-care devices for cancer diagnosis and biomolecule sensing. Exosomes (EXOs) facilitate the transfer of bioactive molecules between cancer cells and diverse cells in the local and distant microenvironments, thereby contributing to cancer progression and metastasis. Specifically, EXOs derived from cancer are likely to function as biomarkers for early cancer detection due to the genetic or signaling alterations they transport as payload within the cancer cells of origin. It has been verified that EXOs circulate steadily in bodily secretions and contain a variety of information that indicates the progression of the tumor. However, acquiring molecular information and interactions regarding EXOs has presented significant technical challenges due to their nanoscale nature and high heterogeneity. Colorimetry, surface plasmon resonance (SPR), fluorescence, and Raman scattering are examples of optical techniques utilized to quantify cancer exosomal biomarkers, including lipids, proteins, RNA, and DNA. Many optically active nanoparticles (NPs), predominantly carbon-based, inorganic, organic, and composite-based nanomaterials, have been employed in biosensing technology. The exceptional physical properties exhibited by nanomaterials, including carbon NPs, noble metal NPs, and magnetic NPs, have facilitated significant progress in the development of optical nanobiosensors intended for the detection of EXOs originating from tumors. Following a summary of the biogenesis, biological functions, and biomarker value of known EXOs, this article provides an update on the detection methodologies currently under investigation. In conclusion, we propose some potential enhancements to optical biosensors utilized in detecting EXO, utilizing various NP materials such as silicon NPs, graphene oxide (GO), metal NPs, and quantum dots (QDs).
Collapse
Affiliation(s)
- Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | | | | | - Ameer Kadhim Al-Aridhy
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | |
Collapse
|
8
|
Shen J, Ma Z, Xu J, Xue T, Lv X, Zhu G, Huang B. Exosome Isolation and Detection: From Microfluidic Chips to Nanoplasmonic Biosensor. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38676635 DOI: 10.1021/acsami.3c19396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Exosomes are becoming more widely acknowledged as significant circulating indicators for the prognosis and diagnosis of cancer. Circulating exosomes are essential to the development and spread of cancer, according to a growing body of research. Using existing technology, characterizing exosomes is quite difficult. Therefore, a direct, sensitive, and targeted approach to exosome detection will aid in illness diagnosis and prognosis. The review discusses the new strategies for exosome isolation and detection technologies from microfluidic chips to nanoplasmonic biosensors, analyzing the advantages and limitations of these new technologies. This review serves researchers to better understand exosome isolation and detection methods and to help develop better exosome isolating and detecting devices for clinical applications.
Collapse
Affiliation(s)
- Jianing Shen
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Zhengtai Ma
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese, Academy of Sciences, Beijing 100049, China
| | - Jiaqi Xu
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Tianhao Xue
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Xiaoqing Lv
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
| | - Guixian Zhu
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Beiju Huang
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese, Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Ning W, Hu S, Zhou C, Luo J, Li Y, Zhang C, Luo Z, Li Y. An ultrasensitive J-shaped optical fiber LSPR aptasensor for the detection of Helicobacter pylori. Anal Chim Acta 2023; 1278:341733. [PMID: 37709468 DOI: 10.1016/j.aca.2023.341733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
The development of label-free and sensitive detection of pathogenic bacteria is of great significance for disease prevention and public health protection. In this study, an originally bent structure, named as J-shaped optical fiber probe, was first designed to engineer a localized surface plasmon resonance (LSPR) aptamer biosensor for the rapid and ultrasensitive detection of Helicobacter pylori (H. pylori). The J-shaped optical fiber probe exhibited a significant improvement in refractive index sensitivity (RIS) and LSPR signal response. Meantime, the original sequence of aptamer was truncated in order to effectively capture H. pylori on the optical fiber surface. Besides, a spacer nucleic acid with short stem-loop structure was adopted to control the aptamer density on gold nanoparticles (AuNPs) on the surface of the J-shaped optical fiber probe, which displayed a further enhancement in LSPR signal response. Benefitting from these creative designs, the proposed LSPR biosensor can realize label-free and sensitive detection of H. pylori with a detection limit as low as 45 CFU/mL and a wide linear range from 1.0 × 102 CFU/mL to 1.0 × 108 CFU/mL. At the same time, the sensing strategy can detect the pathogenic bacteria from actual water samples in one step just in 30 min without any sample pretreatment. Due to the advantages of ease-to-preparation, high sensitivity, and rapid analysis, this proposed J-shaped optical fiber LSPR aptasensor can provide a potential strategy for point-of-caring detection of pathogenic bacteria in environmental monitoring and disease diagnosis.
Collapse
Affiliation(s)
- Wei Ning
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shunming Hu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Li
- Research Center of Analytical Instrumentation, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Chuyan Zhang
- Center for Med+X Manufacturing, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Recent advances in surface plasmon resonance imaging and biological applications. Talanta 2023; 255:124213. [PMID: 36584617 DOI: 10.1016/j.talanta.2022.124213] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Surface Plasmon Resonance Imaging (SPRI) is a robust technique for visualizing refractive index changes, which enables researchers to observe interactions between nanoscale objects in an imaging manner. In the past period, scholars have been attracted by the Prism-Coupled and Non-prism Coupled configurations of SPRI and have published numerous experimental results. This review describes the principle of SPRI and discusses recent developments in Prism-Coupled and Non-prism Coupled SPRI techniques in detail, respectively. And then, major advances in biological applications of SPRI are reviewed, including four sub-fields (cells, viruses, bacteria, exosomes, and biomolecules). The purpose is to briefly summarize the recent advances of SPRI and provide an outlook on the development of SPRI in various fields.
Collapse
|
11
|
Taylor ML, Giacalone AG, Amrhein KD, Wilson RE, Wang Y, Huang X. Nanomaterials for Molecular Detection and Analysis of Extracellular Vesicles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:524. [PMID: 36770486 PMCID: PMC9920192 DOI: 10.3390/nano13030524] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a novel resource of biomarkers for cancer and certain other diseases. Probing EVs in body fluids has become of major interest in the past decade in the development of a new-generation liquid biopsy for cancer diagnosis and monitoring. However, sensitive and specific molecular detection and analysis are challenging, due to the small size of EVs, low amount of antigens on individual EVs, and the complex biofluid matrix. Nanomaterials have been widely used in the technological development of protein and nucleic acid-based EV detection and analysis, owing to the unique structure and functional properties of materials at the nanometer scale. In this review, we summarize various nanomaterial-based analytical technologies for molecular EV detection and analysis. We discuss these technologies based on the major types of nanomaterials, including plasmonic, fluorescent, magnetic, organic, carbon-based, and certain other nanostructures. For each type of nanomaterial, functional properties are briefly described, followed by the applications of the nanomaterials for EV biomarker detection, profiling, and analysis in terms of detection mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
12
|
Qian Z, Zhang Y, Yuan J, Gong S, Chen B. Current applications of nanomaterials in urinary system tumors. Front Bioeng Biotechnol 2023; 11:1111977. [PMID: 36890910 PMCID: PMC9986335 DOI: 10.3389/fbioe.2023.1111977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The development of nanotechnology and nanomaterials has provided insights into the treatment of urinary system tumors. Nanoparticles can be used as sensitizers or carriers to transport drugs. Some nanoparticles have intrinsic therapeutic effects on tumor cells. Poor patient prognosis and highly drug-resistant malignant urinary tumors are worrisome to clinicians. The application of nanomaterials and the associated technology against urinary system tumors offers the possibility of improving treatment. At present, many achievements have been made in the application of nanomaterials against urinary system tumors. This review summarizes the latest research on nanomaterials in the diagnosis and treatment of urinary system tumors and provides novel ideas for future research on nanotechnologies in this field.
Collapse
Affiliation(s)
- Zhounan Qian
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yang Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Yuan
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Sun Gong
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Qian F, Huang Z, Zhong H, Lei Q, Ai Y, Xie Z, Zhang T, Jiang B, Zhu W, Sheng Y, Hu J, Brinker CJ. Analysis and Biomedical Applications of Functional Cargo in Extracellular Vesicles. ACS NANO 2022; 16:19980-20001. [PMID: 36475625 DOI: 10.1021/acsnano.2c11298] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) can facilitate essential communication among cells in a range of pathophysiological conditions including cancer metastasis and progression, immune regulation, and neuronal communication. EVs are membrane-enclosed vesicles generated through endocytic origin and contain many cellular components, including proteins, lipids, nucleic acids, and metabolites. Over the past few years, the intravesicular content of EVs has proven to be a valuable biomarker for disease diagnostics, involving cancer, cardiovascular diseases, and central nervous system diseases. This review aims to provide insight into EV biogenesis, composition, function, and isolation, present a comprehensive overview of emerging techniques for EV cargo analysis, highlighting their major technical features and limitations, and summarize the potential role of EV cargos as biomarkers in disease diagnostics. Further, progress and remaining challenges will be discussed for clinical diagnostic outlooks.
Collapse
Affiliation(s)
- Feiyang Qian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zena Huang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou 510970, P.R. China
| | - Hankang Zhong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yiru Ai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zihui Xie
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Tenghua Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Bowen Jiang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yan Sheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Jiaming Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
14
|
Damavandi AR, Mirmosayyeb O, Ebrahimi N, Zalpoor H, khalilian P, Yahiazadeh S, Eskandari N, Rahdar A, Kumar PS, Pandey S. Advances in nanotechnology versus stem cell therapy for the theranostics of multiple sclerosis disease. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Huang R, He L, Jin L, Li Z, He N, Miao W. Recent advancements in DNA nanotechnology-enabled extracellular vesicles detection and diagnosis: A mini review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
17
|
Nishat ZS, Hossain T, Islam MN, Phan HP, Wahab MA, Moni MA, Salomon C, Amin MA, Sina AAI, Hossain MSA, Kaneti YV, Yamauchi Y, Masud MK. Hydrogel Nanoarchitectonics: An Evolving Paradigm for Ultrasensitive Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107571. [PMID: 35620959 DOI: 10.1002/smll.202107571] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/02/2022] [Indexed: 06/15/2023]
Abstract
The integration of nanoarchitectonics and hydrogel into conventional biosensing platforms offers the opportunities to design physically and chemically controlled and optimized soft structures with superior biocompatibility, better immobilization of biomolecules, and specific and sensitive biosensor design. The physical and chemical properties of 3D hydrogel structures can be modified by integrating with nanostructures. Such modifications can enhance their responsiveness to mechanical, optical, thermal, magnetic, and electric stimuli, which in turn can enhance the practicality of biosensors in clinical settings. This review describes the synthesis and kinetics of gel networks and exploitation of nanostructure-integrated hydrogels in biosensing. With an emphasis on different integration strategies of hydrogel with nanostructures, this review highlights the importance of hydrogel nanostructures as one of the most favorable candidates for developing ultrasensitive biosensors. Moreover, hydrogel nanoarchitectonics are also portrayed as a promising candidate for fabricating next-generation robust biosensors.
Collapse
Affiliation(s)
- Zakia Sultana Nishat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tanvir Hossain
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Nazmul Islam
- School of Health and Life Sciences, Teesside University, Tees Valley, Middlesbrough, TS1 3BA, UK
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Md A Wahab
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital Faculty of Medicine, The University of Queensland, Herston, Brisbane City, QLD, 4029, Australia
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, 8320000, Chile
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abu Ali Ibn Sina
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, 02115, USA
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuf Valentino Kaneti
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - Mostafa Kamal Masud
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
18
|
Liu D, Tang J, Xu H, Yuan K, Aryee AA, Zhang C, Meng H, Qu L, Li Z. Split-aptamer mediated regenerable temperature-sensitive electrochemical biosensor for the detection of tumour exosomes. Anal Chim Acta 2022; 1219:340027. [DOI: 10.1016/j.aca.2022.340027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/29/2022] [Indexed: 02/08/2023]
|
19
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Rational design of effective solid-state electrochemiluminescence platform of Gold@Polyluminol nanocomposite as an ultrasensitive immuno-probe for selective detection of prostate specific antigen. Anal Chim Acta 2022; 1206:339736. [PMID: 35473865 DOI: 10.1016/j.aca.2022.339736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022]
Abstract
An electrodeposited gold@poly-luminol nanocomposite on glassy carbon electrode (Au@PL-NC/GCE) has been developed and demonstrated as solid-state electrochemiluminescence (ECL) immunosensor platform for prostate specific antigen (PSA) sensing. In-situ electro-generated reactive oxygen species (ROS) from oxygen reduction reaction in oxygen saturated PBS (pH 7.4) acts as sole co-reactant augmenting the signal transduction. Protein-G bio-affinity layer interfaced with Au@PL-NC/GCE (Protein-G/Au@PL-NC/GCE) to support the effective localization of Fc region of the monoclonal antibodies of PSA (mAb-PSA). As-developed ECL probe exhibit selective recognition of target analyte, PSA, enabling wide linearity of 1 fg mL-1 to 10 μg mL-1 with a calculated limit of detection (LOD) and limit of quantification (LOQ) of 0.45 fg mL-1 and 1.37 fg mL-1, respectively. The selectivity and specificity of the ECL probe was tested using human serum albumin, immunoglobulin G and mixtures of the same with target analyte. Fabricated ECL probe not only exhibit high sensitivity and specificity against commercial PSA samples but also enable clinical detection in real human serum and urine samples with acceptable recovery range from 97% to 103%. Our results suggest that the fabricated reagent-less solid-state ECL platform holds promising application in the field of prostate oncological screening and its point-of-care applications.
Collapse
|
21
|
Cheng Y, Xie Q, He M, Chen B, Chen G, Yin X, Kang Q, Xu Y, Hu B. Sensitive detection of exosomes by gold nanoparticles labeling inductively coupled plasma mass spectrometry based on cholesterol recognition and rolling circle amplification. Anal Chim Acta 2022; 1212:339938. [DOI: 10.1016/j.aca.2022.339938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
|
22
|
Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater 2022; 144:1-14. [PMID: 35358734 DOI: 10.1016/j.actbio.2022.03.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
As nanoscale extracellular vesicles, exosomes are secreted by various cell types, and they are widely distributed in multiple biological fluids. Studies have shown that tumor-derived exosomes can carry a variety of primary tumor-specific molecules, which may represent a novel tool for the early detection of cancer. However, the clinical translation of exosomes remains a challenge due to the requirement of large quantities of samples when enriching the cancer-related exosomes in biological fluids, the insufficiency of traditional techniques for exosome subpopulations, and the complex exosome isolation of the current commercially available exosome phenotype profiling approaches. The evolving surface-enhanced Raman scattering (SERS) technology, with properties of unique optoelectronics, easy functionalization, and the particular interaction between light and nanoscale metallic materials, can achieve sensitive detection of exosomes without large quantities of samples and multiplexed phenotype profiling, providing a new mode of real-time and noninvasive analysis for cancer patients. In the present review, we mainly discussed exosome detection based on SERS, especially SERS immunoassay. The basic structure and function of exosomes were firstly introduced. Then, recent studies using the SERS technique for cancer detection were critically reviewed, which mainly included various SERS substrates, biological modification of SERS substrates, SERS-based exosome detection, and the combination of SERS and other technologies for cancer diagnosis. This review systematically discussed the essential aspects, limitations, and considerations of applying SERS technology in the detection and analysis of cancer-derived exosomes, which could provide a valuable reference for the early diagnosis of cancer through SERS technology. STATEMENT OF SIGNIFICANCE: Surface-enhanced Raman scattering (SERS) has been applied to exosomes detection to obtain better diagnostic results. In past three years, several reviews have been published in exosome detection, which were narrowly focus on methods of exosome detection. Selection and surface functionalization of the substrate and the combination detection with different methods based on SERS will provide new strategies for the detection of exosomes. This review will focus on the above aspects. This emerging detection method is constantly evolving and contributing to the early discovery of diseases in the future.
Collapse
|
23
|
Mayoral-Peña K, González Peña OI, Orrantia Clark AM, Flores-Vallejo RDC, Oza G, Sharma A, De Donato M. Biorecognition Engineering Technologies for Cancer Diagnosis: A Systematic Literature Review of Non-Conventional and Plausible Sensor Development Methods. Cancers (Basel) 2022; 14:1867. [PMID: 35454775 PMCID: PMC9030888 DOI: 10.3390/cancers14081867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer is the second cause of mortality worldwide. Early diagnosis of this multifactorial disease is challenging, especially in populations with limited access to healthcare services. A vast repertoire of cancer biomarkers has been studied to facilitate early diagnosis; particularly, the use of antibodies against these biomarkers has been of interest to detect them through biorecognition. However, there are certain limitations to this approach. Emerging biorecognition engineering technologies are alternative methods to generate molecules and molecule-based scaffolds with similar properties to those presented by antibodies. Molecularly imprinted polymers, recombinant antibodies, and antibody mimetic molecules are three novel technologies commonly used in scientific studies. This review aimed to present the fundamentals of these technologies and address questions about how they are implemented for cancer detection in recent scientific studies. A systematic analysis of the scientific peer-reviewed literature regarding the use of these technologies on cancer detection was carried out starting from the year 2000 up to 2021 to answer these questions. In total, 131 scientific articles indexed in the Web of Science from the last three years were included in this analysis. The results showed that antibody mimetic molecules technology was the biorecognition technology with the highest number of reports. The most studied cancer types were: multiple, breast, leukemia, colorectal, and lung. Electrochemical and optical detection methods were the most frequently used. Finally, the most analyzed biomarkers and cancer entities in the studies were carcinoembryonic antigen, MCF-7 cells, and exosomes. These technologies are emerging tools with adequate performance for developing biosensors useful in cancer detection, which can be used to improve cancer diagnosis in developing countries.
Collapse
Affiliation(s)
- Kalaumari Mayoral-Peña
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| | - Omar Israel González Peña
- School of Engineering and Sciences, Campus Monterrey, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur No. 2501, Tecnológico, Monterrey 64849, Mexico
- Institute for the Future of Education, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur No. 2501, Tecnológico, Monterrey 64849, Mexico
| | - Alexia María Orrantia Clark
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, C. Puente 222, Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico;
| | - Rosario del Carmen Flores-Vallejo
- Department of Biomedical Engineering and Mechatronics, Campus Toluca, Universidad del Valle de México (UVM), C. De Las Palmas Poniente 439, San Jorge Pueblo Nuevo, Metepec 52164, Mexico;
| | - Goldie Oza
- Laboratorio Nacional de Micro y Nanofluídica (LABMyN), Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque San Fandila, Pedro Escobedo, Queretaro 76703, Mexico;
| | - Ashutosh Sharma
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| | - Marcos De Donato
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| |
Collapse
|
24
|
Zhang Y, Lin J, Zhuo Y, Zou Z, Li Y, Yang H, Xie W, Zeng J, Deng Y, Cai S, Ye J, Zou F, Zhong W. Untargeted metabolomics reveals alterations in the metabolic reprogramming of prostate cancer cells by double-stranded DNA-modified gold nanoparticles. BIOMATERIALS ADVANCES 2022; 135:212745. [PMID: 35929217 DOI: 10.1016/j.bioadv.2022.212745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 06/15/2023]
Abstract
Metabolic reprogramming plays an important role in the development of prostate cancer (PCa). However, there are few reports on the effects of nanomaterials as vectors on cancer metabolic reprogramming. Herein, a type of nanoparticle with good biocompatibility was synthesized by modifying the double-stranded of DNA containing a sulfhydryl group on the surface of gold nanoparticles (AuNPs-dsDNA) through salt-aging conjugation methods. The resultant AuNPs-dsDNA complexes possessed low toxicity to PC3 and DU145 cells in vitro. There was also no obvious hepatorenal toxicity after intravenous injection of AuNPs-dsDNA complexes in vivo, which indicated that these nanoparticles had good biological compatibilities. We investigated their biological functions using prostate cancer cells. Seahorse assay showed that AuNPs-dsDNA complexes could increase glycolysis and glycolysis capacity both in PC3 and DU145 cells. We further detected the expression of glycolysis-related genes by qPCR assay, and found that PKM2, PDHA, and LDHA were significantly upregulated. Furthermore, untargeted metabolomics revealed that PC (18:2(9Z,12Z)/18:2(9Z,12Z)) and PC (18:0/18:2 (9Z,12Z)) levels were decreased and inosinic acid level was increased in PC3 cells. Whereas (3S,6E,10E)-1,6,10,14-Phytatetraen-3-ol, Plasmenyl-PE 36:5 and Cer (d18:2/18:2) were decreased, PE 21:3 and 1-pyrrolidinecarboxaldehyde were increased in DU145 cells after co-culturing with AuNPs-dsDNA. In summary, we found that AuNPs and AuNPs-dsDNA complexes possibly regulate the metabolic reprogramming of cancer cells mainly through the lipid metabolic pathways, which could compensate for the previously mentioned phenomenon of enhanced glycolysis and glycolysis capacity. This will provide an important theoretical basis for our future research on the characteristic targeted design of nanomaterials for cancer metabolism.
Collapse
Affiliation(s)
- Yixun Zhang
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jundong Lin
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yangjia Zhuo
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Zhihao Zou
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yuejiao Li
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Huikang Yang
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Wenjie Xie
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jie Zeng
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yulin Deng
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Shanghua Cai
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jianheng Ye
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Fen Zou
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| | - Weide Zhong
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| |
Collapse
|
25
|
Xia Y, Chen T, Chen W, Chen G, Xu L, Zhang L, Zhang X, Sun W, Lan J, Lin X, Chen J. A dual-modal aptasensor based on a multifunctional acridone derivate for exosomes detection. Anal Chim Acta 2022; 1191:339279. [PMID: 35033266 DOI: 10.1016/j.aca.2021.339279] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/01/2022]
Abstract
Exosomes are promising biomarkers for cancer screening, but the development of a robust approach that can sensitively and accurately detect exosomes remains challenging. In the present study, an aptasensor based on the multifunctional signal probe 10-benzyl-2-amino-acridone (BAA) was developed for the colorimetric and photoelectrochemical detection and quantitation of exosomes. Exosomes are captured by cholesterol DNA anchor-modified magnetic beads (MBs) through hydrophobic interactions. This capture process can be monitored under a confocal fluorescence microscope using BAA as the fluorescent signal probe. The aptamer modified copper oxide nanoparticles (CuO NPs) then bind to mucin 1 (MUC1) on the surface of the exosomes to form a sandwich structure (MBs-Exo-CuO NPs). Finally, the MBs-Exo-CuO NPs are dissolved in nitric acid to generate Cu2+, which inhibits the visible-light-induced oxidase mimic activity and photoelectrochemical activity of BAA simultaneously. The changes in absorbance and photocurrent intensities are directly proportional to the concentration of exosomes. In this dual-modal aptasensor, the colorimetric assay can achieve rapid screening and identification, which is especially useful for point-of-care testing. The UV-vis absorbance and photocurrent assays then provide quantitative information, with a limit of detection of 1.09 × 103 particles μL-1 and 1.38 × 103 particles μL-1, respectively. The proposed aptasensor thus performs dual-modal detection and quantitation of exosomes. This aptasensor provides a much-needed toolset for exploring the biological roles of exosomes in specific diseases, particularly in the clinical setting.
Collapse
Affiliation(s)
- Yaokun Xia
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Tingting Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Wenqian Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Guanyu Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Lilan Xu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Li Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Xiaoling Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Weiming Sun
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Jianming Lan
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China
| | - Xu Lin
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China.
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350108, PR China.
| |
Collapse
|
26
|
Singh S, Numan A, Cinti S. Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. Anal Chem 2022; 94:26-40. [PMID: 34802244 PMCID: PMC8756393 DOI: 10.1021/acs.analchem.1c03856] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sima Singh
- IES
Institute of Pharmacy, IES University Campus, Kalkheda, Ratibad Main Road, Bhopal 462044, Madhya Pradesh, India
| | - Arshid Numan
- Graphene
& Advanced 2D Materials Research Group (GAMRG), School of Engineering
and Technology, Sunway University, 5, Jalan University, Bandar Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Stefano Cinti
- Department
of Pharmacy, University of Naples “Federico
II”, Via D. Montesano 49, 80131 Naples, Italy
- BAT
Center−Interuniversity Center for Studies on Bioinspired Agro-Environmental
Technology, University of Napoli Federico
II, 80055 Naples, Italy
| |
Collapse
|
27
|
Kwak SH, Wi JS, Lee J, Kim C, Na HK. Enhanced detection sensitivity through enzyme-induced precipitate accumulation in LSPR-active nano-valleys. RSC Adv 2022; 12:15652-15657. [PMID: 35685716 PMCID: PMC9126672 DOI: 10.1039/d2ra01331b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Biomolecule detection based on the localized surface plasmon resonance (LSPR) phenomenon has advantages in label-free detection, good sensitivity, and measurement simplicity and reproducibility. However, in order to ultimately be used for actual diagnosis, the ability to detect trace amounts of biomarkers is necessary, which requires the development of signal enhancement strategies that enable ultrasensitive detection. In this paper, we provide a straightforward and efficient route to boost LSPR sensitivity based on multiple sample washings. We found that repeated washing and drying cycles lead to a shift in the LSPR peak in a concentration-dependent manner, where this process drives the accumulation of a precipitate, formed by an enzyme reaction with target specificity, in the sample's LSPR active plasmonic nano-valley structure. Results show that the washing and drying process leads to a signal enhancement of more 200 times compared to a sensor with only enzyme-based amplification. To maximize this effect, optimization of the plasmonic nanostructure was also carried out to finally achieve atto-molar detection of miRNA with a distinguishable LSPR peak shift. Multiple washing and drying cycles of the sample drive the accumulation of enzymatic reaction products in the plasmonic nano-valleys, consequently inducing an additional LSPR peak shift in a concentration-dependent manner.![]()
Collapse
Affiliation(s)
- Su-Heon Kwak
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Korea
- Bio-Imaging Team, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Jung-Sub Wi
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Korea
| | - Jieon Lee
- Predictive Toxicology Department, Korea Institute of Toxicology (KIT), Daejeon, 34114, Korea
| | - Chunjoong Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Hee-Kyung Na
- Bio-Imaging Team, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| |
Collapse
|
28
|
Chen W, Li Z, Cheng W, Wu T, Li J, Li X, Liu L, Bai H, Ding S, Li X, Yu X. Surface plasmon resonance biosensor for exosome detection based on reformative tyramine signal amplification activated by molecular aptamer beacon. J Nanobiotechnology 2021; 19:450. [PMID: 34952586 PMCID: PMC8709980 DOI: 10.1186/s12951-021-01210-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive exosomes play an extremely important role in the diagnosis and treatment options of breast cancers. Herein, based on the reformative tyramine signal amplification (TSA) enabled by molecular aptamer beacon (MAB) conversion, a label-free surface plasmon resonance (SPR) biosensor was proposed for highly sensitive and specific detection of HER2-positive exosomes. The exosomes were captured by the HER2 aptamer region of MAB immobilized on the chip surface, which enabled the exposure of the G-quadruplex DNA (G4 DNA) that could form peroxidase-like G4-hemin. In turn, the formed G4-hemin catalyzed the deposition of plentiful tyramine-coated gold nanoparticles (AuNPs-Ty) on the exosome membrane with the help of H2O2, generating a significantly enhanced SPR signal. In the reformative TSA system, the horseradish peroxidase (HRP) as a major component was replaced with nonenzymic G4-hemin, bypassing the defects of natural enzymes. Moreover, the dual-recognition of the surface proteins and lipid membrane of the desired exosomes endowed the sensing strategy with high specificity without the interruption of free proteins. As a result, this developed SPR biosensor exhibited a wide linear range from 1.0 × 104 to 1.0 × 107 particles/mL. Importantly, this strategy was able to accurately distinguish HER2-positive breast cancer patients from healthy individuals, exhibiting great potential clinical application. ![]()
Collapse
Affiliation(s)
- Wenqin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.,Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wenqian Cheng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Tao Wu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, China
| | - Jia Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Liu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, China
| | - Huijie Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xinmin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Xiaolin Yu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, China.
| |
Collapse
|
29
|
Ishraq Bari SM, Hossain FB, Nestorova GG. Advances in Biosensors Technology for Detection and Characterization of Extracellular Vesicles. SENSORS (BASEL, SWITZERLAND) 2021; 21:7645. [PMID: 34833721 PMCID: PMC8621354 DOI: 10.3390/s21227645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Exosomes are extracellular vehicles (EVs) that encapsulate genomic and proteomic material from the cell of origin that can be used as biomarkers for non-invasive disease diagnostics in point of care settings. The efficient and accurate detection, quantification, and molecular profiling of exosomes are crucial for the accurate identification of disease biomarkers. Conventional isolation methods, while well-established, provide the co-purification of proteins and other types of EVs. Exosome purification, characterization, and OMICS analysis are performed separately, which increases the complexity, duration, and cost of the process. Due to these constraints, the point-of-care and personalized analysis of exosomes are limited in clinical settings. Lab-on-a-chip biosensing has enabled the integration of isolation and characterization processes in a single platform. The presented review discusses recent advancements in biosensing technology for the separation and detection of exosomes. Fluorescent, colorimetric, electrochemical, magnetic, and surface plasmon resonance technologies have been developed for the quantification of exosomes in biological fluids. Size-exclusion filtration, immunoaffinity, electroactive, and acoustic-fluid-based technologies were successfully applied for the on-chip isolation of exosomes. The advancement of biosensing technology for the detection of exosomes provides better sensitivity and a reduced signal-to-noise ratio. The key challenge for the integration of clinical settings remains the lack of capabilities for on-chip genomic and proteomic analysis.
Collapse
Affiliation(s)
| | - Faria Binte Hossain
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71272, USA;
| | | |
Collapse
|
30
|
Ma X, Hao Y, Liu L. Progress in Nanomaterials-Based Optical and Electrochemical Methods for the Assays of Exosomes. Int J Nanomedicine 2021; 16:7575-7608. [PMID: 34803380 PMCID: PMC8599324 DOI: 10.2147/ijn.s333969] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Exosomes with diameters of 30-150 nm are small membrane-bound vesicles secreted by a variety of cells. They play an important role in many biological processes, such as tumor-related immune response and intercellular signal transduction. Exosomes have been considered as emerging and noninvasive biomarkers for cancer diagnosis. Recently, a large number of optical and electrochemical biosensors have been proposed for sensitive detection of exosomes. To meet the increasing demands for ultrasensitive detection, nanomaterials have been integrated with various techniques as powerful components. Because of their intrinsic merits of biological compatibility, excellent physicochemical features and unique catalytic ability, nanomaterials have significantly improved the analytical performances of exosome biosensors. In this review, we summarized the recent progress in nanomaterials-based biosensors for the detection of cancer-derived exosomes, including fluorescence, colorimetry, surface plasmon resonance spectroscopy, surface enhanced Raman scattering spectroscopy, electrochemistry, electrochemiluminescence and so on.
Collapse
Affiliation(s)
- Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
| | - Lin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People’s Republic of China
| |
Collapse
|
31
|
Lim S, Kuang Y, Ardoña HAM. Evolution of Supramolecular Systems Towards Next-Generation Biosensors. Front Chem 2021; 9:723111. [PMID: 34490210 PMCID: PMC8416679 DOI: 10.3389/fchem.2021.723111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Supramolecular materials, which rely on dynamic non-covalent interactions, present a promising approach to advance the capabilities of currently available biosensors. The weak interactions between supramolecular monomers allow for adaptivity and responsiveness of supramolecular or self-assembling systems to external stimuli. In many cases, these characteristics improve the performance of recognition units, reporters, or signal transducers of biosensors. The facile methods for preparing supramolecular materials also allow for straightforward ways to combine them with other functional materials and create multicomponent sensors. To date, biosensors with supramolecular components are capable of not only detecting target analytes based on known ligand affinity or specific host-guest interactions, but can also be used for more complex structural detection such as chiral sensing. In this Review, we discuss the advancements in the area of biosensors, with a particular highlight on the designs of supramolecular materials employed in analytical applications over the years. We will first describe how different types of supramolecular components are currently used as recognition or reporter units for biosensors. The working mechanisms of detection and signal transduction by supramolecular systems will be presented, as well as the important hierarchical characteristics from the monomers to assemblies that contribute to selectivity and sensitivity. We will then examine how supramolecular materials are currently integrated in different types of biosensing platforms. Emerging trends and perspectives will be outlined, specifically for exploring new design and platforms that may bring supramolecular sensors a step closer towards practical use for multiplexed or differential sensing, higher throughput operations, real-time monitoring, reporting of biological function, as well as for environmental studies.
Collapse
Affiliation(s)
- Sujeung Lim
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Yuyao Kuang
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Herdeline Ann M Ardoña
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, United States.,Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
32
|
Li Q, Wang Y, Ling L, Qiao L, Chen H, Ding C, Yu S. Rapid and specific detection nanoplatform of serum exosomes for prostate cancer diagnosis. Mikrochim Acta 2021; 188:283. [PMID: 34341883 DOI: 10.1007/s00604-021-04934-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
Tumor exosomes that inherit specific molecules from their parent cells are emerging as ideal biomarkers in cancer diagnostics. Most currently available exosome isolation and detection methods are time-consuming and non-specific; thus, rapid and specific exosome detection methods are needed both clinically and in research. Here, a dual-functional platform is reported composed of reversible conjunction and "off-on" signal responses. Fe3O4@SiO2@TiO2 particles with high affinity were applied to capture exosomes, and model exosomes could be isolated from solution within 20 min with a capture efficiency of 91.5%. An "on-off" fluorescence response PSMA aptasensor was constructed with improved selectivity to detect tumor exosomes by recording the fluorescence intensity with λex/em = 557/580 nm. The standard curve for detecting tumor exosomes with the aptasensor was calculated as y = 371.7x + 66.17, ranging from 0.05 to 1 × 104 particles/μL, with R2 = 0.9737, and a detection limit of 5 × 102 particles/μL in solution. This method was successfully applied to clinical samples, and the results showed better performance in distinguishing prostate cancer patients and healthy samples than the traditional nanoparticle-tracking analysis (NTA) method. This rapid and accurate detection method for prostate cancer may aid in rapid clinical diagnosis. Integrating quickly TiO2-based isolation with sensitive and specific "on-off" detection of PCa exosomes.
Collapse
Affiliation(s)
- Qiaoyu Li
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yanlin Wang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Ling Ling
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Chuanfan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
33
|
Wang Z, Liu Y, Wang Z, Huang X, Huang W. Hydrogel‐based composites: Unlimited platforms for biosensors and diagnostics. VIEW 2021. [DOI: 10.1002/viw.20200165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zeyi Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Yanlei Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Zhiwei Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an China
| |
Collapse
|
34
|
Yi K, Rong Y, Huang L, Tang X, Zhang Q, Wang W, Wu J, Wang F. Aptamer-Exosomes for Tumor Theranostics. ACS Sens 2021; 6:1418-1429. [PMID: 33755415 DOI: 10.1021/acssensors.0c02237] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As carriers of biomolecules (proteins, nucleic acids, and lipids) from parent cells, exosomes play a significant role in physiology and pathology. In any diseased state, the morphology of the released exosomes remained similar. The contents of exosomes change depending on the disease or its stage; thus, exosomes are generally considered as a "source of biomarkers". Therefore, they are considered promising biomarkers for the diagnosis and prognosis of tumors. As natural delivery vehicles, exosomes can protect their cargo from immune clearance and deliver them to other cells through membrane fusion. After being genetically edited at the cell or exosome level, exosomes can be used for treatment with aptamers. Aptamers are short stretches of oligonucleotide sequences or short polypeptides that have been selected in vitro or in vivo, and have a wide range of targets and show excellent binding affinity and specificity. Aptamers have been widely used as molecular probes, and the combination of aptamers with exosomes has become a new direction for exosome-related research and therapeutic development. Here, we summarized various applications of exosomes and aptamers in cancer research, and further analyzed their combination as an "aptamer-exosome". Finally, we propose future directions for the aptamer-exosome in the precise diagnosis or personalized treatment of cancer.
Collapse
Affiliation(s)
- Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Xuan Tang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Wei Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Jianyuan Wu
- Clinical Trial Center of Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| |
Collapse
|
35
|
Amirjani A, Rahbarimehr E. Recent advances in functionalization of plasmonic nanostructures for optical sensing. Mikrochim Acta 2021; 188:57. [PMID: 33506310 DOI: 10.1007/s00604-021-04714-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
This review summarizes the progress that has been made in the use of nanostructured SPR-based chemical sensors and biosensors. Following an introduction into the field, a first large section covers principles of nanomaterial-based SPR sensing, mainly on methods using noble metal nanoparticles (spheres, cubes, triangular plates, etc.). The next section covers methods for functionalization of plasmonic nanostructures, with subsections on functionalization using (a) amino acids and proteins; (b) oligonucleotides, (c) organic polymers, and (d) organic compounds. Several tables are presented that give an overview on the wealth of methods and materials published. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. This review is not intended to be a comprehensive compilation of the literature in the field but rather is a systematic overview of the state of the art in surface chemistry of plasmonic nanostructures. The ability of various ligands and receptors for functionalization of nanoparticles as well as their sensing capability is discussed.
Collapse
Affiliation(s)
- Amirmostafa Amirjani
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran.
| | - Erfan Rahbarimehr
- Department of Chemistry, Université de Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|