1
|
Zhu Q, Xu X, Xu J, Ma X. Cyclodextrins-based deep eutectic supramolecules as chiral selectors for enhanced enantioseparation in capillary electrophoresis. J Chromatogr A 2025; 1740:465599. [PMID: 39706136 DOI: 10.1016/j.chroma.2024.465599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The joint use of deep eutectic solvents (DESs) and cyclodextrins (CDs) has been well demonstrated to have a promoting effect on chiral separation in capillary electrophoresis (CE). These studies focused on constructing synergistic separation systems by adding DESs and CDs to the buffer solution respectively. In this work, for the first time, β-cyclodextrin (β-CD), methyl-β-cyclodextrin (M-β-CD), and hydroxypropyl-β-cyclodextrin (HP-β-CD) were directly used as precursors to prepare several CDs-based deep eutectic supramolecules (DESUPs) by assembling with two organic acids (L-lactic acid and L-malic acid) in different ratios through a simple two-phase mixing. These CDs-based DESUPs were further employed as chiral selectors in CE to separate six racemic chiral drugs. Compared with the unmodified CDs systems, the separations of model drugs in the DESUPs separation systems were significantly improved. We calculated the binding constants of HP-β-CD with enantiomers before and after preparation as DESUPs, and investigated the chiral recognition mechanism of DESUPs chiral selectors using UV spectroscopy and nuclear magnetic resonance method. The enhanced enantioselectivity of CDs-based DESUPs was attributed to several factors. This study has opened up a new path for the exploration of high-performance chiral materials.
Collapse
Affiliation(s)
- Qiuyan Zhu
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu 226001, PR China
| | - Xin Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu 226001, PR China
| | - Jinqiu Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu 226001, PR China
| | - Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
2
|
Ning W, Xiang Y, Zhang L, Ye N. Hydrogen-bonded organic frameworks as stationary phase for open-tubular capillary electrochromatography. Anal Chim Acta 2024; 1326:343148. [PMID: 39260915 DOI: 10.1016/j.aca.2024.343148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Capillary electrochromatography (CEC) stationary phases have always been the focus of attention. The selection of excellent stationary phases are the key to realize separate of different compounds. Hydrogen-bonded organic frameworks (HOFs) are porous materials connected by hydrogen bonds between molecules, which have the advantages of renewable, high specific surface area and mild synthesis conditions. At present, HOFs are used in gas adsorption and storage, catalysis and drug delivery. Because of its unique advantages, HOFs have a bright future as CEC stationary phases. RESULTS Using melamine (MA) and 1,3,6,8-tetra (4-carboxylphenyl)pyrene (H4TBAPy) as reaction monomers, a HOFs named MA/PFC-1 was synthesized by solvent evaporation at room temperature. The inner wall of the capillary column was coated with MA/PFC-1 by chemical bonding. Sulfonamides were used as the target analytes. The effects of pH, phosphate buffer solution concentration, organic additive content and applied voltage on sulfonamides separation were investigated. The MA/PFC-1-coated capillary column had good resolution (>1.5) and reproducibility. The intra-day, inter-day, column-to-column, and inter-batch precision of the retention times were 0.03%-0.09%, 0.04%-0.09%, 0.03%-0.14% and 0.06%-0.09%, respectively. The intra-day, inter-day, column-to-column, and inter-batch precision of the peak areas were 0.11%-0.25%, 0.13%-0.20%, 0.12%-0.15% and 0.08%-0.15%, respectively. The MA/PFC-1-coated capillary column was run 150 consecutive times, and the results showed no noticeable change, which proved that this method had good stability. SIGNIFICANCE This work applied HOFs to CEC. The results show the that MA/PFC-1-coated capillary column has good separation performance. The MA/PFC-1-coated capillary column has been successfully applied to the determination of sulfamethoxazole in tablets, which has practical application value. To open up the application of HOFs in CEC and provide a new idea for developing new CEC stationary phases.
Collapse
Affiliation(s)
- Weijie Ning
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
3
|
Hong T, Zhou Q, Liu Y, Ji Y, Tan S, Zhou W, Cai Z. Preparation of DNA nanoflower-modified capillary silica monoliths for chiral separation. Mikrochim Acta 2024; 191:584. [PMID: 39245760 DOI: 10.1007/s00604-024-06663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Innovative chiral capillary silica monoliths (CSMs) were developed based on DNA nanoflowers (DNFs). Baseline separation of enantiomers such as atenolol, tyrosine, histidine, and nefopam was achieved by using DNF-modified CSMs, and the obtained resolution value was higher than 1.78. To further explore the effect of DNFs on enantioseparation, different types of chiral columns including DNA strand containing the complementary sequence of the template (DCT)-modified CSMs, DNF2-modified CSMs, and DNF3-modified CSMs were prepared as well. It was observed that DNF-modified CSMs displayed better chiral separation ability compared with DCT-based columns. The intra-day and inter-day repeatability of model analytes' retention time and resolution kept desirable relative standard deviation values of less than 8.28%. DNF2/DNF3-modified CSMs were able to achieve baseline separation of atenolol, propranolol, 2'-deoxyadenosine, and nefopam enantiomers. Molecular docking simulations were performed to investigate enantioselectivity mechanisms of DNA sequences for enantiomers. To indicate the successful construction of DNFs and DNF-modified CSMs, various charaterization approaches including scanning electron microscopy, agarose gel electrophoresis, dynamic light scattering analysis, electroosmotic flow, and Fourier-transform infrared spectroscopy were utilized. Moreover, the enantioseparation performance of DNF-modified CSMs was characterized in terms of sample volume, applied voltage, and buffer concentration. This work paves the way to applying DNF-based capillary electrochromatography microsystems for chiral separation.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Qi Zhou
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yilian Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou, SIP 215000, China
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, 213100, Jiangsu, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, 213100, Jiangsu, China.
| |
Collapse
|
4
|
Aredes RS, Lima IDP, Faillace AP, Madriaga VGC, Lima TDM, Vaz FAS, Marques FFDC, Duarte LM. From capillaries to microchips, green electrophoretic features for enantiomeric separations: A decade review (2013-2022). Electrophoresis 2023; 44:1471-1518. [PMID: 37667860 DOI: 10.1002/elps.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023]
Abstract
Enantioseparation by the electromigration-based method is well-established and widely discussed in the literature. Electrophoretic strategies have been used to baseline resolve complex enantiomeric mixtures, typically using a selector substance into the background electrolyte (BGE) from capillaries to microchips. Along with developing new materials/substances for enantioseparations, it is the concern about the green analytical chemistry (GAC) principles for method development and application. This review article brings a last decade's update on the publications involving enantioseparation by electrophoresis for capillary and microchip systems. It also brings a critical discussion on GAC principles and new green metrics in the context of developing an enantioseparation method. Chemical and green features of native and modified cyclodextrins are discussed. Still, given the employment of greener substances, ionic liquids and deep-eutectic solvents are highlighted, and some new selectors are proposed. For all the mentioned selectors, green features about their production, application, and disposal are considered. Sample preparation and BGE composition in GAC perspective, as well as greener derivatization possibilities, were also addressed. Therefore, one of the goals of this review is to aid the electrophoretic researchers to look where they have not.
Collapse
Affiliation(s)
- Rafaella S Aredes
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Isabela de P Lima
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Amanda P Faillace
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Vinicius G C Madriaga
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Thiago de M Lima
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Fernando A S Vaz
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Flávia F de C Marques
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Lucas M Duarte
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Hong T, Liu X, Ji Y, Tan S, Cai Z. Construction of chiral capillary electrochromatography microsystems based on Aspergillus sp. CM96. Mikrochim Acta 2023; 190:357. [PMID: 37597027 DOI: 10.1007/s00604-023-05926-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/20/2023] [Indexed: 08/21/2023]
Abstract
Novel chiral capillary electrochromatography (CEC) microsystems were constructed based on Aspergillus sp. CM96. As a newly discovered intrinsic characteristic of the cell, cell chirality occupies an essential position in life evolution. Aspergillus sp. CM96 spore (CM96s) was chosen as a proof of concept to develop chiral capillary columns. Interestingly, various types of amino acid (AA) enantiomers were baseline separated under the optimized conditions. Furthermore, the time-dependent chiral interactions between AAs and CM96s were explored in a wider space. Pectinases generated from Aspergillus sp. CM96 fermentation were immobilized onto graphene oxide-functionalized capillary silica monoliths for separating AA enantiomers. Molecular docking simulations were performed to explore chiral separation mechanisms of pectinase for AA enantiomers. These results indicated that Aspergillus sp. CM96-based CEC microsystems have a significant advantage for chiral separation.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Xing Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, 213100, Jiangsu, China.
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, 213100, Jiangsu, China.
| |
Collapse
|
6
|
Ahmed MA, Ghiasvand A, Quirino JP. Dynamic in situ growth of bonded-phase silica nanospheres on silica capillary inner walls for open-tubular liquid chromatography. Anal Bioanal Chem 2023; 415:4923-4934. [PMID: 37351669 PMCID: PMC10386930 DOI: 10.1007/s00216-023-04798-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Silica nanospheres (SNS) were grown on the inner walls of silica capillaries through a dynamic in situ nucleation process to prepare a highly porous and large accessible surface area substrate. The SNS were then functionalized with octadecyl (C18), 3-aminopropyltriethoxysilane (APTES), beta-cyclodextrin (β-CD), and amino groups to develop robust and efficient chromatographic stationary phases. The modified silica capillaries were exploited for open-tubular liquid chromatography (OT-LC) and open-tubular capillary electrochromatography (OT-CEC) applications. The prepared stationary phases were compared to conventional capillaries in terms of separation performance. The synthesis process was optimized, and the bonded-phase stationary phases were characterized by the electron microscopy technique. The effects of different solvents, additives, and functional groups on the geometry and chromatographic resolving power of the SNS were envisaged. The capillaries modified with octadecyl groups were evaluated for the separation of non-steroidal anti-inflammatory drugs, phenones, alkenylbenzenes, and enantiomers of chlorophenoxy herbicides. As an application instance, an SNS-C18-coated capillary was utilized for the separation of alkenylbenzenes from clove extract and protein digest medium, through OT-LC and OT-CEC techniques, respectively. The β-CD functionalized capillary was applied for the OT-CEC separation of a dichlorprop racemic mixture.
Collapse
Affiliation(s)
- Mohamed Adel Ahmed
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Alireza Ghiasvand
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia.
- Department of Analytical Chemistry, Lorestan University, Khoramabad, Iran.
| | - Joselito P Quirino
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia.
| |
Collapse
|
7
|
Gao L, Cui H, Guo X, Dong Q, You X, Guo X, Qin S, Jia L. Enantioseparation by zeolitic imidazolate framework-8-silica hybrid monolithic column with sulfobutylether-β-cyclodextrin as a chiral additive in capillary electrochromatography. Mikrochim Acta 2023; 190:315. [PMID: 37474749 DOI: 10.1007/s00604-023-05908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
A zeolitic imidazolate framework (ZIF)-8-silica hybrid monolithic column was prepared by one-step sol-gel method. The stationary phase in the monolithic column was characterized by Fourier-transform infrared spectra, X-ray diffraction, thermogravimetric analysis, nitrogen adsorption/desorption, and zeta potential. The results showed that ZIF-8-silica hybrid monolithic materials had abundant functional groups, good crystallinity, large specific surface area, and good thermal stability. A capillary electrochromatography (CEC) chiral separation system was for the first time constructed with ZIF-8-silica hybrid monolithic column and sulfobutylether-β-cyclodextrin (SBE-β-CD) as a chiral additive and was applied to separate the selected single and mixed chiral compounds (13 natural amino acids and 5 chiral pesticides). Under the optimized CEC conditions, all the single analytes achieved baseline separation with resolution of 2.14-5.94 and selectivity factor of 1.06-1.49 in less than 6 min, and the mixed amino acids with similar properties were also simultaneously enantioseparated (Rs ≥ 1.82). Relative standard deviations (RSDs) of migration time and column efficiency were lower than 4.26% and did not change significantly after 200 runs, evidencing excellent reproducibility and stability. These results demonstrate that the application of SBE-β-CD as a chiral additive for ZIF-8-silica hybrid monolithic columns is a promising method for the separation of chiral compounds.
Collapse
Affiliation(s)
- Lidi Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Hongshou Cui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Xinyu Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Qing Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Xingyu You
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Xinshu Guo
- College of Life Science, Northeast Agricultural University, Harbin, 150038, China
| | - Shili Qin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
| | - Lihua Jia
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
8
|
Ahmed MA, Yu RB, Quirino JP. Recent developments in open tubular liquid chromatography and electrochromatography from 2019–2021. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Recent applications and chiral separation developments based on stationary phases in open tubular capillary electrochromatography (2019–2022). J Pharm Anal 2023; 13:323-339. [PMID: 37181297 PMCID: PMC10173184 DOI: 10.1016/j.jpha.2023.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Capillary electrochromatography (CEC) plays a significant role in chiral separation via the double separation principle, partition coefficient difference between the two phases, and electroosmotic flow-driven separation. Given the distinct properties of the inner wall stationary phase (SP), the separation ability of each SP differs from one another. Particularly, it provides large room for promising applications of open tubular capillary electrochromatography (OT-CEC). We divided the OT-CEC SPs developed over the past four years into six types: ionic liquids, nanoparticle materials, microporous materials, biomaterials, non-nanopolymers, and others, to mainly introduce their characteristics in chiral drug separation. There also added a few classic SPs that occurred within ten years as supplements to enrich the features of each SP. Additionally, we discuss their applications in metabolomics, food, cosmetics, environment, and biology as analytes in addition to chiral drugs. OT-CEC plays an increasingly significant role in chiral separation and may promote the development of capillary electrophoresis (CE) combined with other instruments in recent years, such as CE with mass spectrometry (CE/MS) and CE with ultraviolet light detector (CE/UV).
Collapse
|
10
|
Sun X, Niu B, Zhang Q, Chen Q. MIL-53-based homochiral metal–organic framework as a stationary phase for open-tubular capillary electrochromatography. J Pharm Anal 2021; 12:509-516. [PMID: 35811623 PMCID: PMC9257441 DOI: 10.1016/j.jpha.2021.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/27/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Xiaodong Sun
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Corresponding author.
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Corresponding author.
| |
Collapse
|
11
|
Evaluation of a composite nanomaterial consist of gold nanoparticles and graphene-carbon nitride as capillary electrochromatography stationary phase for enantioseparation. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
|
13
|
Wu D, Ma C, Fan GC, Pan F, Tao Y, Kong Y. Recent advances of the ionic chiral selectors for chiral resolution by chromatography, spectroscopy and electrochemistry. J Sep Sci 2021; 45:325-337. [PMID: 34117714 DOI: 10.1002/jssc.202100334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
Ionic chiral selectors have been received much attention in the field of asymmetric catalysis, chiral recognition, and preparative separation. It has been shown that the addition of ionic chiral selectors can enhance the recognition efficiency dramatically due to the presence of multiple intermolecular interactions, including hydrogen bond, π-π interaction, van der Waals force, electrostatic ion-pairing interaction, and ionic-hydrogen bond. In the initial research stage of the ionic chiral selectors, most of work center on the application in chromatographic separation (capillary electrophoresis, high-performance liquid chromatography, and gas chromatography). Differently, more and more attention has been paid on the spectroscopy (nuclear magnetic resonance, fluorescence, ultraviolet and visible absorption spectrum, and circular dichroism spectrum) and electrochemistry in recent years. In this tutorial review as regards the ionic chiral selectors, we discuss in detail the structural features, properties, and their application in chromatography, spectroscopy, and electrochemistry.
Collapse
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Cong Ma
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, P. R. China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| |
Collapse
|
14
|
Preparation and evaluation of chiral open-tubular columns supported with zeolite silica nanoparticles and single/dual chiral selectors using capillary electrochromatography with amperometric detection. J Chromatogr A 2021; 1651:462298. [PMID: 34111678 DOI: 10.1016/j.chroma.2021.462298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/22/2022]
Abstract
In this work, novel stationary phase coatings by zeolite SiO2NPs coupled with β-cyclodextrin (β-CD) or β-CD/L-phenylalanine were developed for chiral open-tubular capillary electrochromatography (OT-CEC). The OT columns were prepared taking advantage of the strong adhesion of polydopamine in one-step method. Scanning electron micrography and electroosmotic flow were used to characterize the prepared single/dual-selector OT columns. Chiral separation of four chiral analytes (catechin/epicatechin, ephedrine/pseudoephedrine, ritodrine and salbutamol) was carried out in order to evaluate the performance of the prepared columns in OT-CEC with amperometric detection system. In terms of migration time, peak area, resolution, and selectivity factor of catechin/epicatechin and salbutamol, the run-to-run, day-to-day, and column-to-column repeatability were within 8.9%. Under the optimum conditions, the developed methods were applied for the analyses of Chinese herbal medicine Catechu herbs and salbutamol aerosol samples.
Collapse
|
15
|
Yang J, Li X, Du Y, Ma M, Zhang L, Zhang J, Li P. Colorimetric recognition of aromatic amino acid enantiomers by gluconic acid-capped gold nanoparticles. Amino Acids 2021; 53:195-204. [PMID: 33432455 DOI: 10.1007/s00726-020-02939-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/26/2020] [Indexed: 11/25/2022]
Abstract
In this work, we prepared gold nanoparticles (AuNPs) by employing gluconic acid (GlcA) as reducing-cum-stabilizing agent. The proposed GlcA-AuNPs successfully worked as a colorimetric sensor for visual chiral recognition of aromatic amino acid enantiomers, namely tyrosine (D/L-Tyr), phenylalanine (D/L-Phe), and tryptophan (D/L-Trp). After adding L-types to GlcA-AuNPs solution, the color of the mixture changed from red to purple (or gray), while no obvious color change occurred on the addition of D-types. The effect can be detected by naked eyes. The particles have been characterized by transmission electron microscopy, Fourier-transform infrared spectroscopy, zeta potential, the dynamic light scattering analysis as well as UV-Vis spectroscopy. This assay can be used to determine the enantiomeric excess of L-Trp in the range from 0 to + 100%. The method has advantages in simplicity, sensitivity, fast response, and low cost.
Collapse
Affiliation(s)
- Jiangxia Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, Jiangsu, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China.
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, Jiangsu, People's Republic of China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, Jiangsu, People's Republic of China.
| | - Mingxuan Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, Jiangsu, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Liu Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, Jiangsu, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, Jiangsu, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Peipei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, Jiangsu, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, 210009, Jiangsu, People's Republic of China
| |
Collapse
|
16
|
Negatively charged cyclodextrins: Synthesis and applications in chiral analysis-A review. Carbohydr Polym 2020; 256:117517. [PMID: 33483038 DOI: 10.1016/j.carbpol.2020.117517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The negatively charged cyclodextrins (CDs) play an important role in chiral analysis due to the additional electrostatic effect beyond the host-guest inclusion, especially in enantioanalysis of positively charged and electrically neutral analytes. This review presents recent advances in application of anionic CDs for enantioanalysis during the past five years. Firstly, the synthesis approaches of random substitution and single isomers of anionic CDs are briefly discussed. The main part focuses on the chiral analysis using anionic CDs in various analytical techniques, including capillary electrophoresis, high-performance liquid chromatography, capillary electrochromatography, counter current chromatography, nuclear magnetic resonance, etc. Particular attention is given to the capillary electrophoresis application since charged CDs could be used as a carrier of enantiomers by virtue of their self-mobility and offer an easy adjustment of the enantiomer migration order. Finally, future opportunities are also discussed in the conclusion of this review.
Collapse
|
17
|
Ding W, Ma M, Du Y, Chen C, Ma X. Metal organic framework ZIF-90 modified with lactobionic acid for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs. Mikrochim Acta 2020; 187:651. [PMID: 33174063 DOI: 10.1007/s00604-020-04611-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/20/2020] [Indexed: 01/05/2023]
Abstract
An in situ zeolite imidazole metal organic framework-90 (ZIF-90) modified capillary was prepared via the method of solvothermal synthesis. The coating of ZIF-90 was characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and EOF. Capillary electrochromatography-based enantioseparation of the basic drugs propranolol (PRO), metoprolol (MET), atenolol (ATE), bisoprolol (BIS), and sotalol (SOT) was performed using lactobionic acid (LA) as the chiral selector. Compared with an uncoated silica capillary, the resolutions are greatly improved (PRO 1.40 → 3.23; MET 1.07 → 3.19; ATE 1.07 → 3.15; BIS 1.16 → 3.41; SOT 1.00 → 2.79). Effects of buffer pH values, proportion of organic additives, concentration of lactobionic acid, and applied voltage were investigated. Graphical abstract Schematic presentation of the preparation of zeolitic imidazolate framework-90 (ZIF-90) modified capillary (ZIF-90@capillary) for enantioseparation of drug enantiomers. The capillary was applied to construct capillary electrochromatography system with lactobionic acid for enantioseparation of basic chiral drugs.
Collapse
Affiliation(s)
- Wen Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mingxuan Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| |
Collapse
|