1
|
Rasheed S, Hussain K, Arif S, Umar AR, Anwar SB, Muhammad H, Yasmeen K, Tuzen M, Shah MR. Smartphone-integrated inkjet-printed paper sensor and UV/Vis spectrophotometric method for on-site detection of As 3+ and L-cysteine in food samples using novel AMTPP-functionalized silver nanoparticles. Food Chem 2025; 464:141921. [PMID: 39515168 DOI: 10.1016/j.foodchem.2024.141921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The increasing prevalence of arsenic (As3+) in water and its health impacts necessitate advanced detection methods. Similarly, monitoring L-Cysteine, a vital thiol-containing amino acid, is crucial for assessing physiological processes and disorders. This study presents a novel method for detecting As3+ and L-Cysteine in food samples using 4-amino-3-(D-galactopentitol-1-yl)-5-mercapto-1,2,4-triazole (AMTPP) functionalized silver nanoparticles (AMTPP-AgNPs) by UV/Vis spectrophotometric method and smartphone-assisted inkjet-printed paper-based sensors. AMTPP-AgNPs, synthesized through a detailed process, show exceptional selectivity and sensitivity to As3+ and L-Cysteine, undisturbed by other metal ions and amino acids. Characterization techniques like FTIR, DLS, Zeta Potential, AFM, and SEM detailed their morphological and interaction properties. Optimizing detection parameters, such as response time, pH, and temperature, improved sensitivity and achieved low detection limits. The limits of detection (LODs) were 0.0052 μM for L-cysteine and 0.0092 μM for As3+, as calculated using UV-Vis spectrophotometric methods. The method also demonstrated high recovery rates in spiked meat and corn samples. This research offers a cost-effective, rapid method for on-site food analysis, significantly aiding environmental and public health monitoring.
Collapse
Affiliation(s)
- Sufian Rasheed
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kashif Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning Province, China
| | - Shan Arif
- Coordination and Environmental Chemistry Lab. PARS campus, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Abdul Rehman Umar
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Institute of Supramolecular Science and Engineering (ISIS)-UMAR 7006 University of Strasbourg CNRS, 8 Allee Gaspard Monge, Strasbourg F-67000, France
| | - Syeda Bushra Anwar
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Karachi 75300, Pakistan
| | - Haji Muhammad
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Karachi 75300, Pakistan; Department of Chemistry, Tokat Gaziosmanpasa University, 60250 Tokat, Turkey.
| | - Kousar Yasmeen
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Karachi 75300, Pakistan
| | - Mustafa Tuzen
- Department of Chemistry, Tokat Gaziosmanpasa University, 60250 Tokat, Turkey.
| | - Muhammad Raza Shah
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Xia M, Hu L, Ye Y, Li Y. Tuning surface morphology of AuNPs film via thiourea as a stable SERS platform for methylene blue. Talanta 2025; 281:126848. [PMID: 39260260 DOI: 10.1016/j.talanta.2024.126848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Gold nanoparticles (AuNPs) have been extensively utilized in various fields such as sensors, life sciences, and catalysis. In this study, AuNPs were synthesized using a reduction method and subsequently treated with thiourea in an ethanol-water environment to prepare AuNPs film using a centrifugal deposition method for first time, resulting in the aggregation of the initial small-sized AuNPs into larger microsphere-like structures. The addition of thiourea facilitated the interconnection between AuNPs, ultimately leading to the formation of large stable gold microspheres. The sheet resistance of the AuNP films transitioned from being non-conductive to exhibiting a sheet resistance of 42.6 Ω/sq following thiourea treatment. The transformation from a flat surface to tightly connected particles resembling microspheres was observed from SEM images. The thiourea treatment not only altered the morphological characteristic of the AuNPs films but also significantly increased the number of scattering sites on their surface, leading to a substantial enhancement in the Raman scattering effect for methylene blue. This structural configuration also improved the electronic conduction and stability of the treated AuNPs films. Consequently, these findings suggest that AuNPs have promising application prospects in surface-enhanced Raman scatting (SERS), as well as in flexible electronics, catalysis, adsorption, and energy fields.
Collapse
Affiliation(s)
- Minqiang Xia
- School of Materials Science & Engineering, Shanghai University, Shanghai, 200444, China
| | - Lingui Hu
- School of Materials Science & Engineering, Shanghai University, Shanghai, 200444, China
| | - Yulu Ye
- School of Materials Science & Engineering, Shanghai University, Shanghai, 200444, China
| | - Yunbo Li
- School of Materials Science & Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Mangala Gowri V, Panleam T, Giri J, Srithongkul N, Shanmugaraj K, Fatehmulla A, Thongmee S. Beyond templates: exploring uncharted territory in anisotropic gold nanostructure-oligomer composites synthesis and electrocatalytic performance towards environmental pollutants. RSC Adv 2024; 14:40234-40246. [PMID: 39717817 PMCID: PMC11664328 DOI: 10.1039/d4ra07744j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
The synthesis of polymer/oligomer-stabilized metal nanostructures (MNS) opens up a wide range of possibilities, from fundamental materials science to practical applications in domains such as medicine, catalysis, sensing, and energy. Because of the versatility of this synthetic approach, it is a dynamic and ever-changing field of study. These polymers/oligomers have precise control over the nucleation and growth kinetics, allowing the production of mono-disperse MNS with well-defined properties. The protective coating provided by polymers or oligomers increased the stability and colloidal dispersity of MNS in these oligomer-MNS composites. As a result, the current research reports the electrocatalytic reduction of nitrobenzene (NB) utilizing oligomeric aminomercaptotriazole (oligo AMTa) and oligo (AMTa-AuNS) modified glassy carbon (GC) electrodes developed via a wet chemical technique. UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), high resolution mass spectroscopy (HR-MS), and high-resolution transmission electron microscopy (HR-TEM) approaches were used to confirm the development of oligomer and AuNS. After that, the GC electrode was directly linked to the oligo AMTa and oligo AMTa-AuNS by dipping them in the appropriate solutions. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cycle voltammetry (CV) were all employed to confirm the fabrication of oligo AMTa and oligo AMTa-AuNS. Eventually, the electrochemical reduction of NB occurred using the fabricated electrodes. The catalytic activity of oligo AMTa-AuNS has been observed to be more than that of the other modified electrode. As an outcome, the film was employed to determine the sensitivity level of NB, and a limit of detection (LOD) of 2.8 nM was found. The straight-forward method's practical utility was proven by measuring NB in lake sample water.
Collapse
Affiliation(s)
- Veeramani Mangala Gowri
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute Gandhigram 624 302 Dindigul Tamilnadu India
| | - Theelada Panleam
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering Nagpur India
- Division of Research and Development, Lovely Professional University Phagwara India
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University Chennai 602105 TN India
| | - Nattapong Srithongkul
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Krishnamoorthy Shanmugaraj
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá Avda. General Velásquez-1775 Arica Chile
| | - Amanullah Fatehmulla
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Sirikanjana Thongmee
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| |
Collapse
|
4
|
Urbinati C, Pezzoni G, Cavadini P, Giovanni VD, Capucci L, Rusnati M. Validation of plasmonic-based biosensors for rapid and in depth characterization of monoclonal antibodies directed against rabbit haemorrhagic and foot-and-mouth disease viruses in biological samples. Methods 2024; 234:85-92. [PMID: 39653303 DOI: 10.1016/j.ymeth.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
ELISA and RT-PCR represent the standard tools for the sensitive identification of viruses in biological samples, but they lack the capacity to finely characterize the binding of viruses or viral antigens to monoclonal antibodies (MAbs). Biosensing technologies are gaining increasing importance as powerful MAb characterization tools in the field of virology. Surface plasmon resonance (SPR) is an optical biosensing technology already used for the in depth characterization of MAbs of diagnostic and therapeutic value. Rabbit haemorrhagic disease virus (RHDV) and foot-and-mouth disease virus (FMDV) are top veterinary issues for which the development of novel methods aimed at the characterization of antiviral MAbs represents a priority with important livestock healthcare and economic implications. With these premises in mind, here we prepared a series of SPR biosensors by immobilizing RHDV2 or its 6S subunit by different strategies that were then used to characterize the binding capacity of a panel of anti-RHDV2 MAbs. From the comparison of the results obtained, the biosensor composed of intact RHDV2 captured with catcher-MAb covalently immobilized to the surface showed the best analytical performances. To evaluate the versatility of the biosensor, the same strategy was then adopted using FMVD in cell extracts. The results obtained are discussed in view of the exploitation of SPR in the rapid and resilient fine characterization of antiviral MAbs for diagnostic or therapeutic purposes in the field of animal virology.
Collapse
Affiliation(s)
- Chiara Urbinati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giulia Pezzoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and WOAH, Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - Patrizia Cavadini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and WOAH, Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - Vittoria Di Giovanni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and WOAH, Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and WOAH, Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Consorzio Interuniversitario Biotecnologie (CIB), Unit of Brescia, Brescia, Italy.
| |
Collapse
|
5
|
Verdin A, Malherbe C, Sloan-Dennison S, Faulds K, Graham D, Eppe G. Thiol-polyethylene glycol-folic acid (HS-PEG-FA) induced aggregation of Au@Ag nanoparticles: A SERS and extinction UV-Vis spectroscopy combined study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124848. [PMID: 39032228 DOI: 10.1016/j.saa.2024.124848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Plasmonic colloidal nanoparticles (NPs) functionalised with polymers are widely employed in diverse applications, offering advantages demonstrated over non-functionalised NPs such as enhanced colloidal stability or increased biocompatibility. However, functionalisation with polymers does not always increase the stability of the colloidal system. This work explores the intricate relationship between the functionalisation of plasmonic core@shell Au@Ag nanoparticles (NPs) with thiol-polyethylene glycol-folic acid (HS-PEG-FA) polymer chains and the resulting stability and spectral characteristics of Surface-Enhanced Raman Scattering (SERS) nanotags based on these NPs. We demonstrate that varying levels of HS-PEG-FA grafting influence nanotag stability, with a low level of grafting causing aggregation and subsequently affecting the spectral signature of Raman-reporter molecules attached to the surface of the NP. Electrostatic destabilisation is identified as the primary mechanism driving aggregation, impacting the SERS spectrum of Malachite Green isothiocyanate (MGITC) whose spectral shape is different between the aggregated and non-aggregated NPs. The findings provide valuable insights into NPs stability under different conditions, offering essential considerations for the design and optimisation of SERS nanotags in bio-analytical applications, particularly those involving data processing based on spectral shape, such as in multiplex approaches where experimental spectra are decomposed with several reference components.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
6
|
Günther A, Deja Y, Kilic M, Tran K, Kotra P, Renz F, Kowalsky W, Roth B. Investigation of the molecular switching process between spin crossover states of triazole complexes as basis for optical sensing applications. Sci Rep 2024; 14:5897. [PMID: 38467722 PMCID: PMC11636798 DOI: 10.1038/s41598-024-56427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
With the advent of the first laser sources and suitable detectors, optical sensor applications immediately also came into focus. During the last decades, a huge variety of optical sensor concepts were developed, yet the forecast for the future application potential appears even larger. In this context, the development of new sensor probes at different scales down to the atomic or molecular level open new avenues for research and development. We investigated an iron based triazole molecular spin-crossover complex changing its absorption characteristics significantly by varying environmental parameters such as humidity, temperature, magnetic or electric field, respectively, with respect to its suitability for a new class of versatile molecular sensor probes. Hereby, besides the investigation of synthesized pure bulk material using different analyzing methods, we also studied amorphous micro particles which were applied in or onto optical waveguide structures. We found that significant changes of the reflection spectra can also be obtained after combining the particles with different types of optical waveguides.The obtained results demonstrate the suitability of the material complex for a broad field of future sensor applications.
Collapse
Affiliation(s)
- Axel Günther
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167, Hannover, Germany.
- Institute of High Frequency Technology, Technical University Braunschweig, 38106, Braunschweig, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany.
| | - Yves Deja
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167, Hannover, Germany
| | - Maximilian Kilic
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Kevin Tran
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Pavan Kotra
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167, Hannover, Germany
| | - Franz Renz
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Wolfgang Kowalsky
- Institute of High Frequency Technology, Technical University Braunschweig, 38106, Braunschweig, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany
| | - Bernhard Roth
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany
| |
Collapse
|
7
|
Dehghani MT, Delnavaz M. UV-light-responsive Ag/TiO 2/PVA nanocomposite for photocatalytic degradation of Cr, Ni, Zn, and Cu heavy metal ions. Sci Rep 2024; 14:5195. [PMID: 38431708 PMCID: PMC11319828 DOI: 10.1038/s41598-024-56059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 03/05/2024] Open
Abstract
The rapid growth of industrialization has led to the uncontrolled pollution of the environment, and rapid action is needed. This study synthesized Ag/TiO2/polyvinyl alcohol (PVA) nano photocatalyst for promising light-derived photocatalytic removal of heavy metal ions. The design of experiment (DOE) was used to study the effect of important factors (pH, reaction time, and photocatalyst dosage) to maximize the final performance of the photocatalyst. In the optimized condition, the Ag/TiO2/PVA nano-photocatalyst removed more than 94% of Cr6+ in 180 min, and the efficiency was more than 70% for Cu2+, Zn2+, and Ni2+ metal ions. The adsorption of the heavy metal ions on the photocatalyst was described well with the Langmuir isotherm, while the pseudo-second-order linear kinetic model fitted with the experimental data. The nano-photocatalyst's stability was confirmed after maintaining its performance for five successive runs. The enhanced photocatalytic activity for the heavy metal ions removal can be attributed to the presence of metallic silver nanoparticles (electron transfer and plasmonic fields mechanisms) and PVA, which delayed the recombination of electron-hole. The synthesized ternary Ag/TiO2/PVA nano-photocatalyst showed promising performance for the elimination of heavy metal ions and can be used for environmental remediation purposes.
Collapse
Affiliation(s)
- Mohammad Taha Dehghani
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran, 15719-14911, Iran
| | - Mohammad Delnavaz
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran, 15719-14911, Iran.
| |
Collapse
|
8
|
Juste-Dolz A, Fernández E, Micó G, Bru LA, Muñoz P, Avella-Oliver M, Pastor D, Maquieira Á. Surface Bragg gratings of proteins patterned on integrated waveguides for (bio)chemical analysis. Mikrochim Acta 2023; 191:63. [PMID: 38157073 DOI: 10.1007/s00604-023-06124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
The incorporation of biomacromolecules onto silicon waveguiding microstructures constitutes a growing trend that pushes towards compact and miniaturized biosensing systems. This paper presents the integration of one-dimensional periodic nanostructures of proteins on the surface of micrometric silicon waveguides for transducing binding events between biomacromolecules. The study demonstrates this new bioanalytical principle by experimental results and theoretical calculations, and proves that rib waveguides (1--1.6-µm width) together with protein gratings (495--515-nm period) display suitable spectral responses for this optical biosensing system. Protein assemblies of bovine serum albumin are fabricated on the surface of silicon nitride waveguides, characterized by electron microscopy, and their response is measured by optical frequency domain reflectometry along the fabrication process and the subsequent stages of the biorecognition assays. Detection and quantification limits of 0.3 and 3.7 µg·mL-1, respectively, of specific antibodies are inferred from experimental dose-response curves. Among other interesting features, the results of this study point towards new miniaturized and integrated sensors for label-free bioanalysis.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
| | - Gloria Micó
- Photonics Research Labs, ITEAM, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Luis A Bru
- Photonics Research Labs, ITEAM, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Pascual Muñoz
- Photonics Research Labs, ITEAM, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Daniel Pastor
- Photonics Research Labs, ITEAM, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
9
|
Bunge A, Radu T, Borodi G, Boca S, Nan A. Green Synthesis of Gold, Silver, Copper, and Magnetite Particles Using Poly(tartaric acid) Simultaneously as Coating and Reductant. Polymers (Basel) 2023; 15:4472. [PMID: 38231889 PMCID: PMC10708409 DOI: 10.3390/polym15234472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 01/19/2024] Open
Abstract
Poly(tartaric acid) is a relatively recently described polymer that can be easily synthesized and scaled up from a readily available renewable material (tartaric acid). This article demonstrates its use in a green synthesis of gold nanoparticles, silver nanoparticles, copper particles, and magnetite nanoparticles. In this case poly(tartaric acid) acts both as a reductant and as a coating agent. To our knowledge this is the first green synthesis of several different types of nanoparticles using only one reagent (polytartrate) as both reductant and coating. The resulting particles were analyzed by XRD, TEM/SEM, EDX, FTIR, DLS, zeta-potential, XPS, and UV/VIS spectroscopy. Preliminary studies of the thermal behavior of mixtures of different types of particles with poly(tartaric acid) were also conducted. The obtained particles show different sizes depending on the material, and the coating allows for better dispersibility as well as potential further functionalization, making them potentially useful also for other applications, besides the inclusion in polymer composites.
Collapse
Affiliation(s)
- Alexander Bunge
- National Institute R&D for Isotopic and Molecular Technology, 67-103 Donat Street, 400293 Cluj-Napoca, Romania (T.R.); (G.B.); (S.B.)
| | - Teodora Radu
- National Institute R&D for Isotopic and Molecular Technology, 67-103 Donat Street, 400293 Cluj-Napoca, Romania (T.R.); (G.B.); (S.B.)
| | - Gheorghe Borodi
- National Institute R&D for Isotopic and Molecular Technology, 67-103 Donat Street, 400293 Cluj-Napoca, Romania (T.R.); (G.B.); (S.B.)
| | - Sanda Boca
- National Institute R&D for Isotopic and Molecular Technology, 67-103 Donat Street, 400293 Cluj-Napoca, Romania (T.R.); (G.B.); (S.B.)
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Alexandrina Nan
- National Institute R&D for Isotopic and Molecular Technology, 67-103 Donat Street, 400293 Cluj-Napoca, Romania (T.R.); (G.B.); (S.B.)
| |
Collapse
|
10
|
Huang D, Wu M, Kuga S, Huang Y. Size-Controlled Silver Nanoparticles Supported by Pyrolytic Carbon from Microcrystalline Cellulose. Int J Mol Sci 2023; 24:14431. [PMID: 37833880 PMCID: PMC10572184 DOI: 10.3390/ijms241914431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
A facile method was developed for preparing size-controlled silver nanoparticles supported by pyrolytic carbon from microcrystalline cellulose (MCC). The pyrolysis of cellulose-AgNO3 mixture caused the oxidation of cellulose, resulting in carboxyl groups to which silver ions can bind firmly and act as nuclei for the deposition of silver nanoparticles. The structure and properties of the obtained nanocomposite were characterized by using a scanning electron microscope (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). The results suggest that silver nanoparticles were integrated successfully and dispersed uniformly in the pyrolytic carbon matrix. The average particle size varied between 20 nm and 100 nm in correlation to the dose of silver nitrate and temperature of pyrolysis. The products showed high electric conductivity and strong antimicrobial activity against Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Dayong Huang
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Xiong'an Institute of Innovation, Xiong'an 071899, China
- Center of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wu
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Xiong'an Institute of Innovation, Xiong'an 071899, China
- Center of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shigenori Kuga
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Huang
- National Engineering Research Center of Engineering Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Saison-Francioso O, Lévêque G, Akjouj A, Pennec Y. Theoretical Study of Gold Nanoparticles Randomly Dispersed on a Dielectric/Gold Substrate. ACS OMEGA 2023; 8:21493-21505. [PMID: 37360435 PMCID: PMC10286086 DOI: 10.1021/acsomega.3c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 06/28/2023]
Abstract
We theoretically study random arrangements of cylindrical gold nanoparticles (NPs) deposited on a dielectric/gold substrate. We use two methods, namely the Finite Element Method (FEM) and the Coupled Dipole Approximation (CDA) method. The FEM is increasingly used to analyze the optical properties of NPs, but calculations for arrangements containing a large number of NPs have a high computational cost. On the contrary, the CDA has the advantage to drastically reduce the computation time and the memory demand compared to the FEM. Nevertheless, as the CDA involves modeling each NP as a single electric dipole through the polarizability tensor of a spheroidal-shaped NP, it may be an insufficiently accurate method. Therefore, the main purpose of this article is to verify the validity of using the CDA in order to analyze such a kind of nanosystems. Finally, we capitalize on this methodology to draw some tendencies between statistics of NPs' distributions and the plasmonic properties.
Collapse
|
12
|
Chen J, Liu X, Zheng G, Feng W, Wang P, Gao J, Liu J, Wang M, Wang Q. Detection of Glucose Based on Noble Metal Nanozymes: Mechanism, Activity Regulation, and Enantioselective Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205924. [PMID: 36509680 DOI: 10.1002/smll.202205924] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Glucose monitoring is essential to evaluate the degree of glucose metabolism disorders. The enzymatic determination has been the most widely used method in glucose detection because of its high efficiency, accuracy, and sensitivity. Noble metal nanomaterials (NMs, i.e., Au, Ag, Pt, and Pd), inheriting their excellent electronic, optical, and enzyme-like properties, are classified as noble metal nanozymes (NMNZs). As the NMNZs are often involved in two series of reactions, the oxidation of glucose and the chromogenic reaction of peroxide, here the chemical mechanism by employing NMNZs with glucose oxidase (GOx) and peroxidase (POD) mimicking activities is briefly summarized first. Subsequently, the regulation strategies of the GOx-like, POD-like and tandem enzyme-like activities of NMNZs are presented in detail, including the materials, size, morphology, composition, and the reaction condition of the representative NMs. In addition, in order to further mimic the enantioselectivity of enzyme, the design of NMNZs with enantioselective recognition of d-glucose and l-glucose by using different chiral compounds (DNA, amino acids, and cyclodextrins) and molecular imprinting is further described in this review. Finally, the feasible solutions to the existing challenges and a vision for future development possibilities are discussed.
Collapse
Affiliation(s)
- Jiaqi Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Xiaoyang Liu
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jian Gao
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jianbo Liu
- College of Opto-electronic Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Mingzhe Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qingyuan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
13
|
Puumala LS, Grist SM, Morales JM, Bickford JR, Chrostowski L, Shekhar S, Cheung KC. Biofunctionalization of Multiplexed Silicon Photonic Biosensors. BIOSENSORS 2022; 13:53. [PMID: 36671887 PMCID: PMC9855810 DOI: 10.3390/bios13010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
Silicon photonic (SiP) sensors offer a promising platform for robust and low-cost decentralized diagnostics due to their high scalability, low limit of detection, and ability to integrate multiple sensors for multiplexed analyte detection. Their CMOS-compatible fabrication enables chip-scale miniaturization, high scalability, and low-cost mass production. Sensitive, specific detection with silicon photonic sensors is afforded through biofunctionalization of the sensor surface; consequently, this functionalization chemistry is inextricably linked to sensor performance. In this review, we first highlight the biofunctionalization needs for SiP biosensors, including sensitivity, specificity, cost, shelf-stability, and replicability and establish a set of performance criteria. We then benchmark biofunctionalization strategies for SiP biosensors against these criteria, organizing the review around three key aspects: bioreceptor selection, immobilization strategies, and patterning techniques. First, we evaluate bioreceptors, including antibodies, aptamers, nucleic acid probes, molecularly imprinted polymers, peptides, glycans, and lectins. We then compare adsorption, bioaffinity, and covalent chemistries for immobilizing bioreceptors on SiP surfaces. Finally, we compare biopatterning techniques for spatially controlling and multiplexing the biofunctionalization of SiP sensors, including microcontact printing, pin- and pipette-based spotting, microfluidic patterning in channels, inkjet printing, and microfluidic probes.
Collapse
Affiliation(s)
- Lauren S. Puumala
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Samantha M. Grist
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
| | - Jennifer M. Morales
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Justin R. Bickford
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Lukas Chrostowski
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sudip Shekhar
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
14
|
SPR-based assay kit for rapid determination of Pb2+. Anal Chim Acta 2022; 1220:340030. [DOI: 10.1016/j.aca.2022.340030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
|
15
|
Saboorizadeh B, Zare-Dorabei R. Intrinsic Dual-Emitting Carbon Quantum-Dot-Based Selective Ratiometric Fluorescent Mercaptopurine Detection. ACS Biomater Sci Eng 2022; 8:3589-3595. [PMID: 35786836 DOI: 10.1021/acsbiomaterials.2c00423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mercaptopurine (6-MP), an immunosuppressive drug, has been widely prescribed for treating leukemia and autoimmune diseases. The level of the 6-MP drug in body fluids is of great interest due to the severe health problems related to its overdose. This study used a facile microwave preparation route to synthesize carbon quantum dots (CQDs) using glutathione and formamide as carbon sources. The obtained monodispersed quantum dots showed dual fluorescence emission with a sensitive affinity toward the 6-MP drug. The sensor's response was optimized by tuning the temperature, pH, and volume ratio of the probe. The prepared ratiometric fluorescence method showed accurate measurements for determining mercaptopurine in aqueous solutions in the concentration range of 1.4-7.6 mg L-1 with the limit of detection of 1.3 mg L-1. The sensor's performance was assessed in complex solutions, human urine, and human plasma sample and recovery values in the range of 88-127% were obtained. The reliable dual fluorometric sensor showed promising results for 6-MP determination and potential application for the determination of other chemical and biochemical species.
Collapse
Affiliation(s)
- Bahar Saboorizadeh
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| |
Collapse
|
16
|
Sapyen W, Toonchue S, Praphairaksit N, Imyim A. Selective colorimetric detection of Cr(VI) using starch-stabilized silver nanoparticles and application for chromium speciation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121094. [PMID: 35257989 DOI: 10.1016/j.saa.2022.121094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The selective quantitation of Cr(VI) was developed through colorimetric detection using starch-stabilized silver nanoparticles (starch-AgNPs). The detection of Cr(VI) was based on oxidative degradation of starch-AgNPs as the reduction of UV-Vis signal and the distinctive color change from yellow to colorless of starch-AgNPs were observed. To achieve the highest sensitivity by this method, pH 3, and only 1 min were required for the determination of Cr(VI). For analytical performances, two linear ranges of 0-6 µM and 10-80 µM with limit of detection of 0.93 µM (48 µg/L) and 11.57 µM (0.60 mg/L) were obtained, respectively. The developed colorimetric method was combined with inductively coupled plasma optical emission spectroscopy (ICP-OES) for the speciation analysis of chromium. The concentration of Cr(III) was calculated by subtraction of Cr(VI) from the total chromium concentration determined by ICP-OES. A satisfactory accuracy and precision based on the AOAC guidelines also proved that this simple and rapid sensor was successfully applied for speciation of chromium in real water samples.
Collapse
Affiliation(s)
- Wannida Sapyen
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saowanee Toonchue
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narong Praphairaksit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apichat Imyim
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
17
|
Patil T, Gambhir R, Vibhute A, Tiwari AP. Gold Nanoparticles: Synthesis Methods, Functionalization and Biological Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02287-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Continuous and Size-Controlled Preparation of Ibuprofen Nanosuspension by Antisolvent Crystallization Method Using Hollow Fiber Membrane. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Amirjani A, Salehi K, Sadrnezhaad SK. Simple SPR-based colorimetric sensor to differentiate Mg 2+ and Ca 2+ in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120692. [PMID: 34894568 DOI: 10.1016/j.saa.2021.120692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
L-tryptophan functionalized AgNPs were successfully fabricated using a one-pot synthesis method and assessed as a colorimetric probe for rapid and accurate determination of Mg2+ ions. The developed sensor showed a selective response towards Mg2+ with no interference from Ca2+ in the wide concentration range of 1-200 µM. The sensor's response was optimized in the pH range of 9-10, which can be attributed to the protonation of amine groups and their interaction with Mg2+ ions. The stability and selectivity of the sensor were examined in different salt (NaCl) and other metal ions, respectively. The L-tryptophan-AgNPs sensor detected Mg2+ with the limit of detection of 3 µM, which is way lower than the concentration range of magnesium in human serum (0.75-1.05 mM). The recovery values of the developed sensor were in the range of 96-102% for the determination of Mg2+ in urine samples. The obtained performances proved the potential application of the developed sensor for clinical diagnostic of Mg2+ ions where an accurate and rapid response is needed.
Collapse
Affiliation(s)
- Amirmostafa Amirjani
- Department of Materials Science and Engineering, Sharif University of Technology, P.O.Box: 11155-9466, Tehran, Iran.
| | - Kimia Salehi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O.Box: 11155-9466, Tehran, Iran
| | - S K Sadrnezhaad
- Department of Materials Science and Engineering, Sharif University of Technology, P.O.Box: 11155-9466, Tehran, Iran.
| |
Collapse
|
20
|
Huang X, Liu Q, Wu C, Lin Z, Huang A, Qiu B. Controllable release ratiometric fluorescent sensor for hyaluronidase via the combination of Cu 2+-Fe-N-C nanozymes and degradable intelligent hydrogel. Talanta 2022; 237:122961. [PMID: 34736686 DOI: 10.1016/j.talanta.2021.122961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
As a popular controllable-released carrier, intelligent hydrogels are often used in drug delivery and disease therapeutics. Meanwhile, benefit from the mimic-enzyme activity performance, Fe-N-C nanozymes have been widely used in sensing and analysis. However, the combination of intelligent hydrogels with specific degradability and Fe-N-C nanozymes with enhanced activity in one system to achieve controllable and sensitive detection is rare. Herein, we combine intelligent hydrogel with mimic peroxidase activity enhanced Fe-N-C nanozymes to construct a ratiometric fluorescence probe for sensitive detection of hyaluronidase (HAase). The modification of copper ions has been proved to enhance the mimic enzyme activity of Fe-N-C nanozymes greatly. Cu2+ modified Fe-N-C nanozymes were embedded in hyaluronic acid hydrogel. In the presence of HAase, the HA hydrogel structure was hydrolyzed and released Cu2+-Fe-N-C nanozymes gradually. The released Cu2+-Fe-N-C nanozymes are used to catalyze the hydrogen peroxide system so that o-phenylenediamine is oxidized to orange fluorescent 2, 3-diaminophenolazine (DAP). Due to the electrostatic interaction, the fluorescence resonance energy transfer can occur between the negatively charged copper nanoclusters emitted by 430 nm and the positively charged DAP emitted by 560 nm. The activity of HAase was monitored according to the ratio of fluorescence intensity at 560 nm and 430 nm (F560/F430). The linear range of this method is 0-10.0 U/ml and the detection limit is 0.43 U/mL (S/N = 3). This strategy has been further applied to biological samples successfully.
Collapse
Affiliation(s)
- Xuemin Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Qingfeng Liu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Cuimin Wu
- Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350108, China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Aiwen Huang
- Clinical Pharmacy Department, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350001, PR China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China.
| |
Collapse
|
21
|
Malathi S, Pakrudheen I, Kalkura SN, Webster T, Balasubramanian S. Disposable biosensors based on metal nanoparticles. SENSORS INTERNATIONAL 2022; 3:100169. [PMID: 35252890 PMCID: PMC8889882 DOI: 10.1016/j.sintl.2022.100169] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease2019 (COVID-19) pandemic has highlighted the need for disposable biosensors that can detect viruses in infected patients quickly due to fast response and also at a low cost.The present review provides an overview of the applications of disposable biosensors based on metal nanoparticles in enzymatic and non-enzymatic sensors with special reference to glucose and H2O2, immunosensors as well as genosensors (DNA biosensors in which the recognized event consists of the hybridization reaction)for point-of-care diagnostics. The disposable biosensors for COVID19 have also been discussed.
Collapse
Affiliation(s)
- S. Malathi
- Crystal Growth Centre, Anna University, Guindy, Chennai, 600025, India
| | - I. Pakrudheen
- Department of Chemistry, CMR Institute of Technology, Bengaluru, 560037, Karnataka, India
| | | | - T.J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - S. Balasubramanian
- Department of Inorganic Chemistry, University of Madras, Guindy, Chennai, 600025, India,Corresponding author
| |
Collapse
|
22
|
Starukh H, Koštejn M, Matějka V, Praus P. Graphitic Carbon Nitride as a Platform for the Synthesis of Silver Nanoclusters. NANOSCALE RESEARCH LETTERS 2021; 16:166. [PMID: 34817713 PMCID: PMC8613329 DOI: 10.1186/s11671-021-03621-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/04/2021] [Indexed: 05/27/2023]
Abstract
Graphitic carbon nitride (CN) synthetized by the thermal polycondensation of melamine at 550 °C for 4 h was further exfoliated by heating at 500 °C for 3 h. Silver cations were adsorbed on the exfoliated graphitic carbon nitride (CNE) and then reduced by sodium borohydride forming silver nanoclusters (NCs) with a size of less than 1 nm. The NCs were located on the CNE surface and did not change the CNE properties except for its pore size distribution and thereby specific surface area (SSA). The Ag NCs were able to collect the photoinduced electrons of CNE and thus reduce their recombination with the holes. It was also documented by the increase in the CNE photocatalytic activity in terms of the degradation of antibiotic Ofloxacin. This study demonstrates the ability of CNE to serve as a platform for a simple and fast synthesis of Ag NCs without any stabilizing compounds.
Collapse
Affiliation(s)
- Halyna Starukh
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. listopadu 15, 70800, Ostrava-Poruba, Czech Republic
- Department of Chemistry, Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00, Ostrava-Poruba, Czech Republic
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, General Naumov Street 17, Kyiv, 03164, Ukraine
| | - Martin Koštejn
- Institute of Chemical Process Fundamentals, Czech Academy of Science, Rozvojová 1, 165 02, Prague, Czech Republic
| | - Vlastimil Matějka
- Department of Chemistry, Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00, Ostrava-Poruba, Czech Republic
| | - Petr Praus
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. listopadu 15, 70800, Ostrava-Poruba, Czech Republic.
- Department of Chemistry, Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00, Ostrava-Poruba, Czech Republic.
| |
Collapse
|
23
|
Nasiripur P, Zangiabadi M, Baghersad MH. Visible light photocatalytic degradation of methyl parathion as chemical warfare agents simulant via GO-Fe3O4/Bi2MoO6 nanocomposite. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Nanoparticle Determination in Water by LED-Excited Surface Plasmon Resonance Imaging. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The increasing popularity of nanoparticles in many applications has led to the fact that these persistent materials pollute our environment and threaten our health. An online sensor system for monitoring the presence of nanoparticles in fresh water would be highly desired. We propose a label-free sensor based on SPR imaging. The sensitivity was enhanced by a factor of about 100 by improving the detector by using a high-resolution camera. This revealed that the light source also needed to be improved by using LED excitation instead of a laser light source. As a receptor, different self-assembled monolayers have been screened. It can be seen that the nanoparticle receptor interaction is of a complex nature. The best system when taking sensitivity as well as reversibility into account is given by a dodecanethiol monolayer on the gold sensor surface. Lanthanide-doped nanoparticles, 29 nm in diameter and with a similar refractive index to the most common silica nanoparticles were detected in water down to 1.5 µg mL−1. The sensor can be fully regenerated within one hour without the need for any washing buffer. This sensing concept is expected to be easily adapted for the detection of nanoparticles of different size, shape, and composition, and upon miniaturization, suitable for long-term applications to monitor the quality of water.
Collapse
|