1
|
Jafari S, Pourmortazavi SM, Ehsani A, Mirsadeghi S. CuO-ZIF-8 modified electrode surface as a new electrochemical sensing platform for detection of free chlorine in aqueous solution. Sci Rep 2024; 14:18961. [PMID: 39147855 PMCID: PMC11327310 DOI: 10.1038/s41598-024-69869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
This work has applied metal-organic frameworks (MOFs) with high adsorbability and catalytic activity to develop electrochemical sensors to determine free chlorine (free-Cl) concentrations in aqueous media. A zeolitic imidazolate frameworks, Zn(Hmim)2 (ZIF-8) has been synthesized and incorporated with CuO nanosheets to decorate a glassy carbon electrode (GCE) and provide a new sensor for free-Cl determination. The as-prepared ZIF-8 and CuO-ZIF-8 composites have been characterized by FESEM, EDX, XRD, and FT-IR analyses. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) utilized to characterize the CuO-ZIF-8/GC modified electrode electrochemically, demonstrated the ability of the sensor to measure free-Cl concentration. Using differential pulse voltammetry (DPV) and under the optimal conditions, the prepared CuO-ZIF-8/GC modified electrode showed a linear response in the 0.25-60 ppm range with a 12 ppb detection limit (LOD) for free-Cl concentration. Finally, the fabricated sensor was applied to analyze free-Cl from actual swimming pool water samples with promising 97.5 to 103.0% recoveries.
Collapse
Affiliation(s)
- Somayeh Jafari
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | | | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Somayeh Mirsadeghi
- KonadHerbs Co., Sharif Innovation Area, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Mao H, Yu L, Tu M, Wang S, Zhao J, Zhang H, Cao Y. Recent Advances on the Metal-Organic Frameworks-Based Biosensing Methods for Cancer Biomarkers Detection. Crit Rev Anal Chem 2024; 54:1273-1289. [PMID: 35980613 DOI: 10.1080/10408347.2022.2111197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sensitive and selective detection of cancer biomarkers is crucial for early diagnosis and treatment of cancer, one of the most dangerous diseases in the world. Metal-organic frameworks (MOFs), a class of hybrid porous materials fabricated through the assembly of metal ions/clusters and organic ligands, have attracted increasing attention in the sensing of cancer biomarkers, due to the advantages of adjustable size, high porosity, large surface area and ease of modification. MOFs have been utilized to not only fabricate active sensing interfaces but also arouse a variety of measurable signals. Several representative analytical technologies have been applied in MOF-based biosensing strategies to ensure high detection sensitivity toward cancer biomarkers, such as fluorescence, electrochemistry, electrochemiluminescence, photochemistry and colorimetric methods. In this review, we summarized recent advances on MOFs-based biosensing strategies for the detection of cancer biomarkers in recent three years based on the categories of metal nodes, and aimed to provide valuable references for the development of innovative biosensing platform for the purpose of clinical diagnosis.
Collapse
Affiliation(s)
- Huiru Mao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Longmei Yu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuning Wang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jing Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Haiyun Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ya Cao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Zhou Y, Yin H, Li J, Shao K, Dong H, Ling C, Wang X, Xu M. Construction of poly (ionic liquid)-derived gold/silver alloy@nitrogen-doped carbon shell and its application for ratiometric electrochemical detection of nitric oxide. Talanta 2024; 272:125839. [PMID: 38428134 DOI: 10.1016/j.talanta.2024.125839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
A nitrogen-doped carbon shell loaded with a gold and silver alloy (Au/Ag@NCS) was constructed for highly sensitive electrochemical detection of NO. The Au/Ag@NCS material was prepared by use of SiO2 particles as a template to polymerize imidazolium-based ionic liquids loaded with gold and silver salts, and subsequent carbonization treatment and template removal. The hollow structure of the carbon material acted as a carrier for electrochemical sensing, offering high specific surface area, large pore capacity, robust electron conductivity, and excellent mechanical stability. The inclusion of gold in the composite enhanced its catalytic and sensing capabilities, while silver oxidation was employed as a reference signal for accurate detection. By utilization of the Au/Ag@NCS-modified electrode, a wide detection range from 0.5 nM to 1.05 μM with a low detection limit of 0.32 nM was achieved for NO detection. The electrochemical sensor also exhibited high selectivity and excellent stability. The fabricated sensor was further utilized to explore the release of NO from breast cancer cells, revealing that the electrochemical platform could be regarded as an important method to study the daily tests of NO in clinical application.
Collapse
Affiliation(s)
- Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Hewen Yin
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Junru Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Kexian Shao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Cuixia Ling
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Xiaobing Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China.
| |
Collapse
|
4
|
Wu J, Liang L, Li S, Qin Y, Zhao S, Ye F. Rational design of nanozyme with integrated sample pretreatment for colorimetric biosensing. Biosens Bioelectron 2024; 257:116310. [PMID: 38643549 DOI: 10.1016/j.bios.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Nanozymes have been widely used in the field of biosensing owing to their high stability, low cost, adjustable catalytic activity, and convenient modification. However, achieving high selectivity and sensitivity simultaneously in nanozyme-based colorimetric sensing remains a major challenge. Nanozymes are nanomaterials with enzyme-simulating activity that are often used as solid-phase adsorbents for sample pretreatment. Our design strategy integrated sample pretreatment function into the nanozyme through separation and enrichment, thereby improving the selectivity and sensitivity of nanozyme-based colorimetric biosensing. As a proof-of-concept, glucose was used as the model analyte in this study. A phenylboric acid-modified magnetic nanozyme (Cu/Fe3O4@BA) was rationally designed and synthesized. Selectivity was enhanced by boronate-affinity specific adsorption and the elimination of interference after magnetic separation. In addition, magnetic solid-phase extraction enrichment was used to improve the sensitivity. A recovery rate of more than 80% was reached when the enrichment factor was 50. The synthesized magnetic Cu/Fe3O4@BA was recyclable at least five times. The proposed method exhibited excellent selectivity and sensitivity, simple operation, and recyclability, providing a novel and practical strategy for designing multifunctional nanozymes for biosensing.
Collapse
Affiliation(s)
- Jia Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China
| | - Ling Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shuishi Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yuan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
5
|
Sun X, Fu Q, Ren J, Sun-Waterhouse D, Waterhouse GIN, Qiao X. Defective copper-based metal-organic frameworks for the efficient extraction of organosulfur compounds from garlic-processing wastewater. Food Chem 2024; 435:137628. [PMID: 37804731 DOI: 10.1016/j.foodchem.2023.137628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Organosulfur compounds (OSCs) in garlic-processing wastewater are decomposed and generated to toxic and harmful substances with unpleasant odors under anaerobic conditions. Herein, were report the successful development of novel copper-based metal organic framework (Cu-MOF) adsorbents with high adsorption capacities for OSCs in aqueous media. Defect-rich Cu-MOF-X samples, with particle sizes between 360 and 750 nm, synthesized hydrothermal in the presence of acetic acid (where X denotes the molar ratio of acetic acid relative to the pentadentate MOF linker H4PPYD). OSC adsorption experiments using allicin, ajoene and 2-ethenyl-4H-1,3-dithiine (2-VDT) showed that Cu-MOF-200 delivered fast adsorption kinetics and high OSC adsorption capacities (149.02-171.33 mg g-1) owing to the pore accessibility and range of adsorption sites in the MOF. FT-IR, Raman, and XPS analyses, together with density functional theory (DFT) calculations, verified the strong yet reversible adsorption of OSCs in Cu-MOF-200. Results guide the development of improved adsorbents for OSC capture from garlic-processing wastewater.
Collapse
Affiliation(s)
- Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, PR China
| | - Quanbin Fu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, PR China
| | - Jun Ren
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, PR China
| | | | | | - Xuguang Qiao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, PR China.
| |
Collapse
|
6
|
Sharma I, Kaur J, Poonia G, Mehta SK, Kataria R. Nanoscale designing of metal organic framework moieties as efficient tools for environmental decontamination. NANOSCALE ADVANCES 2023; 5:3782-3802. [PMID: 37496632 PMCID: PMC10368002 DOI: 10.1039/d3na00169e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023]
Abstract
Environmental pollutants, being a major and detrimental component of the ecological imbalance, need to be controlled. Serious health issues can get intensified due to contaminants present in the air, water, and soil. Accurate and rapid monitoring of environmental pollutants is imperative for the detoxification of the environment and hence living beings. Metal-organic frameworks (MOFs) are a class of porous and highly diverse adsorbent materials with tunable surface area and diverse functionality. Similarly, the conversion of MOFs into nanoscale regime leads to the formation of nanometal-organic frameworks (NMOFs) with increased selectivity, sensitivity, detection ability, and portability. The present review majorly focuses on a variety of synthetic methods including the ex situ and in situ synthesis of MOF nanocomposites and direct synthesis of NMOFs. Furthermore, a variety of applications such as nanoabsorbent, nanocatalysts, and nanosensors for different dyes, antibiotics, toxic ions, gases, pesticides, etc., are described along with illustrations. An initiative is depicted hereby using nanostructures of MOFs to decontaminate hazardous environmental toxicants.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Jaspreet Kaur
- School of Basic Sciences, Indian Institute of Information Technology (IIIT) Una-177 209 India
| | - Gargi Poonia
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Surinder Kumar Mehta
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Ramesh Kataria
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| |
Collapse
|
7
|
A highly sensitive and specific luminescent MOF determines nitric oxide production and quantifies hydrogen sulfide-mediated inhibition of nitric oxide in living cells. Mikrochim Acta 2023; 190:127. [PMID: 36897440 DOI: 10.1007/s00604-023-05660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/25/2022] [Indexed: 03/11/2023]
Abstract
The synthesis of a novel carboxylate-type organic linker-based luminescent MOF (Zn(H2L) (L1)) (named PUC2) (H2L = 2-aminoterephtalic acid, L1 = 1-(3-aminopropyl) imidazole) is reported by the solvothermal method and comprehensively characterized using single-crystal XRD, PXRD, FTIR, TGA, XPS, FESEM, HRTEM, and BET. PUC2 selectively reacts with nitric oxide (▪NO) with a detection limit of 0.08 µM, and a quenching constant (0.5 × 104 M-1) indicating a strong interaction with ▪NO. PUC2 sensitivity remains unaffected by cellular proteins or biologically relevant metals (Cu2+/ Fe3+/Mg2+/ Na+/K+/Zn2+), RNS/ROS, or H2S to score ▪NO in living cells. Lastly, we used PUC2 to demonstrate that H2S inhibition increases ▪NO production by ~ 14-30% in various living cells while exogenous H2S suppresses ▪NO production, indicating that the modulation of cellular ▪NO production by H2S is rather generic and not restricted to a particular cell type. In conclusion, PUC2 can successfully detect ▪NO production in living cells and environmental samples with considerable potential for its application in improving the understanding of the role of ▪NO in biological samples and study the inter-relationship between ▪NO and H2S.
Collapse
|
8
|
Faham S, Salimi A, Ghavami R. Electrochemical-based remote biomarker monitoring: Toward Internet of Wearable Things in telemedicine. Talanta 2023; 253:123892. [PMID: 36095939 DOI: 10.1016/j.talanta.2022.123892] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Internet of Wearable Things (IoWT) will be a major breakthrough for remote medical monitoring. In this scenario, wearable biomarker sensors have been developing not only to diagnose point-of-care (POC) of diseases, but also to continuously manage them. On-body tracking of biomarkers in biofluids is regarded as a proper substitution of conventional biomarker sensors for dynamic sampling and analyzing due to their high sensitivity, conformability, and affordability, creating ever-rising the market demand for them. In a wireless body area network (WBAN), data is captured from all sensors on the body to a smartphone/laptop, and sent the sensed data to a cloud for storing, processing, and retrieving, and ultimately displayed the data on custom applications (Apps). Wearable IoT biomarker sensors are used for early diseases diagnosis and continuous monitoring in developing countries in which people hardly access to healthcare systems. In this review, we aim to highlight a wide range of wearable electrochemical biomarker sensors, accompanied by microfluidics for continuous sampling, which will pave the way toward developing wearable IoT biomarker sensors to track health status. The current challenges and future perspective in skin-conformal biomarker sensors will be discussing their potential applicability for IoWT in cloud-based telemedicine.
Collapse
Affiliation(s)
- Shadab Faham
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran; Research Center for Nanotechnology, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| | - Raouf Ghavami
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran
| |
Collapse
|
9
|
Gao Y, Wang Y, Wang Y, Magaud P, Liu Y, Zeng F, Yang J, Baldas L, Song Y. Nanocatalysis meets microfluidics: A powerful platform for sensitive bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Daniel M, Mathew G, Anpo M, Neppolian B. MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: An overview. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Rezaee T, Fazel-Zarandi R, Karimi A, Ensafi AA. Metal-organic frameworks for pharmaceutical and biomedical applications. J Pharm Biomed Anal 2022; 221:115026. [PMID: 36113325 DOI: 10.1016/j.jpba.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Metal-organic framework (MOF) materials provide unprecedented opportunities for evaluating valuable compounds for various medical applications. MOFs merged with biomolecules, used as novel biomaterials, have become particularly useful in biological environments. Bio-MOFs can be promising materials in the global to avoid utilization above toxicological substances. Bio-MOFs with crystallin and porosity nature offer flexible structure via bio-linker and metal node variation, which improves their wide applicability in medical science.
Collapse
Affiliation(s)
- Tooba Rezaee
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Afsaneh Karimi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Adjunct Professor, Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
12
|
Cun JE, Fan X, Pan Q, Gao W, Luo K, He B, Pu Y. Copper-based metal-organic frameworks for biomedical applications. Adv Colloid Interface Sci 2022; 305:102686. [PMID: 35523098 DOI: 10.1016/j.cis.2022.102686] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of important porous, crystalline materials composed of metal ions (clusters) and organic ligands. Owing to the unique redox chemistry, photochemical and electrical property, and catalytic activity of Cu2+/+, copper-based MOFs (Cu-MOFs) have been recently and extensively explored in various biomedical fields. In this review, we first make a brief introduction to the synthesis of Cu-MOFs and their composites, and highlight the recent synthetic strategies of two most studied representatives, three-dimensional HKUST-1 and two-dimensional Cu-TCPP. The recent advances of Cu-MOFs in the applications of cancer treatment, bacterial inhibition, biosensing, biocatalysis, and wound healing are summarized and discussed. Furthermore, we propose a prospect of the future development of Cu-MOFs in biomedical fields and beyond.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
13
|
He M, Wang D, Xu Y, Jiang F, Zheng J, Feng Y, Cao J, Zhou X. Nitric Oxide-Releasing Platforms for Treating Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14071345. [PMID: 35890241 PMCID: PMC9317153 DOI: 10.3390/pharmaceutics14071345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the first leading cause of death globally. Nitric oxide (NO) is an important signaling molecule that mediates diverse processes in the cardiovascular system, thereby providing a fundamental basis for NO-based therapy of CVD. At present, numerous prodrugs have been developed to release NO in vivo. However, the clinical application of these prodrugs still faces many problems, including the low payloads, burst release, and non-controlled delivery. To address these, various biomaterial-based platforms have been developed as the carriers to deliver NO to the targeted tissues in a controlled and sustained manner. This review aims to summarize recent developments of various therapeutic platforms, engineered to release NO for the treatment of CVD. In addition, two potential strategies to improve the effectiveness of existing NO therapy are also discussed, including the combination of NO-releasing platforms and either hydrogen sulfide-based therapy or stem cell therapy. Hopefully, some NO-releasing platforms may provide important therapeutic benefits for CVD.
Collapse
Affiliation(s)
- Mingyue He
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Yumei Xu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Fangying Jiang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Jian Zheng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| |
Collapse
|
14
|
Reticular framework materials in miniaturized and emerging formats in analytical chemistry. J Chromatogr A 2022; 1673:463092. [DOI: 10.1016/j.chroma.2022.463092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022]
|
15
|
Fattahi Z, Hasanzadeh M. Nanotechnology-assisted microfluidic systems platform for chemical and bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Su Z, Tang D, Yang X, Peng Y, Wang B, Li X, Chen J, Hu Y, Qin X. Selective and fast growth of CdS nanocrystals on zinc (II) metal–organic framework architectures for photoelectrochemical response and electrochemical immunosensor of foot-and-mouth disease virus. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Kumar V, Matai I, Kumar A, Sachdev A. GNP-CeO 2- polyaniline hybrid hydrogel for electrochemical detection of peroxynitrite anion and its integration in a microfluidic platform. Mikrochim Acta 2021; 188:436. [PMID: 34837536 DOI: 10.1007/s00604-021-05105-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/10/2021] [Indexed: 01/11/2023]
Abstract
Peroxynitrite anion (ONOO-) is an important in vivo oxidative stress biomarker whose aberrant levels have pathophysiological implications. In this study, an electrochemical sensor for ONOO- detection was developed based on graphene nanoplatelets-cerium oxide nanocomposite (GNP-CeO2) incorporated polyaniline (PANI) conducting hydrogels. The nanocomposite-hydrogel platform exhibited distinct synergistic advantages in terms of large electroactive surface coverage and providing a conductive pathway for electron transfer. Besides, the 3D porous structure of hydrogel integrated the GNP-CeO2 nanocomposite to provide hybrid materials for the evolution of catalytic activity towards electrochemical oxidation of ONOO-. Various microscopic and spectroscopic characterization techniques endorsed the successful formation of GNP-CeO2-PANI hydrogel. Cyclic voltammetry (CV) measurements of GNP-CeO2-PANI hydrogel modified screen-printed electrodes (SPE) were carried out to record the current changes influenced by ONOO-. The prepared sensor demonstrated a significant dose-dependent increase in CV peak current within a linear range of 5-100 µM (at a potential of 1.12 V), and a detection limit of 0.14 with a sensitivity of 29.35 ± 1.4 μA μM-1. Further, a customized microfluidic flow system was integrated with the GNP-CeO2-PANI hydrogel modified SPE to enable continuous electrochemical detection of ONOO- at low sample volumes. The developed microfluidic electrochemical device demonstrated an excellent sensitivity towards ONOO- under optimal experimental conditions. Overall, the fabricated microfluidic device with hybrid hydrogels as electrochemical interfaces provides a reliable assessment of ONOO- levels. This work offers considerable potential for understanding the oxidative stress-related disease mechanisms through determination of ONOO- in biological samples.
Collapse
Affiliation(s)
- Vijayesh Kumar
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India
| | - Ishita Matai
- Department of Biotechnology, Amity University Punjab, Mohali, 140306, India.
| | - Ankit Kumar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Abhay Sachdev
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 211002, India.
| |
Collapse
|