1
|
Smułka A, Cieślik M, Olejnik A, Zieliński A, Ryl J, Ossowski T. Unlocking the electrochemical performance of glassy carbon electrodes by surface engineered, sustainable chitosan membranes. Bioelectrochemistry 2024; 161:108804. [PMID: 39244916 DOI: 10.1016/j.bioelechem.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Chitosan coatings, derived from crustacean shell waste, possess inherent biocompatibility and biodegradability, rendering them suitable for various biomedical and environmental applications, including electrochemical biosensing. Its amine and hydroxyl functional groups offer abundant sites for chemical modifications to boost the charge transfer kinetics and provide excellent adhesion, enabling the construction of robust electrode-coating interfaces for electroanalysis. This study explores the role of electrostatically-driven chemical interactions and crosslinking density originating from different chitosan (Cs) and glutaraldehyde (Ga) concentrations in this aspect. Studying anionic ([Fe(CN)6]3-/4-), neutral (FcDM0/+), and cationic ([Ru(NH3)6]2+/3+) redox probes highlights the influence of Coulombic interactions with chitosan chains containing positively-charged pathways, calculated by DFT analysis. Our study reveals how a proper Ch-to-Ga ratio has a superior influence on the cross-linking efficacy and resultant charge transfer kinetics, which is primarily boosted by up to 20× analyte preconcentration increase, due to electrostatically-driven migration of negatively charged ferrocyanide ions toward positively charged chitosan hydrogel. Notably the surface engineering approach allows for a two-orders of magnitude enhancement in [Fe(CN)6]4- limit of detection, from 0.1 µM for bare GCE down to even 0.2 nM upon an adequate hydrogel modification.
Collapse
Affiliation(s)
- Agata Smułka
- Department of Analytical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mateusz Cieślik
- Department of Analytical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Adrian Olejnik
- Department of Metrology and Optoelectronics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Artur Zieliński
- Department of Electrochemistry, Corrosion and Materials Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland.
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
2
|
Crapnell RD, Banks CE. Electroanalysis overview: additive manufactured biosensors using fused filament fabrication. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2625-2634. [PMID: 38639065 DOI: 10.1039/d4ay00278d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Additive manufacturing (3D-printing), in particular fused filament fabrication, presents a potential paradigm shift in the way electrochemical based biosensing platforms are produced, giving rise to a new generation of personalized and on-demand biosensors. The use of additive manufactured biosensors is unparalleled giving rise to unique customization, facile miniaturization, ease of use, economical but yet, still providing sensitive and selective approaches towards the target analyte. In this mini review, we focus on the use of fused filament fabrication additive manufacturing technology alongside different biosensing approaches that exclusively use antibodies, enzymes and associated biosensing materials (mediators) providing an up-to-date overview with future considerations to expand the additive manufacturing biosensors field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
3
|
Ansari MA, Mohd-Naim NF, Ahmed MU. Electrochemical Nanoaptasensor Based on Graphitic Carbon Nitride/Zirconium Dioxide/Multiwalled Carbon Nanotubes for Matrix Metalloproteinase-9 in Human Serum and Saliva. ACS APPLIED BIO MATERIALS 2024; 7:1579-1587. [PMID: 38386014 DOI: 10.1021/acsabm.3c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In this study, a nanocomposite was synthesized by incorporating graphitic carbon nanosheets, carboxyl-functionalized multiwalled carbon nanotubes, and zirconium oxide nanoparticles. The resulting nanocomposite was utilized for the modification of a glassy carbon electrode. Subsequently, matrix metalloproteinase aptamer (AptMMP-9) was immobilized onto the electrode surface through the application of ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride-N-hydroxysuccinimide (EDC-NHS) chemistry. Morphological characterization of the nanomaterials and the nanocomposite was performed using field-emission scanning electron microscopy (FESEM). The nanocomposite substantially increased the electroactive surface area by 205%, facilitating enhanced immobilization of AptMMP-9. The efficacy of the biosensor was evaluated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimal conditions, the fabricated sensor demonstrated a broad range of detection from 50 to 1250 pg/mL with an impressive lower limit of detection of 10.51 pg/mL. In addition, the aptasensor exhibited remarkable sensitivity, stability, excellent selectivity, reproducibility, and real-world applicability when tested with human serum and saliva samples. In summary, our developed aptasensor exhibits significant potential as an advanced biosensing tool for the point-of-care quantification of MMP-9, promising advancements in biomarker detection for practical applications.
Collapse
Affiliation(s)
- Mohd Afaque Ansari
- Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| |
Collapse
|
4
|
Crapnell RD, Adarakatti PS, Banks CE. Electroanalytical overview: the sensing of carbendazim. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4811-4826. [PMID: 37721714 DOI: 10.1039/d3ay01053h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Carbendazim is a broad-spectrum systemic fungicide that is used to control various fungal diseases in agriculture, horticulture, and forestry. Carbendazim is also used in post-harvest applications to prevent fungal growth on fruits and vegetables during storage and transportation. Carbendazim is regulated in many countries and banned in others, thus, there is a need for the sensing of carbendazim to ensure that high levels are avoided which can result in potential health risks. One approach is the use of electroanalytical sensors which present a rapid, but highly selective and sensitive output, whilst being economical and providing portable sensing platforms to support on-site analysis. In this minireview, we report on the electroanalytical sensing of carbendazim overviewing recent advances, helping to elucidate the electrochemical mechanism and provide conclusions and future perspectives of this field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Prashanth S Adarakatti
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
5
|
Roberto de Oliveira P, Crapnell RD, Garcia-Miranda Ferrari A, Wuamprakhon P, Hurst NJ, Dempsey-Hibbert NC, Sawangphruk M, Janegitz BC, Banks CE. Low-cost, facile droplet modification of screen-printed arrays for internally validated electrochemical detection of serum procalcitonin. Biosens Bioelectron 2023; 228:115220. [PMID: 36924686 DOI: 10.1016/j.bios.2023.115220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
This manuscript presents the design and facile production of screen-printed arrays (SPAs) for the internally validated determination of raised levels of serum procalcitonin (PCT). The screen-printing methodology produced SPAs with six individual working electrodes that exhibit an inter-array reproducibility of 3.64% and 5.51% for the electrochemically active surface area and heterogenous electrochemical rate constant respectively. The SPAs were modified with antibodies specific for the detection of PCT through a facile methodology, where each stage simply uses droplets incubated on the surface, allowing for their mass-production. This platform was used for the detection of PCT, achieving a linear dynamic range between 1 and 10 ng mL-1 with a sensor sensitivity of 1.35 × 10-10 NIC%/ng mL-1. The SPA produced an intra- and inter-day %RSD of 4.00 and 5.05%, with a material cost of £1.14. Internally validated human serum results (3 sample measurements, 3 control) for raised levels of PCT (>2 ng mL-1) were obtained, with no interference effects seen from CRP and IL-6. This SPA platform has the potential to offer clinicians vital information to rapidly begin treatment for "query sepsis" patients while awaiting results from more lengthy remote laboratory testing methods. Analytical ranges tested make this an ideal approach for rapid testing in specific patient populations (such as neonates or critically ill patients) in which PCT ranges are inherently wider. Due to the facile modification methods, we predict this could be used for various analytes on a single array, or the array increased further to maintain the internal validation of the system.
Collapse
Affiliation(s)
- Paulo Roberto de Oliveira
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, United Kingdom; Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras, 13600-970, Brazil
| | - Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, United Kingdom
| | | | - Phatsawit Wuamprakhon
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, United Kingdom; Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Nicholas J Hurst
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, United Kingdom
| | - Nina C Dempsey-Hibbert
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, United Kingdom
| | - Montree Sawangphruk
- Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Bruno Campos Janegitz
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras, 13600-970, Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, M1 5GD, United Kingdom.
| |
Collapse
|
6
|
Crapnell R, Banks CE. Electroanalytical Overview: The Determination of Levodopa (L-DOPA). ACS MEASUREMENT SCIENCE AU 2023; 3:84-97. [PMID: 37090256 PMCID: PMC10120037 DOI: 10.1021/acsmeasuresciau.2c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
L-DOPA (levodopa) is a therapeutic agent which is the most effective medication for treating Parkinson's disease, but it needs dose optimization, and therefore its analytical determination is required. Laboratory analytical instruments can be routinely used to measure L-DOPA but are not always available in clinical settings and traditional research laboratories, and they also have slow result delivery times and high costs. The use of electroanalytical sensing overcomes these problems providing a highly sensitivity, low-cost, and readily portable solution. Consequently, we overview the electroanalytical determination of L-DOPA reported throughout the literature summarizing the endeavors toward sensing L-DOPA, and we offer insights into future research opportunities.
Collapse
|
7
|
High-performance supercapacitors using synergistic hierarchical Ni-doped copper compounds/activated carbon composites with MXenes and carbon dots as simultaneous performance enhancers. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Mujica ML, Tamborelli A, Vaschetti VM, Espinoza LC, Bollo S, Dalmasso PR, Rivas GA. Two birds with one stone: integrating exfoliation and immunoaffinity properties in multi-walled carbon nanotubes by non-covalent functionalization with human immunoglobulin G. Mikrochim Acta 2023; 190:73. [PMID: 36695940 DOI: 10.1007/s00604-022-05630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
An innovative strategy is proposed to simultaneously exfoliate multi-walled carbon nanotubes (MWCNTs) and generate MWCNTs with immunoaffinity properties. This strategy was based on the non-covalent functionalization of MWCNTs with human immunoglobulin G (IgG) by sonicating 2.5 mg mL-1 MWCNTs in 2.0 mg mL-1 IgG for 15 min with sonicator bath. Impedimetric experiments performed at glassy carbon electrodes (GCE) modified with the resulting MWCNT-IgG nanohybrid in the presence of anti-human immunoglobulin G antibody (Anti-IgG) demonstrated that the immunoglobulin retains their biorecognition properties even after the treatment during the MWCNT functionalization. We proposed, as proof-of-concept, two model electrochemical sensors, a voltammetric one for uric acid quantification by taking advantages of the exfoliated MWCNTs electroactivity (linear range, 5.0 × 10-7 M - 5.0 × 10-6 M; detection limit, 165 nM) and an impedimetric immunosensor for the detection of Anti-IgG through the use of the bioaffinity properties of the IgG present in the nanohybrid (linear range, 5-50 µg mL-1; detection limit, 2 µg mL-1).
Collapse
Affiliation(s)
- Michael López Mujica
- INFIQC (CONICET-UNC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Alejandro Tamborelli
- INFIQC (CONICET-UNC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.,CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Maestro López Esq, Universidad Tecnológica Nacional, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - Virginia M Vaschetti
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Maestro López Esq, Universidad Tecnológica Nacional, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - L Carolina Espinoza
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Santiago, Chile. Sergio Livingstone 1007, Independencia, Santiago, Chile.,Departamento de Química Farmacológica Y Toxicológica, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Santiago, Chile. Sergio Livingstone 1007, Independencia, Santiago, Chile.,Departamento de Química Farmacológica Y Toxicológica, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Pablo R Dalmasso
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Maestro López Esq, Universidad Tecnológica Nacional, Cruz Roja Argentina, 5016, Córdoba, Argentina.
| | - Gustavo A Rivas
- INFIQC (CONICET-UNC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
9
|
Primpray V, Kamsong W, Pakapongpan S, Phochakum K, Kaewchaem A, Sappat A, Wisitsoraat A, Lomas T, Tuantranont A, Karuwan C. An alternative ready-to-use electrochemical immunosensor for point-of-care COVID-19 diagnosis using graphene screen-printed electrodes coupled with a 3D-printed portable potentiostat. TALANTA OPEN 2022; 6:100155. [PMID: 36212546 PMCID: PMC9529345 DOI: 10.1016/j.talo.2022.100155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 10/25/2022] Open
Abstract
A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a cause of worldwide Coronavirus 2019 (COVID-19) disease pandemic. It is thus important to develop ultra-sensitive, rapid and easy-to-use methods for the identification of COVID-19 infected patients. Herein, an alternative electrochemical immunosensor based on poly(pyrrolepropionic acid) (pPPA) modified graphene screen-printed electrode (GSPE) was proposed for rapid COVID-19 detection. The method was based on a competitive enzyme immunoassay process utilizing horseradish peroxidase (HRP)-conjugated SARS-CoV-2 as a reporter binding molecule to compete binding with antibody against the SARS-CoV-2 receptor binding domain (SARS-CoV-2 RBD) protein. This strategy enhanced the current signal via the enzymatic reaction of HRP-conjugated SARS-CoV-2 RBD antibody on the electrode surface. The modification, immobilization, blocking, and detection processes were optimized and evaluated by amperometry. The quantitative analysis of SARS-CoV-2 was conducted based on competitive enzyme immunoassay with amperometric detection using a 3D-printed portable potentiostat for point-of-care COVID-19 diagnosis. The current measurements at -0.2 V yielded a calibration curve with a linear range of 0.01-1500 ng mL-1 (r2 = 0.983), a low detection limit of 2 pg mL-1 and a low quantification limit of 10 pg mL-1. In addition, the analyzed results of practical samples using the developed method were successfully verified with ELISA and RT-PCR. Therefore, the proposed portable electrochemical immunosensor is highly sensitive, rapid, and reliable. Thus, it is an alternative ready-to-use sensor for COVID-19 point-of-care diagnosis.
Collapse
|
10
|
Medium Extracellular Vesicles—A Qualitative and Quantitative Biomarker of Prostate Cancer. Biomedicines 2022; 10:biomedicines10112856. [DOI: 10.3390/biomedicines10112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
For years, the diagnosis of prostate cancer has been understated. Despite the relatively low mortality rate, prostate cancer is still one of the most common neoplasms in men, which proves the need for continuous improvements in the diagnostics of this disease. New biomarkers may address these challenges in the form of extracellular vesicles (EV) secreted by prostate cancer cells. The available literature in the PubMed, SCOPUS, and ResearchGate databases from the last ten years was analyzed using search phrases such as extracellular vesicles, microparticles, microvesicles, cancer biomarkers, and prostate cancer. Then, the research was selected in terms of the size of the tested EVs (the EV medium of 100–1000 nm diameter, was taken into account), the latest versions of the literature were selected and compiled, and their results were compared. The group of extracellular vesicles contain a substantial amount of genetic information that can be used in research on the specificity of prostate cancer and other cancers. So far, it has been shown that EVs produced by PCa cells express proteins specific for these cells, which, thanks to their specificity, can make EV useful biomarkers of prostate cancer. Moreover, the importance of the quantitative release of EV from PCa cells has been demonstrated, which may be necessary to diagnose prostate cancer malignancy. Each method positively correlates with Gleason’s results and is even characterized by greater diagnostic sensitivity. Medium extracellular vesicles are a promising research material, and their specificity and sensitivity may allow them to be used in future prostate cancer diagnostics as biomarkers.
Collapse
|
11
|
Sheng J, Pi Y, Zhao S, Wang B, Chen M, Chang K. Novel DNA nanoflower biosensing technologies towards next-generation molecular diagnostics. Trends Biotechnol 2022; 41:653-668. [PMID: 36117022 DOI: 10.1016/j.tibtech.2022.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
DNA nanoflowers (DNFs) are topological flower-like nanostructures based on ultralong-strand DNA and inorganic metal-ion frameworks. Because of their programmability, biocompatibility, and controllable assembly size for specific responses to molecular recognition stimuli, DNFs are powerful biosensing tools for detecting biomolecules. Here, we review the current state of DNF-based biosensing strategies for in vivo and in vitro detection, with a view of how the field has evolved towards molecular diagnostics. We also provide a detailed classification of DNF-based biosensing strategies and propose their future utility. Particularly as transduction elements, DNFs can accelerate biosensing engineering by signal amplification. Finally, we discuss the key challenges and further prospects of DNF-based biosensing technologies in developing applications of a broader scope.
Collapse
Affiliation(s)
- Jing Sheng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| | - Yan Pi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China; College of Pharmacy and Laboratory Medicine, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China.
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
12
|
A Critical Review on the Use of Molecular Imprinting for Trace Heavy Metal and Micropollutant Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080296] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Molecular recognition has been described as the “ultimate” form of sensing and plays a fundamental role in biological processes. There is a move towards biomimetic recognition elements to overcome inherent problems of natural receptors such as limited stability, high-cost, and variation in response. In recent years, several alternatives have emerged which have found their first commercial applications. In this review, we focus on molecularly imprinted polymers (MIPs) since they present an attractive alternative due to recent breakthroughs in polymer science and nanotechnology. For example, innovative solid-phase synthesis methods can produce MIPs with sometimes greater affinities than natural receptors. Although industry and environmental agencies require sensors for continuous monitoring, the regulatory barrier for employing MIP-based sensors is still low for environmental applications. Despite this, there are currently no sensors in this area, which is likely due to low profitability and the need for new legislation to promote the development of MIP-based sensors for pollutant and heavy metal monitoring. The increased demand for point-of-use devices and home testing kits is driving an exponential growth in biosensor production, leading to an expected market value of over GPB 25 billion by 2023. A key requirement of point-of-use devices is portability, since the test must be conducted at “the time and place” to pinpoint sources of contamination in food and/or water samples. Therefore, this review will focus on MIP-based sensors for monitoring pollutants and heavy metals by critically evaluating relevant literature sources from 1993 to 2022.
Collapse
|
13
|
Malla P, Liao HP, Liu CH, Wu WC, Sreearunothai P. Voltammetric biosensor for coronavirus spike protein using magnetic bead and screen-printed electrode for point-of-care diagnostics. Mikrochim Acta 2022; 189:168. [PMID: 35362759 PMCID: PMC8973645 DOI: 10.1007/s00604-022-05288-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/19/2022] [Indexed: 12/29/2022]
Abstract
The rapid spread of the novel human coronavirus 2019 (COVID-19) and its morbidity have created an urgent need for rapid and sensitive diagnostics. The real-time polymerase chain reaction is the gold standard for detecting the coronavirus in various types of biological specimens. However, this technique is time consuming, labor intensive, and expensive. Screen-printed electrodes (SPEs) can be used as point-of-care devices because of their low cost, sensitivity, selectivity, and ability to be miniaturized. The ability to detect the spike protein of COVID-19 in serum, urine, and saliva was developed using SPE aided by magnetic beads (MBs) and a portable potentiostat. The antibody-peroxidase-loaded MBs were the captured and catalytic units for the electrochemical assays. The MBs enable simple washing and homogenous deposition on the working electrode using a magnet. The assembly of the immunological MBs and the electrochemical system increases the measuring sensitivity and speed. The physical and electrochemical properties of the layer-by-layer modified MBs were systematically characterized. The performance of these immunosensors was evaluated using spike protein in the range 3.12-200 ng mL-1. We achieved a limit of detection of 0.20, 0.31, and 0.54 ng mL-1 in human saliva, urine, and serum, respectively. A facile electrochemical method to detect COVID-19 spike protein was developed for quick point-of-care testing.
Collapse
Affiliation(s)
- Pravanjan Malla
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan
| | - Hao-Ping Liao
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan
| | - Chi-Hsien Liu
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, 261, Wen-Hwa First Road, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, 84, Gung-Juan Road, New Taipei City, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 5, Fu-Hsing Street, Taoyuan, Taiwan.
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 5, Fu-Hsing Street, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan
| | - Paiboon Sreearunothai
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
14
|
|
15
|
Silva LP, Silva TA, Moraes FC, Fatibello-Filho O. A voltammetric sensor based on a carbon black and chitosan-stabilized gold nanoparticle nanocomposite for ketoconazole determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4495-4502. [PMID: 34514492 DOI: 10.1039/d1ay01321a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A modified glassy carbon electrode with carbon black (CB) and gold nanoparticles (AuNPs) within a crosslinked chitosan (CTS) film is proposed in this work. The electroanalytical performance of the modified CB-CTS-AuNPs/GCE has been evaluated towards the voltammetric sensing of ketoconazole (KTO), a widespread antifungal drug. The nanocomposite was characterized by scanning electron microscopy, X-ray diffraction spectroscopy, and electrochemistry experiments. The evaluation of the electrochemical behaviour of KTO on the proposed modified electrode shows an irreversible oxidation process at a potential of +0.65 V (vs. Ag/AgCl (3.0 mol L-1 KCl)). This redox process was explored to carry out KTO sensing using square-wave voltammetry. The analytical curve was linear in the KTO concentration range from 0.10 to 2.9 μmol L-1, with a limit of detection (LOD) of 4.4 nmol L-1 and a sensitivity of 3.6 μA L μmol-1. This modified electrode was successfully applied to the determination of KTO in pharmaceutical formulations and biological fluid samples.
Collapse
Affiliation(s)
- Laís Pereira Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13560-970, Brazil.
| | - Tiago Almeida Silva
- Department of Chemistry, Federal University of Viçosa, Minas Gerais, 36570-900, Brazil
| | - Fernando Cruz Moraes
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13560-970, Brazil.
| | - Orlando Fatibello-Filho
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13560-970, Brazil.
| |
Collapse
|
16
|
Ferrari AGM, Crapnell RD, Banks CE. Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety. BIOSENSORS 2021; 11:291. [PMID: 34436093 PMCID: PMC8392528 DOI: 10.3390/bios11080291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Robust, reliable, and affordable analytical techniques are essential for screening and monitoring food and water safety from contaminants, pathogens, and allergens that might be harmful upon consumption. Recent advances in decentralised, miniaturised, and rapid tests for health and environmental monitoring can provide an alternative solution to the classic laboratory-based analytical techniques currently utilised. Electrochemical biosensors offer a promising option as portable sensing platforms to expedite the transition from laboratory benchtop to on-site analysis. A plethora of electroanalytical sensor platforms have been produced for the detection of small molecules, proteins, and microorganisms vital to ensuring food and drink safety. These utilise various recognition systems, from direct electrochemical redox processes to biological recognition elements such as antibodies, enzymes, and aptamers; however, further exploration needs to be carried out, with many systems requiring validation against standard benchtop laboratory-based techniques to offer increased confidence in the sensing platforms. This short review demonstrates that electroanalytical biosensors already offer a sensitive, fast, and low-cost sensor platform for food and drink safety monitoring. With continued research into the development of these sensors, increased confidence in the safety of food and drink products for manufacturers, policy makers, and end users will result.
Collapse
Affiliation(s)
| | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.G.-M.F.); (R.D.C.)
| |
Collapse
|