1
|
Wu Y, Zhang Z, Wang Z, Yu C, Huang Z, Tang Y, Li Z, Yin S, Wang G. Enhanced fluorescence properties of polyfluorene-based polymer dots through an ascorbic acid-photoaging treatment for living cell imaging. Talanta 2024; 279:126628. [PMID: 39084040 DOI: 10.1016/j.talanta.2024.126628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The polymer dots (Pdots) prepared by the conjugated polymer (PFO, poly (9,9-dihexylfluorene-2,7-diyl)) have high fluorescence intensity and are often used in biological fluorescence imaging. However, due to the chain defects, the PFO Pdots suffer from stability issues such as photoinactivation and photobleaching. To solve this problem, we drew inspiration from the preparation process of organic planar light-emitting devices and added an optimization processing after Pdots was prepared. We used illumination as the driving force to activate defects on its chain, and ascorbic acid as a reducing substance to restore the chain defects of the polymer to a more stable state. Through this method, we increased the fluorescence intensity by nearly 1.9 times, and significantly improving their long and short-term stability. In addition, it ensures other properties remain unchanged. This optimization scheme is also fully compatible with the entire biological imaging process, ensuring that other important properties such as cytotoxicity do not undergo unnecessary changes. Furthermore, we conducted material characterization and theoretical simulation, revealing that the optimization scheme mainly serves to repair C-9 alkyl defects on the polyfluorene unit. This study has improved and enhanced the fluorescence performance of PFO Pdots, and also provides a way to optimize the treatment of other similar conjugated polymer material systems.
Collapse
Affiliation(s)
- Yuyang Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Ze Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Zhipeng Huang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China
| | - Ying Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, 130022, PR China
| | - Zongjun Li
- School of Material Science and Technology, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, PR China.
| | - Guangbin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China.
| |
Collapse
|
2
|
Abdelrahman MS, Khattab TA. Recent advances in photoresponsive printing inks for security encoding applications. LUMINESCENCE 2024; 39:e4800. [PMID: 38923447 DOI: 10.1002/bio.4800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Counterfeiting of banknotes, important documents, and branded goods continues to be a major worldwide problem for governments, businesses, and consumers. This problem has serious financial, security, and health implications. Due to their stability for printing on various substrates, the photochromic anticounterfeiting inks have received important interest. There have been various photochromic agents, such as polymer nanoparticles, quantum and carbon dots, and organic and inorganic fluorophores and luminophores, which have been broadly used for antiforging applications. In comparison to organic agents, inorganic photochromic materials have better stability under reversible/long-term light illumination. Recently, the remarkable optical characteristics and chemical stability of photoluminescent and photochromic agents have led to their extensive usage anticounterfeiting products. There have been also several strategies to tackle the rising problem of counterfeiting. Both of solvent-based and water-based inks have been developed for security encoding purposes. Additionally, the printing methods, including screen printing, labeling, stamping, inkjet printing, and handwriting, that have been used to apply anticounterfeiting inks onto various surfaces are discussed. The limitations of photoluminescent and photochromic agents and the potential for their future preparation to combat counterfeiting were discussed. This review would benefit academic researchers and industrial developers who are interested in the area of security printing.
Collapse
Affiliation(s)
- Meram S Abdelrahman
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
3
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
4
|
Grudinkin SA, Bogdanov KV, Tolmachev VA, Baranov MA, Kaliya IE, Golubev VG, Baranov AV. Multifunctional Core/Shell Diamond Nanoparticles Combining Unique Thermal and Light Properties for Future Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3124. [PMID: 38133020 PMCID: PMC10745927 DOI: 10.3390/nano13243124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
We report the development of multifunctional core/shell chemical vapor deposition diamond nanoparticles for the local photoinduced hyperthermia, thermometry, and fluorescent imaging. The diamond core heavily doped with boron is heated due to absorbed laser radiation and in turn heats the shell of a thin transparent diamond layer with embedded negatively charged SiV color centers emitting intense and narrowband zero-phonon lines with a temperature-dependent wavelength near 738 nm. The heating of the core/shell diamond nanoparticle is indicated by the temperature-induced spectral shift in the intensive zero-phonon line of the SiV color centers embedded in the diamond shell. The temperature of the core/shell diamond particles can be precisely manipulated by the power of the incident light. At laser power safe for biological systems, the photoinduced temperature of the core/shell diamond nanoparticles is high enough to be used for hyperthermia therapy and local nanothermometry, while the high zero-phonon line intensity of the SiV color centers allows for the fluorescent imaging of treated areas.
Collapse
Affiliation(s)
- Sergey A. Grudinkin
- International Research and Education Centre for Physics of Nanostructures, ITMO University, 197101 St. Petersburg, Russia; (S.A.G.); (M.A.B.); (I.E.K.); (A.V.B.)
- Ioffe Institute, 194021 St. Petersburg, Russia; (V.A.T.); (V.G.G.)
| | - Kirill V. Bogdanov
- International Research and Education Centre for Physics of Nanostructures, ITMO University, 197101 St. Petersburg, Russia; (S.A.G.); (M.A.B.); (I.E.K.); (A.V.B.)
| | | | - Mikhail A. Baranov
- International Research and Education Centre for Physics of Nanostructures, ITMO University, 197101 St. Petersburg, Russia; (S.A.G.); (M.A.B.); (I.E.K.); (A.V.B.)
| | - Ilya E. Kaliya
- International Research and Education Centre for Physics of Nanostructures, ITMO University, 197101 St. Petersburg, Russia; (S.A.G.); (M.A.B.); (I.E.K.); (A.V.B.)
| | | | - Alexander V. Baranov
- International Research and Education Centre for Physics of Nanostructures, ITMO University, 197101 St. Petersburg, Russia; (S.A.G.); (M.A.B.); (I.E.K.); (A.V.B.)
| |
Collapse
|
5
|
Riaz U, Ashraf SM. Dye Modified Phenylenediamine Oligomers: Theoretical Studies on Drug Binding for Their Potential Application in Drug Sensors. ACS PHYSICAL CHEMISTRY AU 2023; 3:521-531. [PMID: 38034039 PMCID: PMC10683475 DOI: 10.1021/acsphyschemau.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 12/02/2023]
Abstract
The present work reports, for the first time, synthesis of dye incorporated o-phenylenediamine (OBB) with a view to obtain a conjugated oligomer with enhanced functionality. The structure was confirmed by IR studies, while the electronic transitions were confirmed by UV visible studies. The dye modified oligomer showed one order higher fluorescence intensity than the pristine Bismarck Brown (BB) dye. Confocal imaging showed red emission which could be utilized in near infra-red imaging. Density functional theory (DFT) studies were carried out to predict the theoretical properties of the oligomers. The energies of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital orbital were computed to explore how the HOMO energies of the reactants initiated the electronic interactions between them. The interaction energies were correlated to conjugation/hyper conjugation stabilization energies of the natural bond orbitals (NBO) via the DFT method using the B3LYP functional with the 6-311G(d) basis set on Gaussian 09 software. Drug binding was evaluated through simulation of interaction energy, (ΔEA-x) with drugs such as captopril, propranolol, thiazide, and fentanyl. The results predicted that the oligomer could be developed into a fentanyl drug sensor.
Collapse
Affiliation(s)
- Ufana Riaz
- Department
of Chemistry and Biochemistry, North Carolina
Central University, Durham, North Carolina 27707, United
States
- Materials
Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Marghoob Ashraf
- Materials
Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
6
|
Sun W, Wang C, Tian C, Li X, Hu X, Liu S. Nanotechnology for brain tumor imaging and therapy based on π-conjugated materials: state-of-the-art advances and prospects. Front Chem 2023; 11:1301496. [PMID: 38025074 PMCID: PMC10663370 DOI: 10.3389/fchem.2023.1301496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In contemporary biomedical research, the development of nanotechnology has brought forth numerous possibilities for brain tumor imaging and therapy. Among these, π-conjugated materials have garnered significant attention as a special class of nanomaterials in brain tumor-related studies. With their excellent optical and electronic properties, π-conjugated materials can be tailored in structure and nature to facilitate applications in multimodal imaging, nano-drug delivery, photothermal therapy, and other related fields. This review focuses on presenting the cutting-edge advances and application prospects of π-conjugated materials in brain tumor imaging and therapeutic nanotechnology.
Collapse
Affiliation(s)
- Wenshe Sun
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Congxiao Wang
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuan Tian
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueda Li
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shifeng Liu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Taniya OS, Khasanov AF, Sadieva LK, Santra S, Nikonov IL, Al-Ithawi WKA, Kovalev IS, Kopchuk DS, Zyryanov GV, Ranu BC. Polymers and Polymer-Based Materials for the Detection of (Nitro-)explosives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6333. [PMID: 37763611 PMCID: PMC10532833 DOI: 10.3390/ma16186333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Methods for the remote detection of warfare agents and explosives have been in high demand in recent times. Among the several detection methods, fluorescence methods appear to be more convenient due to their low cost, simple operation, fast response time, and naked-eye-visible sensory response. For fluorescence methods, a large variety of fluorescent materials, such as small-molecule-based fluorophores, aggregation-induced emission fluorophores/materials, and supramolecular systems, have been reported in the literature. Among them, fluorescent (bio)polymers/(bio)polymer-based materials have gained wide attention due to their excellent mechanical properties and sensory performance, their ability to recognize explosives via different sensing mechanisms and their combinations, and, finally, the so-called amplification of the sensory response. This review provides the most up-to-date data on the utilization of polymers and polymer-based materials for the detection of nitroaromatic compounds (NACs)/nitro-explosives (NEs) in the last decade. The literature data have been arranged depending on the polymer type and/or sensory mechanism.
Collapse
Affiliation(s)
- Olga S. Taniya
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Albert F. Khasanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Leila K. Sadieva
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Sougata Santra
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Igor L. Nikonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya Str., 620219 Yekaterinburg, Russia
| | - Wahab K. A. Al-Ithawi
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- Energy and Renewable Energies Technology Center, University of Technology-Iraq, Baghdad 10066, Iraq
| | - Igor S. Kovalev
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
| | - Dmitry S. Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya Str., 620219 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya Str., 620219 Yekaterinburg, Russia
| | - Brindaban C. Ranu
- Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia; (O.S.T.); (A.F.K.); (L.K.S.); (S.S.); (I.L.N.); (W.K.A.A.-I.); (I.S.K.); (D.S.K.); (B.C.R.)
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
Dam P, Celik M, Ustun M, Saha S, Saha C, Kacar EA, Kugu S, Karagulle EN, Tasoglu S, Buyukserin F, Mondal R, Roy P, Macedo MLR, Franco OL, Cardoso MH, Altuntas S, Mandal AK. Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv 2023; 13:21345-21364. [PMID: 37465579 PMCID: PMC10350660 DOI: 10.1039/d3ra03477a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
The intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.
Collapse
Affiliation(s)
- Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Merve Celik
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koç University Istanbul 34450 Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Sayantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Chirantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Elif Ayse Kacar
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Senanur Kugu
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Elif Naz Karagulle
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Savaş Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University Istanbul Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University Istanbul Turkey
| | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Priya Roy
- Department of Law, Raiganj University North Dinajpur West Bengal India
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Marlon H Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
- Centre for Nanotechnology Sciences (CeNS), Raiganj University North Dinajpur West Bengal India
| |
Collapse
|
9
|
Karabag A, Soyler D, Udum YA, Toppare L, Gunbas G, Soylemez S. Building Block Engineering toward Realizing High-Performance Electrochromic Materials and Glucose Biosensing Platform. BIOSENSORS 2023; 13:677. [PMID: 37504076 PMCID: PMC10377066 DOI: 10.3390/bios13070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The molecular engineering of conjugated systems has proven to be an effective method for understanding structure-property relationships toward the advancement of optoelectronic properties and biosensing characteristics. Herein, a series of three thieno[3,4-c]pyrrole-4,6-dione (TPD)-based conjugated monomers, modified with electron-rich selenophene, 3,4-ethylenedioxythiophene (EDOT), or both building blocks (Se-TPD, EDOT-TPD, and EDOT-Se-TPD), were synthesized using Stille cross-coupling and electrochemically polymerized, and their electrochromic properties and applications in a glucose biosensing platform were explored. The influence of structural modification on electrochemical, electronic, optical, and biosensing properties was systematically investigated. The results showed that the cyclic voltammograms of EDOT-containing materials displayed a high charge capacity over a wide range of scan rates representing a quick charge propagation, making them appropriate materials for high-performance supercapacitor devices. UV-Vis studies revealed that EDOT-based materials presented wide-range absorptions, and thus low optical band gaps. These two EDOT-modified materials also exhibited superior optical contrasts and fast switching times, and further displayed multi-color properties in their neutral and fully oxidized states, enabling them to be promising materials for constructing advanced electrochromic devices. In the context of biosensing applications, a selenophene-containing polymer showed markedly lower performance, specifically in signal intensity and stability, which was attributed to the improper localization of biomolecules on the polymer surface. Overall, we demonstrated that relatively small changes in the structure had a significant impact on both optoelectronic and biosensing properties for TPD-based donor-acceptor polymers.
Collapse
Affiliation(s)
- Aliekber Karabag
- Faculty of Science, Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- METU Center for Solar Energy Research and Applications (ODTU-GUNAM), Ankara 06800, Turkey
| | - Dilek Soyler
- Faculty of Engineering, Department of Biomedical Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Yasemin Arslan Udum
- Technical Sciences Vocational Schools, Gazi University, Ankara 06500, Turkey
| | - Levent Toppare
- Faculty of Science, Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Department of Polymer Science and Technology, Middle East Technical University, Ankara 06800, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Gorkem Gunbas
- Faculty of Science, Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- METU Center for Solar Energy Research and Applications (ODTU-GUNAM), Ankara 06800, Turkey
| | - Saniye Soylemez
- Faculty of Engineering, Department of Biomedical Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| |
Collapse
|
10
|
Aldaghri O, Alsadig A, Idriss H, Ali MKM, Ibrahem MA, Ibnaouf KH. Exploring the photodynamic profile of laser-generated exciplex from a conjugated polymer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122929. [PMID: 37267834 DOI: 10.1016/j.saa.2023.122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
In this work, we investigated the impact of the concentration on the spectral and amplified spontaneous emission spectra (ASE) of a conducting polymer of poly(2,5-di(3,7-dimethyloctyloxy) cyanoterephthalylidene) (PDDCP) in tetrahydrofuran (THF). The findings demonstrate that the absorption spectra exhibited two peaks at 330 and 445 nm across the concentration range (1-100 µg/mL). Irrespective of the optical density, altering the concentrations did not affect the absorption spectrum. Also, the analysis indicated that the polymer did not agglomerate in the ground state for any of the concentrations mentioned. However, changes in the polymer had a substantial effect on its photoluminescence spectrum (PL), likely due to the formation of exciplexes and excimers. Also, the energy band gap also varied as a function of concentration. At a certain concentration (25 µg/mL) and pump pulse energy (3 mJ), PDDCP produced a superradiant ASE peak at 565 nm with a remarkably narrow full width at half maximum (FWHM). These findings can provide insight into the optical characteristics of PDDCP, which may have potential applications in the fabrication of tunable solid-state laser rods, Schottky diodes, and solar cell applications.
Collapse
Affiliation(s)
- O Aldaghri
- Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics Department, P.O. Box 13318, Saudi Arabia.
| | - Ahmed Alsadig
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Hajo Idriss
- Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics Department, P.O. Box 13318, Saudi Arabia
| | - M K M Ali
- Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics Department, P.O. Box 13318, Saudi Arabia
| | - M A Ibrahem
- Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics Department, P.O. Box 13318, Saudi Arabia
| | - K H Ibnaouf
- Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Physics Department, P.O. Box 13318, Saudi Arabia.
| |
Collapse
|
11
|
Zhao M, Uzunoff A, Green M, Rakovich A. The Role of Stabilizing Copolymer in Determining the Physicochemical Properties of Conjugated Polymer Nanoparticles and Their Nanomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091543. [PMID: 37177088 PMCID: PMC10180373 DOI: 10.3390/nano13091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Conjugated polymer nanoparticles (CPNs) are a promising class of nanomaterials for biomedical applications, such as bioimaging, gene and drug delivery/release, photodynamic therapy (PDT), photothermal therapy (PTT), and environmental sensing. Over the past decade, many reports have been published detailing their synthesis and their various potential applications, including some very comprehensive reviews of these topics. In contrast, there is a distinct lack of overview of the role the stabilizing copolymer shells have on the properties of CPNs. This review attempts to correct this oversight by scrutinizing reports detailing the synthesis and application of CPNs stabilized with some commonly-used copolymers, namely F127 (Pluronic poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) diacrylate), PSMA (poly(styrene-co-maleic anhydride)), PLGA (poly(D, L-lactide-co-glycolide)) and PEG (polyethylene glycol) derivatives. The analysis of the reported physicochemical properties and biological applications of these CPNs provides insights into the advantages of each group of copolymers for specific applications and offers a set of guidance criteria for the selection of an appropriate copolymer when designing CPNs-based probes. Finally, the challenges and outlooks in the field are highlighted.
Collapse
Affiliation(s)
- Miao Zhao
- Physics Department, King's College London, London WC2R 2LS, UK
| | - Anton Uzunoff
- Physics Department, King's College London, London WC2R 2LS, UK
| | - Mark Green
- Physics Department, King's College London, London WC2R 2LS, UK
| | | |
Collapse
|
12
|
Thwala LN, Ndlovu SC, Mpofu KT, Lugongolo MY, Mthunzi-Kufa P. Nanotechnology-Based Diagnostics for Diseases Prevalent in Developing Countries: Current Advances in Point-of-Care Tests. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1247. [PMID: 37049340 PMCID: PMC10096522 DOI: 10.3390/nano13071247] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The introduction of point-of-care testing (POCT) has revolutionized medical testing by allowing for simple tests to be conducted near the patient's care point, rather than being confined to a medical laboratory. This has been especially beneficial for developing countries with limited infrastructure, where testing often involves sending specimens off-site and waiting for hours or days for results. However, the development of POCT devices has been challenging, with simplicity, accuracy, and cost-effectiveness being key factors in making these tests feasible. Nanotechnology has played a crucial role in achieving this goal, by not only making the tests possible but also masking their complexity. In this article, recent developments in POCT devices that benefit from nanotechnology are discussed. Microfluidics and lab-on-a-chip technologies are highlighted as major drivers of point-of-care testing, particularly in infectious disease diagnosis. These technologies enable various bioassays to be used at the point of care. The article also addresses the challenges faced by these technological advances and interesting future trends. The benefits of point-of-care testing are significant, especially in developing countries where medical care is shifting towards prevention, early detection, and managing chronic conditions. Infectious disease tests at the point of care in low-income countries can lead to prompt treatment, preventing infections from spreading.
Collapse
Affiliation(s)
- Lungile Nomcebo Thwala
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Sphumelele Colin Ndlovu
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Kelvin Tafadzwa Mpofu
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Masixole Yvonne Lugongolo
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Patience Mthunzi-Kufa
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of Kwa-Zulu Natal, University Road, Westville, Durban 3630, South Africa
| |
Collapse
|
13
|
Długosz O, Matyjasik W, Hodacka G, Szostak K, Matysik J, Krawczyk P, Piasek A, Pulit-Prociak J, Banach M. Inorganic Nanomaterials Used in Anti-Cancer Therapies:Further Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061130. [PMID: 36986024 PMCID: PMC10051539 DOI: 10.3390/nano13061130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/14/2023]
Abstract
In this article, we provide an overview of the progress of scientists working to improve the quality of life of cancer patients. Among the known methods, cancer treatment methods focusing on the synergistic action of nanoparticles and nanocomposites have been proposed and described. The application of composite systems will allow precise delivery of therapeutic agents to cancer cells without systemic toxicity. The nanosystems described could be used as a high-efficiency photothermal therapy system by exploiting the properties of the individual nanoparticle components, including their magnetic, photothermal, complex, and bioactive properties. By combining the advantages of the individual components, it is possible to obtain a product that would be effective in cancer treatment. The use of nanomaterials to produce both drug carriers and those active substances with a direct anti-cancer effect has been extensively discussed. In this section, attention is paid to metallic nanoparticles, metal oxides, magnetic nanoparticles, and others. The use of complex compounds in biomedicine is also described. A group of compounds showing significant potential in anti-cancer therapies are natural compounds, which have also been discussed.
Collapse
|
14
|
Alacid Y, Esquembre R, Montilla F, Martínez-Tomé MJ, Mateo CR. Fluorescent Nanocomposite Hydrogels Based on Conjugated Polymer Nanoparticles as Platforms for Alkaline Phosphatase Detection. BIOSENSORS 2023; 13:408. [PMID: 36979620 PMCID: PMC10046353 DOI: 10.3390/bios13030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
This work describes the development and characterization of fluorescent nanocomposite hydrogels, with high swelling and absorption capacity, and prepared using a green protocol. These fluorescent materials are obtained by incorporating, for the first time, polyfluorenes-based nanoparticles with different emission bands-poly[9,9-dioctylfluorenyl-2,7-diyl] (PFO) and poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(1,4-benzo-{2,1,3}-thiadiazole)] (F8BT)-into a three-dimensional polymeric network based on polyacrylamide. To this end, two strategies were explored: incorporation of the nanoparticles during the polymerization process (in situ) and embedment after the hydrogel formation (ex situ). The results show that the combination of PFO nanoparticles introduced by the ex situ method provided materials with good storage stability, homogeneity and reproducibility properties, allowing their preservation in the form of xerogel. The fluorescent nanocomposite hydrogels have been tested as a transportable and user-friendly sensing platform. In particular, the ability of these materials to specifically detect the enzyme alkaline phosphatase (ALP) has been evaluated as a proof-of-concept. The sensor was able to quantify the presence of the enzyme in an aqueous sample with a response time of 10 min and LOD of 21 nM. Given these results, we consider that this device shows great potential for quantifying physiological ALP levels as well as enzyme activity in environmental samples.
Collapse
Affiliation(s)
- Yolanda Alacid
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, 03690 Alicante, Spain
| | - Rocío Esquembre
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
| | - Francisco Montilla
- Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, 03690 Alicante, Spain
| | - María José Martínez-Tomé
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
| | - C. Reyes Mateo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03202 Elche, Spain
| |
Collapse
|
15
|
Zhong H, Zhao B, Deng J. Synthesis and Application of Fluorescent Polymer Micro- and Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300961. [PMID: 36942688 DOI: 10.1002/smll.202300961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Fluorescent polymer particles have witnessed an increasing interest in recent years, owing to their fascinating physicochemical properties as well as wide-ranging applications. In this review, the state-of-the-art research progress of fluorescent polymer particles in the past five years is summarized. First, the synthesis protocols for fluorescent polymer particles, including emulsion polymerization, precipitation polymerization, dispersion polymerization, suspension polymerization, nanoprecipitation, self-assembly, and post-polymerization modification, are presented in detail. Then, the applications of the resulting beguiling particles in anticounterfeiting, chemical sensing, and biomedicine, are illustrated. Finally, the challenges and opportunities that exist in the field are pointed out. This review aims to offer important guidance and stimulate more research attention to this rapidly developing field.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
16
|
Alenazi DA. Development of color-tunable photoluminescent polycarbonate smart window immobilized with silica-coated lanthanide-activated strontium aluminum oxide nanoparticles. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
17
|
Photoluminescent Janus oxazolidine nanoparticles for development of organic light-emitting diodes, anticounterfeiting, information encryption, and optical detection of scratch. J Colloid Interface Sci 2023; 630:242-256. [DOI: 10.1016/j.jcis.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
|
18
|
Wei Q, Xu D, Li T, He X, Wang J, Zhao Y, Chen L. Recent Advances of NIR-II Emissive Semiconducting Polymer Dots for In Vivo Tumor Fluorescence Imaging and Theranostics. BIOSENSORS 2022; 12:bios12121126. [PMID: 36551093 PMCID: PMC9775418 DOI: 10.3390/bios12121126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 05/31/2023]
Abstract
Accurate diagnosis and treatment of tumors, one of the top global health problems, has always been the research focus of scientists and doctors. Near-infrared (NIR) emissive semiconducting polymers dots (Pdots) have demonstrated bright prospects in field of in vivo tumor fluorescence imaging owing to some of their intrinsic advantages, including good water-dispersibility, facile surface-functionalization, easily tunable optical properties, and good biocompatibility. During recent years, much effort has been devoted to developing Pdots with emission bands located in the second near-infrared (NIR-II, 1000-1700 nm) region, which hold great advantages of higher spatial resolution, better signal-to-background ratios (SBR), and deeper tissue penetration for solid-tumor imaging in comparison with the visible region (400-680 nm) and the first near-infrared (NIR-I, 680-900 nm) window, by virtue of the reduced tissue autofluorescence, minimal photon scattering, and low photon absorption. In this review, we mainly summarize the latest advances of NIR-II emissive semiconducting Pdots for in vivo tumor fluorescence imaging, including molecular engineering to improve the fluorescence quantum yields and surface functionalization to elevate the tumor-targeting capability. We also present several NIR-II theranostic Pdots used for integrated tumor fluorescence diagnosis and photothermal/photodynamic therapy. Finally, we give our perspectives on future developments in this field.
Collapse
Affiliation(s)
- Qidong Wei
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Dingshi Xu
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Tianyu Li
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xuehan He
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yi Zhao
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Lei Chen
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
19
|
Bubniene US, Ratautaite V, Ramanavicius A, Bucinskas V. Conducting Polymers for the Design of Tactile Sensors. Polymers (Basel) 2022; 14:polym14152984. [PMID: 35893948 PMCID: PMC9370767 DOI: 10.3390/polym14152984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
This paper provides an overview of the application of conducting polymers (CPs) used in the design of tactile sensors. While conducting polymers can be used as a base in a variety of forms, such as films, particles, matrices, and fillers, the CPs generally remain the same. This paper, first, discusses the chemical and physical properties of conducting polymers. Next, it discusses how these polymers might be involved in the conversion of mechanical effects (such as pressure, force, tension, mass, displacement, deformation, torque, crack, creep, and others) into a change in electrical resistance through a charge transfer mechanism for tactile sensing. Polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene), polydimethylsiloxane, and polyacetylene, as well as application examples of conducting polymers in tactile sensors, are overviewed. Attention is paid to the additives used in tactile sensor development, together with conducting polymers. There is a long list of additives and composites, used for different purposes, namely: cotton, polyurethane, PDMS, fabric, Ecoflex, Velostat, MXenes, and different forms of carbon such as graphene, MWCNT, etc. Some design aspects of the tactile sensor are highlighted. The charge transfer and operation principles of tactile sensors are discussed. Finally, some methods which have been applied for the design of sensors based on conductive polymers, are reviewed and discussed.
Collapse
Affiliation(s)
- Urte Samukaite Bubniene
- Department of Mechatronics, Robotics and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, J. Basanaviciaus Str. 28, LT-03224 Vilnius, Lithuania;
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania;
- Correspondence: (U.S.B.); (A.R.)
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Correspondence: (U.S.B.); (A.R.)
| | - Vytautas Bucinskas
- Department of Mechatronics, Robotics and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, J. Basanaviciaus Str. 28, LT-03224 Vilnius, Lithuania;
| |
Collapse
|
20
|
New Opportunities for Organic Semiconducting Polymers in Biomedical Applications. Polymers (Basel) 2022; 14:polym14142960. [PMID: 35890734 PMCID: PMC9318588 DOI: 10.3390/polym14142960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/25/2023] Open
Abstract
The life expectancy of humans has been significantly elevated due to advancements in medical knowledge and skills over the past few decades. Although a lot of knowledge and skills are disseminated to the general public, electronic devices that quantitatively diagnose one’s own body condition still require specialized semiconductor devices which are huge and not portable. In this regard, semiconductor materials that are lightweight and have low power consumption and high performance should be developed with low cost for mass production. Organic semiconductors are one of the promising materials in biomedical applications due to their functionalities, solution-processability and excellent mechanical properties in terms of flexibility. In this review, we discuss organic semiconductor materials that are widely utilized in biomedical devices. Some advantageous and unique properties of organic semiconductors compared to inorganic semiconductors are reviewed. By critically assessing the fabrication process and device structures in organic-based biomedical devices, the potential merits and future aspects of the organic biomedical devices are pinpointed compared to inorganic devices.
Collapse
|
21
|
Oligomer Sensor Nanoarchitectonics for “Turn-On” Fluorescence Detection of Cholesterol at the Nanomolar Level. Molecules 2022; 27:molecules27092856. [PMID: 35566207 PMCID: PMC9100198 DOI: 10.3390/molecules27092856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Sensitive and rapid monitoring of cholesterol levels in the human body are highly desirable as they are directly related to the diagnosis of cardiovascular diseases. By using the nanoarchitectonic approach, a novel fluorescent conjugated oligofluorene (OFP-CD) functionalized with β-cyclodextrin (β-CD) was assembled for “Turn-On” fluorescence sensing of cholesterol. The appended β-CD units in OFP-CD enabled the forming of host-guest complexes with dabsyl chloride moieties in water, resulting in fluorescence quenching of the oligofluorene through intermolecular energy transfer. In the presence of cholesterol molecules, a more favorable host-guest complex with stoichiometry 1 cholesterol: 2 β-CD units was formed, replacing dabsyl chloride in β-CD’s cavities. This process resulted in fluorescence recovery of OFP-CD, owing to disruption of energy transfer. The potential of this nanoarchitectonic system for “Turn-On” sensing of cholesterol was extensively studied by fluorescence spectroscopy. The high selectivity of the sensor for cholesterol was demonstrated using biologically relevant interfering compounds, such as carbohydrates, amino acids, metal ions, and anions. The detection limit (LOD value) was as low as 68 nM, affirming the high sensitivity of the current system.
Collapse
|
22
|
Conjugated polymer materials for detection and discrimination of pathogenic microorganisms: Guarantee of biosafety. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|