1
|
Yuan K, Chen Y, Yan D, Li R, Li Z, Zhang H, Wang K, Han H, Zhao Y, Ma L, Hao Q, Ye X, Jin H, Meng X, Liu A, Gao D, Sun S, Kang S, Wang H, Li Y, Wang S, Chen X, Zhao Y. Re-rupture in ruptured brain arteriovenous malformations: a retrospective cohort study based on a nationwide multicenter prospective registry. J Neurointerv Surg 2024; 16:1145-1151. [PMID: 37903561 PMCID: PMC11503091 DOI: 10.1136/jnis-2023-020650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND This study aimed to investigate the natural history of re-rupture in ruptured brain arteriovenous malformations (AVMs) and to provide comprehensive insights into its associated factors and prevention. METHODS This study included 1712 eligible ruptured AVMs from a nationwide multicenter prospective collaboration registry between August 2011 and September 2021. The natural rupture risk before intervention and the annual rupture risk after intervention were both assessed. Cox proportional hazard regression models and Kaplan-Meier survival curves were used to explore independent factors associated with AVM re-rupture. The correlation between these factors and AVM re-rupture was verified in multiple independent cohorts, and the prevention effect of intervention timing and intervention strategies on AVM re-rupture was further analyzed. RESULTS The annual re-rupture risk in ruptured AVMs was 7.6%, and the cumulative re-rupture risk in the first 1, 3, 5, and 10 years following the initial rupture were 10%, 25%, 37.5%, and 50%, respectively. Cox proportional hazard regression analysis confirmed adult patients, ventricular system involvement, and any deep venous drainage as independent factors associated with AVM re-rupture. The intervention was found to significantly reduce the risk of AVM re-rupture (annual rupture risk 11.34% vs 1.70%, p<0.001), especially in those who underwent surgical resection (annual rupture risk 0.13%). CONCLUSIONS The risk of re-rupture in ruptured AVMs is high. Adult patients, ventricular system involvement, and any deep venous drainage are independent risk factors for re-rupture. Applying the results universally to all ruptured AVM cases may be biased. Intervention could effectively reduce the risk of re-rupture.
Collapse
Affiliation(s)
- Kexin Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Debin Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Ruinan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Zhipeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Haibin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Heze Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Yahui Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
- Center for Cerebrovascular Research, University of California San Francisco, San Francisco, California, USA
| | - Qiang Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Hengwei Jin
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | | | - Ali Liu
- Department of Gamma-Knife center, Beijing Tiantan Hospital, Beijing, China
| | - Dezhi Gao
- Department of Gamma-Knife center, Beijing Tiantan Hospital, Beijing, China
| | - Shibin Sun
- Department of Gamma-Knife center, Beijing Tiantan Hospital, Beijing, China
| | - Shuai Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Hao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Capital Medical University, Beijing, Fengtai District, China
- Beijing Engineering Research Center, Beijing, Fengtai District, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China
- Beijing Neurosurgical Institute, Beijing, China
- Beijing Engineering Research Center, Beijing, Fengtai District, China
| |
Collapse
|
2
|
Pérez-Alfayate R, Torregrossa F, Rey-Picazo J, Matías-Guiu J, Sallabanda-Díaz K, Grasso G. Pilot Trial on Awake Surgery for Low-Grade Arteriovenous Malformations in Speech Area and Systematic Review of the Literature. World Neurosurg 2024; 189:154-160. [PMID: 38857871 DOI: 10.1016/j.wneu.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE One of the pressing constraints in the treatment of arteriovenous malformations (AVM) is the potential development of new neurologic deficits, mainly when the AVM is in an eloquent area. The risk of ischemia when an en passage arterial supply is present is not negligible. In this regard, awake surgery holds promise in increasing the safety of low-grade AVM resection. METHODS We conducted a pilot trial on 3 patients with low-grade AVMs affecting speech areas to evaluate the safety of awake craniotomy using Conscious Sedation. Each feeder was temporarily clipped before the section. Also, we performed a systematic review to analyze the existing data about the impact of awake surgery in eloquent AVM resection. RESULTS None of the 3 patients presented with neurologic deficits after the procedure. Awake craniotomy was useful in 1 case, as it allowed the detection of speech arrest during the temporal clipping of 1 of the feeders. This vessel was identified as an en passage vessel, closer to the nidus. The second attempt revealed the feeder of the AVM, which was sectioned. Systematic review yielded 7 studies meeting our inclusion criteria. Twenty-six of 33 patients included in these studies presented with AVM affecting speech area. Only 2 studies included the motor evoked potentials. Six studies used direct cortical and subcortical stimulation. In all studies the asleep-awake-asleep technique was used. CONCLUSIONS Awake craniotomies are safe procedures and may be helpful in avoiding ischemic complications in low-grade AVMs, either affecting eloquent areas and/or when en passage feeders are present.
Collapse
Affiliation(s)
- Rebeca Pérez-Alfayate
- Department of Neurosurgery, Institute of Neuroscience, Hospital Clínico San Carlos, Madrid, Spain.
| | - Fabio Torregrossa
- Neurosurgical Unit, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Julio Rey-Picazo
- Department of Anesthesiolgy, Institute of Neuroscience, Hospital Clínico San Carlos, Madrid, Spain
| | - Jordi Matías-Guiu
- Department of Neurology, Institute of Neuroscience, Hospital Clínico San Carlos, Madrid, Spain
| | - Kita Sallabanda-Díaz
- Department of Neurosurgery, Institute of Neuroscience, Hospital Clínico San Carlos, Madrid, Spain
| | - Giovanni Grasso
- Neurosurgical Unit, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Nguyen HL, Holderbaum Do Amaral R, Lerouge S, De Roo AK, Zehtabi F, Vikkula M, Soulez G. Injectable chitosan hydrogel effectively controls lesion growth in a venous malformation murine model. Diagn Interv Imaging 2024:S2211-5684(24)00165-7. [PMID: 39095271 DOI: 10.1016/j.diii.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE The purpose of this study was to evaluate the safety and efficacy of intralesional injection of chitosan hydrogel (CH) combined with sodium tetradecyl sulfate (STS) to sclerose and embolize venous malformations (VMs) by comparison with 3% STS foam and placebo in a mouse model. MATERIALS AND METHODS Subcutaneous VMs were created by injecting HUVEC_TIE2-L914F cells, mixed with matrigel, into the back of athymic mice (Day [D] 0). After VM-like lesions were established at D10, 70 lesions were randomly assigned to one of six treatment groups (untreated, saline, 3% STS-foam, CH, 1% STS-CH, 3% STS-CH). For 3% STS-foam, the standard Tessari technique was performed. VMs were regularly evaluated every 2-3 days to measure lesion size until the time of collection at D30 (primary endpoint). At D30, VM lesions including the matrigel plugs were culled and evaluated by histological analysis to assess vessel size, chitosan distribution and endothelial expression. One-way analysis of variance (ANOVA) test was performed to compare quantitative variables with normal distribution, otherwise Kruskal-Wallis test followed by pairwise comparisons by a Wilcoxon rank sum test was performed. RESULTS All VMs were successfully punctured and injected. Six VMs injected with 3% STS-CH showed early skin ulceration with an extrusion of the matrigel plug and were excluded from final analysis. In the remaining 64 VMs, skin ulceration occurred on 26 plugs, resulting in the loss of three 3% STS-foam and one 1% STS-CH plugs. Both chitosan formulations effectively controlled growth of VMs by the end of follow-up compared to untreated or 3% STS-foam groups (P < 0.05). Vessel sizes were smaller with both CH formulations compared to untreated and saline groups (P < 0.05). Additionally, there were smaller vascular channels within the 1% STS-CH group compared to the 3% STS-foam group (P < 0.05). CONCLUSION Chitosan's ability to control the growth of VMs suggests a promising therapeutic effect that outperforms the gold standard (STS-foam) on several variables.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Human Molecular Genetics, de Duve Institute, University of Louvain, B-1200 Brussels, Belgium
| | - Ricardo Holderbaum Do Amaral
- Centre Hospitalier de l'Université de Montréal Research Center (CRCHUM), Montreal, QC, H2 × 0A9, Canada; Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montreal, Montreal, QC, H3T 1J4, Canada
| | - Sophie Lerouge
- Centre Hospitalier de l'Université de Montréal Research Center (CRCHUM), Montreal, QC, H2 × 0A9, Canada; Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montreal, Montreal, QC, H3T 1J4, Canada; Department of Mechanical Engineering, Ecole de Technologie Supérieure (ÉTS), Montreal, QC, H3C 1K3, Canada
| | - An-Katrien De Roo
- Department of Pathology, Saint Luc University Hospital, B-1200 Brussels, Belgium; Institute of Experimental and Clinical Research, University of Louvain, B-1348 Brussels, Belgium; Center for Vascular Anomalies, Member of VASCERN (European Reference Network on Rare Multisystemic Vascular Diseases) VASCA European Reference Centre Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium
| | - Fatemeh Zehtabi
- Centre Hospitalier de l'Université de Montréal Research Center (CRCHUM), Montreal, QC, H2 × 0A9, Canada; Department of Mechanical Engineering, Ecole de Technologie Supérieure (ÉTS), Montreal, QC, H3C 1K3, Canada
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, B-1200 Brussels, Belgium; WELBIO Department, WEL Research Institute, B-1300 Wavre, Belgium
| | - Gilles Soulez
- Centre Hospitalier de l'Université de Montréal Research Center (CRCHUM), Montreal, QC, H2 × 0A9, Canada; Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montreal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
4
|
Tu T, Yu J, Jiang C, Zhang S, Li J, Ren J, Zhang S, Zhou Y, Cui Z, Lu H, Meng X, Wang Z, Xing D, Zhang H, Hong T. Somatic Braf V600E mutation in the cerebral endothelium induces brain arteriovenous malformations. Angiogenesis 2024; 27:441-460. [PMID: 38700584 DOI: 10.1007/s10456-024-09918-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/01/2024] [Indexed: 08/07/2024]
Abstract
Current treatments of brain arteriovenous malformation (BAVM) are associated with considerable risks and at times incomplete efficacy. Therefore, a clinically consistent animal model of BAVM is urgently needed to investigate its underlying biological mechanisms and develop innovative treatment strategies. Notably, existing mouse models have limited utility due to heterogenous and untypical phenotypes of AVM lesions. Here we developed a novel mouse model of sporadic BAVM that is consistent with clinical manifestations in humans. Mice with BrafV600E mutations in brain ECs developed BAVM closely resembled that of human lesions. This strategy successfully induced BAVMs in mice across different age groups and within various brain regions. Pathological features of BAVM were primarily dilated blood vessels with reduced vascular wall stability, accompanied by spontaneous hemorrhage and neuroinflammation. Single-cell sequencing revealed differentially expressed genes that were related to the cytoskeleton, cell motility, and intercellular junctions. Early administration of Dabrafenib was found to be effective in slowing the progression of BAVMs; however, its efficacy in treating established BAVM lesions remained uncertain. Taken together, our proposed approach successfully induced BAVM that closely resembled human BAVM lesions in mice, rendering the model suitable for investigating the pathogenesis of BAVM and assessing potential therapeutic strategies.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Jiaxing Yu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| | - Chendan Jiang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Shikun Zhang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Jingwei Li
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Shiju Zhang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Yuan Zhou
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Ziwei Cui
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Haohan Lu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Xiaosheng Meng
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Zhanjing Wang
- Medical Imaging laboratory of Core Facility Center, Capital Medical University, Beijing, 100054, China
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
5
|
Mansur A, Radovanovic I. Defining the Role of Oral Pathway Inhibitors as Targeted Therapeutics in Arteriovenous Malformation Care. Biomedicines 2024; 12:1289. [PMID: 38927496 PMCID: PMC11201820 DOI: 10.3390/biomedicines12061289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Arteriovenous malformations (AVMs) are vascular malformations that are prone to rupturing and can cause significant morbidity and mortality in relatively young patients. Conventional treatment options such as surgery and endovascular therapy often are insufficient for cure. There is a growing body of knowledge on the genetic and molecular underpinnings of AVM development and maintenance, making the future of precision medicine a real possibility for AVM management. Here, we review the pathophysiology of AVM development across various cell types, with a focus on current and potential druggable targets and their therapeutic potentials in both sporadic and familial AVM populations.
Collapse
Affiliation(s)
- Ann Mansur
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, School of Graduate Studies, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, School of Graduate Studies, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
6
|
Lauzier DC, Srienc AI, Vellimana AK, Dacey Jr RG, Zipfel GJ. Peripheral macrophages in the development and progression of structural cerebrovascular pathologies. J Cereb Blood Flow Metab 2024; 44:169-191. [PMID: 38000039 PMCID: PMC10993883 DOI: 10.1177/0271678x231217001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 11/26/2023]
Abstract
The human cerebrovascular system is responsible for maintaining neural function through oxygenation, nutrient supply, filtration of toxins, and additional specialized tasks. While the cerebrovascular system has resilience imparted by elaborate redundant collateral circulation from supportive tertiary structures, it is not infallible, and is susceptible to developing structural vascular abnormalities. The causes of this class of structural cerebrovascular diseases can be broadly categorized as 1) intrinsic developmental diseases resulting from genetic or other underlying aberrations (arteriovenous malformations and cavernous malformations) or 2) extrinsic acquired diseases that cause compensatory mechanisms to drive vascular remodeling (aneurysms and arteriovenous fistulae). Cerebrovascular diseases of both types pose significant risks to patients, in some cases leading to death or disability. The drivers of such diseases are extensive, yet inflammation is intimately tied to all of their progressions. Central to this inflammatory hypothesis is the role of peripheral macrophages; targeting this critical cell type may lead to diagnostic and therapeutic advancement in this area. Here, we comprehensively review the role that peripheral macrophages play in cerebrovascular pathogenesis, provide a schema through which macrophage behavior can be understood in cerebrovascular pathologies, and describe emerging diagnostic and therapeutic avenues in this area.
Collapse
Affiliation(s)
- David C Lauzier
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anja I Srienc
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ralph G Dacey Jr
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Scherschinski L, Han C, Kim YH, Winkler EA, Catapano JS, Schriber TD, Vajkoczy P, Lawton MT, Oh SP. Localized conditional induction of brain arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia. Angiogenesis 2023; 26:493-503. [PMID: 37219736 PMCID: PMC10542309 DOI: 10.1007/s10456-023-09881-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Longitudinal mouse models of brain arteriovenous malformations (AVMs) are crucial for developing novel therapeutics and pathobiological mechanism discovery underlying brain AVM progression and rupture. The sustainability of existing mouse models is limited by ubiquitous Cre activation, which is associated with lethal hemorrhages resulting from AVM formation in visceral organs. To overcome this condition, we developed a novel experimental mouse model of hereditary hemorrhagic telangiectasia (HHT) with CreER-mediated specific, localized induction of brain AVMs. METHODS Hydroxytamoxifen (4-OHT) was stereotactically delivered into the striatum, parietal cortex, or cerebellum of R26CreER; Alk12f/2f (Alk1-iKO) littermates. Mice were evaluated for vascular malformations with latex dye perfusion and 3D time-of-flight magnetic resonance angiography (MRA). Immunofluorescence and Prussian blue staining were performed for vascular lesion characterization. RESULTS Our model produced two types of brain vascular malformations, including nidal AVMs (88%, 38/43) and arteriovenous fistulas (12%, 5/43), with an overall frequency of 73% (43/59). By performing stereotaxic injection of 4-OHT targeting different brain regions, Alk1-iKO mice developed vascular malformations in the striatum (73%, 22/30), in the parietal cortex (76%, 13/17), and in the cerebellum (67%, 8/12). Identical application of the stereotaxic injection protocol in reporter mice confirmed localized Cre activity near the injection site. The 4-week mortality was 3% (2/61). Seven mice were studied longitudinally for a mean (SD; range) duration of 7.2 (3; 2.3-9.5) months and demonstrated nidal stability on sequential MRA. The brain AVMs displayed microhemorrhages and diffuse immune cell invasion. CONCLUSIONS We present the first HHT mouse model of brain AVMs that produces localized AVMs in the brain. The mouse lesions closely resemble the human lesions for complex nidal angioarchitecture, arteriovenous shunts, microhemorrhages, and inflammation. The model's longitudinal robustness is a powerful discovery resource to advance our pathomechanistic understanding of brain AVMs and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Lea Scherschinski
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Chul Han
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Yong Hwan Kim
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Ethan A Winkler
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Joshua S Catapano
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Tyler D Schriber
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Michael T Lawton
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - S Paul Oh
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA.
| |
Collapse
|
8
|
Ricciardelli AR, Robledo A, Fish JE, Kan PT, Harris TH, Wythe JD. The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations. Biomedicines 2023; 11:2876. [PMID: 38001877 PMCID: PMC10669898 DOI: 10.3390/biomedicines11112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.
Collapse
Affiliation(s)
- Ashley R. Ricciardelli
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Peter T. Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Tajie H. Harris
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joshua D. Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
9
|
Pang C, Abu-Hanna J, Lim CS, Brookes J, Tsui J, Hamilton G, Onuba L, Deroide F. Histopathological analysis of vascular malformations. Phlebology 2023:2683555231175022. [PMID: 37177803 DOI: 10.1177/02683555231175022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
OBJECTIVE To propose and develop a histopathological criteria to help diagnose vascular malformations. METHODS All patients who underwent surgical resection and had a confirmed histopathological diagnosis of vascular malformations from 01 March 2018-26 February 2020 were included. A criteria based on 10 parameters was developed to help diagnose vascular malformations. Discrepancies between clinical and histopathological diagnosis were evaluated. RESULTS A total of 18 cases were identified. There was a discrepancy between the clinical diagnosis and the initially reported histopathological diagnosis in 16 cases (88.9%). This was reduced to 7 (38.9%) and 6 cases (33.3%) with first and second time revised histopathological analysis using proposed criteria. CONCLUSIONS The discrepancy between clinical and histopathological diagnoses of vascular malformations has highlighted the requirement of an agreed criteria for histopathologists to help formulate their diagnosis. The proposed criteria may be used as a guide in addressing this and guide treatment and improve clinical practice.
Collapse
Affiliation(s)
- Calver Pang
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, UK
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK
| | - Jeries Abu-Hanna
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK
| | - Chung Sim Lim
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, UK
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK
| | - Jocelyn Brookes
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, UK
- Department of Interventional Radiology, Royal Free London NHS Foundation Trust, London, UK
| | - Janice Tsui
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, UK
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK
| | - George Hamilton
- Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, UK
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK
| | - Louisa Onuba
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Florence Deroide
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Shabani Z, Schuerger J, Su H. Cellular loci involved in the development of brain arteriovenous malformations. Front Hum Neurosci 2022; 16:968369. [PMID: 36211120 PMCID: PMC9532630 DOI: 10.3389/fnhum.2022.968369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Brain arteriovenous malformations (bAVMs) are abnormal vessels that are prone to rupture, causing life-threatening intracranial bleeding. The mechanism of bAVM formation is poorly understood. Nevertheless, animal studies revealed that gene mutation in endothelial cells (ECs) and angiogenic stimulation are necessary for bAVM initiation. Evidence collected through analyzing bAVM specimens of human and mouse models indicate that cells other than ECs also are involved in bAVM pathogenesis. Both human and mouse bAVMs vessels showed lower mural cell-coverage, suggesting a role of pericytes and vascular smooth muscle cells (vSMCs) in bAVM pathogenesis. Perivascular astrocytes also are important in maintaining cerebral vascular function and take part in bAVM development. Furthermore, higher inflammatory cytokines in bAVM tissue and blood demonstrate the contribution of inflammatory cells in bAVM progression, and rupture. The goal of this paper is to provide our current understanding of the roles of different cellular loci in bAVM pathogenesis.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Joana Schuerger
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Hua Su
- Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Hua Su, ; orcid.org/0000-0003-1566-9877
| |
Collapse
|
11
|
A human model of arteriovenous malformation (AVM)-on-a-chip reproduces key disease hallmarks and enables drug testing in perfused human vessel networks. Biomaterials 2022; 288:121729. [PMID: 35999080 PMCID: PMC9972357 DOI: 10.1016/j.biomaterials.2022.121729] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 02/09/2023]
Abstract
Brain arteriovenous malformations (AVMs) are a disorder wherein abnormal, enlarged blood vessels connect arteries directly to veins, without an intervening capillary bed. AVMs are one of the leading causes of hemorrhagic stroke in children and young adults. Most human sporadic brain AVMs are associated with genetic activating mutations in the KRAS gene. Our goal was to develop an in vitro model that would allow for simultaneous morphological and functional phenotypic data capture in real time during AVM disease progression. By generating human endothelial cells harboring a clinically relevant mutation found in most human patients (activating mutations within the small GTPase KRAS) and seeding them in a dynamic microfluidic cell culture system that enables vessel formation and perfusion, we demonstrate that vessels formed by KRAS4AG12V mutant endothelial cells (ECs) were significantly wider and more leaky than vascular beds formed by wild-type ECs, recapitulating key structural and functional hallmarks of human AVM pathogenesis. Immunofluorescence staining revealed a breakdown of adherens junctions in mutant KRAS vessels, leading to increased vascular permeability, a hallmark of hemorrhagic stroke. Finally, pharmacological blockade of MEK kinase activity, but not PI3K inhibition, improved endothelial barrier function (decreased permeability) without affecting vessel diameter. Collectively, our studies describe the creation of human KRAS-dependent AVM-like vessels in vitro in a self-assembling microvessel platform that is amenable to phenotypic observation and drug delivery.
Collapse
|
12
|
Rodemerk J, Oppong MD, Junker A, Deuschl C, Forsting M, Zhu Y, Dammann P, Uerschels A, Jabbarli R, Sure U, Wrede KH. Ischemia-induced inflammation in arteriovenous malformations. Neurosurg Focus 2022; 53:E3. [DOI: 10.3171/2022.4.focus2210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/14/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
The pathophysiology of development, growth, and rupture of arteriovenous malformations (AVMs) is only partially understood. However, inflammation is known to play an essential role in many vascular diseases. This feasibility study was conducted to investigate the expression of enzymes (cyclooxygenase 2 [COX-2] and NLRP3 [NOD-, LRR-, and pyrin domain–containing protein 3]) in the AVM nidus that are essential in their inflammatory pathways and to explore how these influence the pathophysiology of AVMs.
METHODS
The study group comprised 21 patients with partially thrombosed AVMs. The cohort included 8 ruptured and 13 unruptured AVMs, which had all been treated microsurgically. The formaldehyde-fixed and paraffin-embedded samples were immunohistochemically stained with a monoclonal antibody against COX-2 and NLRP3 (COX-2 clone: CX-294; NLRP3: ab214185). The authors correlated MRI and clinical data with immunohistochemistry, using the Trainable Weka Segmentation algorithm for analysis.
RESULTS
The median AVM volume was 2240 mm3. The proportion of NLRP3-positive cells was significantly higher (26.23%–83.95%), compared to COX-2 positive cells (0.25%–14.94%, p < 0.0001). Ruptured AVMs had no higher expression of NLRP3 (p = 0.39) or COX-2 (p = 0.44), compared to nonruptured AVMs. Moreover, no patient characteristics could be reported that showed significant correlations to the enzyme expression.
CONCLUSIONS
NLRP3 consistently showed an approximately 10-fold higher expression level than COX-2, making the inflammatory process in AVMs appear to be mainly associated with ischemic (NLRP3)–driven rather than with mechanical (COX-2)–driven inflammatory pathways. No direct associations between NLRP3 and COX-2 expression and radiological, standard histopathological, or patient characteristics were found in this cohort.
Collapse
Affiliation(s)
- Jan Rodemerk
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen
| | | | - Andreas Junker
- Institute for Neuropathology, University Hospital Essen, University Duisburg-Essen; and
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen
| | - Philipp Dammann
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen
| | - Anne Uerschels
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen
| | - Ramazan Jabbarli
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen
| | - Karsten H. Wrede
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen
| |
Collapse
|
13
|
Winkler EA, Pacult MA, Catapano JS, Scherschinski L, Srinivasan VM, Graffeo CS, Oh SP, Lawton MT. Emerging pathogenic mechanisms in human brain arteriovenous malformations: a contemporary review in the multiomics era. Neurosurg Focus 2022; 53:E2. [DOI: 10.3171/2022.4.focus2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
A variety of pathogenic mechanisms have been described in the formation, maturation, and rupture of brain arteriovenous malformations (bAVMs). While the understanding of bAVMs has largely been formulated based on animal models of rare hereditary diseases in which AVMs form, a new era of “omics” has permitted large-scale examinations of contributory genetic variations in human sporadic bAVMs. New findings regarding the pathogenesis of bAVMs implicate changes to endothelial and mural cells that result in increased angiogenesis, proinflammatory recruitment, and breakdown of vascular barrier properties that may result in hemorrhage; a greater diversity of cell populations that compose the bAVM microenvironment may also be implicated and complicate traditional models. Genomic sequencing of human bAVMs has uncovered inherited, de novo, and somatic activating mutations, such as KRAS, which contribute to the pathogenesis of bAVMs. New droplet-based, single-cell sequencing technologies have generated atlases of cell-specific molecular derangements. Herein, the authors review emerging genomic and transcriptomic findings underlying pathologic cell transformations in bAVMs derived from human tissues. The application of multiple sequencing modalities to bAVM tissues is a natural next step for researchers, although the potential therapeutic benefits or clinical applications remain unknown.
Collapse
Affiliation(s)
- Ethan A. Winkler
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Mark A. Pacult
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Joshua S. Catapano
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Lea Scherschinski
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Visish M. Srinivasan
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Christopher S. Graffeo
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - S. Paul Oh
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| | - Michael T. Lawton
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| |
Collapse
|
14
|
Winkler EA, Kim CN, Ross JM, Garcia JH, Gil E, Oh I, Chen LQ, Wu D, Catapano JS, Raygor K, Narsinh K, Kim H, Weinsheimer S, Cooke DL, Walcott BP, Lawton MT, Gupta N, Zlokovic BV, Chang EF, Abla AA, Lim DA, Nowakowski TJ. A single-cell atlas of the normal and malformed human brain vasculature. Science 2022; 375:eabi7377. [PMID: 35084939 PMCID: PMC8995178 DOI: 10.1126/science.abi7377] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebrovascular diseases are a leading cause of death and neurologic disability. Further understanding of disease mechanisms and therapeutic strategies requires a deeper knowledge of cerebrovascular cells in humans. We profiled transcriptomes of 181,388 cells to define a cell atlas of the adult human cerebrovasculature, including endothelial cell molecular signatures with arteriovenous segmentation and expanded perivascular cell diversity. By leveraging this reference, we investigated cellular and molecular perturbations in brain arteriovenous malformations, which are a leading cause of stroke in young people, and identified pathologic endothelial transformations with abnormal vascular patterning and the ontology of vascularly derived inflammation. We illustrate the interplay between vascular and immune cells that contributes to brain hemorrhage and catalog opportunities for targeting angiogenic and inflammatory programs in vascular malformations.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Chang N Kim
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Jayden M Ross
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Joseph H Garcia
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Eugene Gil
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Irene Oh
- Rebus Biosystems, Santa Clara, CA, USA
| | | | - David Wu
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Kunal Raygor
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Kazim Narsinh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Shantel Weinsheimer
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Daniel L Cooke
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Brian P Walcott
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
15
|
Chen B, Tao W, Yan L, Zeng M, Song L, Huang Z, Chen F. Molecular feature of arterial remodeling in the brain arteriovenous malformation revealed by arteriovenous shunt rat model and RNA sequencing. Int Immunopharmacol 2022; 107:108653. [PMID: 35247777 DOI: 10.1016/j.intimp.2022.108653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/05/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Morphological research suggested the feeding artery of brain arteriovenous malformation (bAVM) had vascular remodeling under the high blood flow; however, the underlying molecular mechanisms were unclear. METHODS We constructed 32 simplified AVM rat models in four groups: the control group (n = 6), 1-week high-blood-flow group (n = 9), 3-week high-blood-flow group (n = 7) and 6-week high-blood-flow group (n = 10). The circumference, blood velocity, blood flow, pressure, and wall shear of the feeding artery were measured or calculated. The arterial wall change was observed by Masson staining. RNA sequencing (RNA-seq) of feeding arteries was performed, followed by bioinformatics analysis to detect the potential molecular mechanism for bAVM artery remodeling under the high blood flow. RESULTS We observed hemodynamic injury and vascular remodeling on the feeding artery under the high blood flow. RNA-seq showed immune/inflammation infiltration and vascular smooth muscle cell (VSMC) phenotype transformation during remodeling. Weighted gene co-expression network analysis (WGCNA) and time series analysis further identified 27 key genes and pathways involved in remodeling. Upstream miRNA and molecular drugs were predicted targeting these key genes. CONCLUSIONS We depicted molecular change of bAVM arterial remodeling via RNA-seq in high-blood-flow rat models. Twenty-seven key genes may regulate immune/inflammation infiltration and VSMC phenotype transform in bAVM arterial remodeling.
Collapse
Affiliation(s)
- Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wengui Tao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Langchao Yan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Laixin Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Neurosurgery, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, Heilongjiang, China; Department of Surgery, Mudanjiang Huimin Hospital, Mudanjiang, Heilongjiang, China
| | - Zheng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Recent progress understanding pathophysiology and genesis of brain AVM-a narrative review. Neurosurg Rev 2021; 44:3165-3175. [PMID: 33837504 PMCID: PMC8592945 DOI: 10.1007/s10143-021-01526-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Considerable progress has been made over the past years to better understand the genetic nature and pathophysiology of brain AVM. For the actual review, a PubMed search was carried out regarding the embryology, inflammation, advanced imaging, and fluid dynamical modeling of brain AVM. Whole-genome sequencing clarified the genetic origin of sporadic and familial AVM to a large degree, although some open questions remain. Advanced MRI and DSA techniques allow for better segmentation of feeding arteries, nidus, and draining veins, as well as the deduction of hemodynamic parameters such as flow and pressure in the individual AVM compartments. Nonetheless, complete modeling of the intranidal flow structure by computed fluid dynamics (CFD) is not possible so far. Substantial progress has been made towards understanding the embryology of brain AVM. In contrast to arterial aneurysms, complete modeling of the intranidal flow and a thorough understanding of the mechanical properties of the AVM nidus are still lacking at the present time.
Collapse
|