1
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Coenzyme Q10 and Dementia: A Systematic Review. Antioxidants (Basel) 2023; 12:antiox12020533. [PMID: 36830090 PMCID: PMC9952341 DOI: 10.3390/antiox12020533] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
It is well known that coenzyme Q10 (CoQ10) has important antioxidant properties. Because one of the main mechanisms involved in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative diseases is oxidative stress, analysis of the concentrations of CoQ10 in different tissues of AD patients and with other dementia syndromes and the possible therapeutic role of CoQ10 in AD have been addressed in several studies. We performed a systematic review and a meta-analysis of these studies measuring tissue CoQ10 levels in patients with dementia and controls which showed that, compared with controls, AD patients had similar serum/plasma CoQ10 levels. We also revised the possible therapeutic effects of CoQ10 in experimental models of AD and other dementias (which showed important neuroprotective effects of coenzyme Q10) and in humans with AD, other dementias, and mild cognitive impairment (with inconclusive results). The potential role of CoQ10 treatment in AD and in improving memory in aged rodents shown in experimental models deserves future studies in patients with AD, other causes of dementia, and mild cognitive impairment.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Ronda del Sur 10, E-28500 Arganda del Rey, Spain
- Correspondence: or ; Tel.: +34-636-968395; Fax: +34-91-328-0704
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Ronda del Sur 10, E-28500 Arganda del Rey, Spain
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain
| |
Collapse
|
3
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Coenzyme Q10 and Parkinsonian Syndromes: A Systematic Review. J Pers Med 2022; 12:jpm12060975. [PMID: 35743757 PMCID: PMC9225264 DOI: 10.3390/jpm12060975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Coenzyme Q10 (CoQ10) has an important role as an antioxidant. Being that oxidative stress is one of the mechanisms involved in the pathogenesis of Parkinson’s disease (PD) and other neurodegenerative diseases, several studies addressed the concentrations of CoQ10 in the different tissues of patients with PD and other parkinsonian syndromes (PS), trying to elucidate their value as a marker of these diseases. Other studies addressed the potential therapeutic role of CoQ10 in PD and PS. We underwent a systematic review and a meta-analysis of studies measuring tissue CoQ10 concentrations which shows that, compared with controls, PD patients have decreased CoQ10 levels in the cerebellar cortex, platelets, and lymphocytes, increased total and oxidized CoQ10 levels in the cerebrospinal fluid and a non-significant trend toward decreased serum/plasma CoQ10 levels. Patients with multiple system atrophy (MSA) showed decreased CoQ10 levels in the cerebellar cortex, serum/plasma, cerebrospinal fluid, and skin fibroblasts. Patients with Lewy body dementia (LBD) showed decreased cerebellar cortex CoQ10, and those with progressive supranuclear palsy (PSP) had decreased CoQ10 levels in the cerebrospinal fluid. A previous meta-analysis of studies addressing the therapeutic effects of CoQ10 in PD showed a lack of improvement in patients with early PD. Results of the treatment with CoQ10 in PSP should be considered preliminary. The potential role of CoQ10 therapy in the MSA and selected groups of PD patients deserves future studies.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Ronda del Sur 10, E28500 Arganda del Rey, Spain;
- Correspondence: or ; Tel.: +34-636968395; Fax: +34-913280704
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Ronda del Sur 10, E28500 Arganda del Rey, Spain;
| | - Elena García-Martín
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
4
|
Abstract
The aging process includes impairment in mitochondrial function, a reduction in anti-oxidant activity, and an increase in oxidative stress, marked by an increase in reactive oxygen species (ROS) production. Oxidative damage to macromolecules including DNA and electron transport proteins likely increases ROS production resulting in further damage. This oxidative theory of cell aging is supported by the fact that diseases associated with the aging process are marked by increased oxidative stress. Coenzyme Q10 (CoQ10) levels fall with aging in the human but this is not seen in all species or all tissues. It is unknown whether lower CoQ10 levels have a part to play in aging and disease or whether it is an inconsequential cellular response to aging. Despite the current lay public interest in supplementing with CoQ10, there is currently not enough evidence to recommend CoQ10 supplementation as an anti-aging anti-oxidant therapy.
Collapse
|
5
|
Varela-López A, Giampieri F, Battino M, Quiles JL. Coenzyme Q and Its Role in the Dietary Therapy against Aging. Molecules 2016; 21:373. [PMID: 26999099 PMCID: PMC6273282 DOI: 10.3390/molecules21030373] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022] Open
Abstract
Coenzyme Q (CoQ) is a naturally occurring molecule located in the hydrophobic domain of the phospholipid bilayer of all biological membranes. Shortly after being discovered, it was recognized as an essential electron transport chain component in mitochondria where it is particularly abundant. Since then, more additional roles in cell physiology have been reported, including antioxidant, signaling, death prevention, and others. It is known that all cells are able to synthesize functionally sufficient amounts of CoQ under normal physiological conditions. However, CoQ is a molecule found in different dietary sources, which can be taken up and incorporated into biological membranes. It is known that mitochondria have a close relationship with the aging process. Additionally, delaying the aging process through diet has aroused the interest of scientists for many years. These observations have stimulated investigation of the anti-aging potential of CoQ and its possible use in dietary therapies to alleviate the effects of aging. In this context, the present review focus on the current knowledge and evidence the roles of CoQ cells, its relationship with aging, and possible implications of dietary CoQ in relation to aging, lifespan or age-related diseases.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander 39011, Spain.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| |
Collapse
|
6
|
Momiyama Y. Serum coenzyme Q10 levels as a predictor of dementia in a Japanese general population. Atherosclerosis 2014; 237:433-4. [PMID: 25463069 DOI: 10.1016/j.atherosclerosis.2014.08.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 11/16/2022]
Abstract
Mitochondrial impairment and increased oxidative stress are considered to be involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease. Coenzyme Q10 (CoQ10) is a component of the electron transport chain localized on the inner membrane of the mitochondria. In addition to its bioenergetic activity required for ATP synthesis, CoQ10 also has antioxidant activity in mitochondrial and lipid membranes, which protects against the reactive oxidative species generated during oxidative phosphorylation. Several previous studies had reported no significant differences in serum CoQ10 levels between patients with and without dementia, such as Alzheimer's disease. However, in this issue of Atherosclerosis, Yamagishi et al. demonstrate for the first time that a lower serum CoQ10 level is associated with a greater risk of dementia in a Japanese general population. These findings suggest that assessing serum CoQ10 levels could be useful for predicting the development of dementia, rather than as a biomarker for the presence of dementia.
Collapse
Affiliation(s)
- Yukihiko Momiyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan.
| |
Collapse
|
7
|
Affiliation(s)
- Clifford W Shults
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Abstract
Mitochondrial dysfunction has been well established to occur in Parkinson's disease (PD) and appears to play a role in the pathogenesis of the disorder. A key component of the mitochondrial electron transport chain (ETC) is coenzyme Q(10), which not only serves as the electron acceptor for complexes I and II of the ETC but is also an antioxidant. In addition to being crucial to the bioenergetics of the cell, mitochondria play a central role in apoptotic cell death through a number of mechanisms, and coenzyme Q(10) can affect certain of these processes. Levels of coenzyme Q(10) have been reported to be decreased in blood and platelet mitochondria from PD patients. A number of preclinical studies in in vitro and in vivo models of PD have demonstrated that coenzyme Q(10) can protect the nigrostriatal dopaminergic system. A phase II trial of coenzyme Q(10) in patients with early, untreated PD demonstrated a positive trend for coenzyme Q(10) to slow progressive disability that occurs in PD.
Collapse
Affiliation(s)
- Clifford W Shults
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Pastore A, Giovamberardino GD, Bertini E, Tozzi G, Gaeta LM, Federici G, Piemonte F. Simultaneous determination of ubiquinol and ubiquinone in skeletal muscle of pediatric patients. Anal Biochem 2005; 342:352-5. [PMID: 15989930 DOI: 10.1016/j.ab.2005.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 02/15/2005] [Accepted: 02/17/2005] [Indexed: 11/20/2022]
Affiliation(s)
- Anna Pastore
- Laboratory of Biochemistry, Children's Hospital and Research Institute "Bambino Gesù," Piazza S. Onofrio 4, 00165 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Yalcin A, Kilinc E, Kocturk S, Resmi H, Sozmen EY. Effect of melatonin cotreatment against kainic acid on coenzyme Q10, lipid peroxidation and Trx mRNA in rat hippocampus. Int J Neurosci 2004; 114:1085-97. [PMID: 15370175 DOI: 10.1080/00207450490475535] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Oxidative stress is a likely molecular mechanism in the neurotoxicity of kainic acid (KA), an excitotoxic substance. The aim of this report was to assess the effect of melatonin co-treatment against KA by measuring the levels of Coenzyme Q10 (CoQ 10), lipid peroxidation (LPO), and Thioredoxin (Trx) mRNA in the rat hippocampus. The male rats were divided into three groups as saline, KA treatment (15 mg/kg), and KA plus melatonin (20 mg/kg). The levels of LPO and CoQ10 were determined by high pressure liquid chromatography (HPLC) consisting of fluorescence and electro-chemical detectors, respectively. The expression of the Trx gene was quantified using reverse transcription followed by real-time polymerase chain reaction (RT-PCR). The results show that the level of LPO increased although the level of CoQ10 decreased both in homogenates and mitochondria in KA-treated rats However, melatonin co-treatment attenuated the level of LPO and partially restored the level of CoQ10. Melatonin co-treatment against KA did not affect the regulation of Trx. Finally, in the context of the decreased LPO and the increased CoQ10, the results suggest that melatonin may be protective against central nervous system pathologies involving excitotoxicity or where oxidative damage may contribute to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ayfer Yalcin
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
11
|
Miles MV, Horn PS, Morrison JA, Tang PH, DeGrauw T, Pesce AJ. Plasma coenzyme Q10 reference intervals, but not redox status, are affected by gender and race in self-reported healthy adults. Clin Chim Acta 2003; 332:123-32. [PMID: 12763289 DOI: 10.1016/s0009-8981(03)00137-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Abnormal concentrations of coenzyme Q(10) have been reported in many patient groups, including certain cardiovascular, neurological, hematological, neoplastic, renal, and metabolic diseases. However, controls in these studies are often limited in number, poorly screened, and inadequately evaluated statistically. The purpose of this study is to determine the reference intervals of plasma concentrations of ubiquinone-10, ubiquinol-10, and total coenzyme Q(10) for self-reported healthy adults. METHODS Adults (n=148), who were participants in the Princeton Prevalence Follow-up Study, were identified as healthy by questionnaire. Lipid profiles, ubiquinone-10, ubiquinol-10, and total coenzyme Q(10) concentrations were measured in plasma. The method used to determine the reference intervals is a procedure incorporating outlier detection followed by robust point estimates of the appropriate quantiles. RESULTS Significant differences between males and females were present for ubiquinol-10 and total coenzyme Q(10). Blacks had significantly higher Q(10) measures than whites in all cases except for the ubiquinol-10/total Q(10) fraction. CONCLUSIONS The fraction of ubiquinol-10/total coenzyme Q(10) is a tightly regulated measure in self-reported healthy adults, and is independent of sex and racial differences. Different reference intervals for certain coenzyme Q(10) measures may need to be established based upon sex and racial characteristics.
Collapse
Affiliation(s)
- Michael V Miles
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3030, USA.
| | | | | | | | | | | |
Collapse
|