1
|
Dixit A, Mehta R, Singh AK. Proteomics in Human Parkinson's Disease: Present Scenario and Future Directions. Cell Mol Neurobiol 2019; 39:901-915. [PMID: 31190159 DOI: 10.1007/s10571-019-00700-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is an age-related, threatening neurodegenerative disorder with no reliable treatment till date. Identification of specific and reliable biomarker is a major challenge for disease diagnosis and designing effective therapeutic strategy against it. PD pathology at molecular level involves abnormal expression and function of several proteins, including alpha-synuclein. These proteins affect the normal functioning of neurons through various post-translational modifications and interaction with other cellular components. The role of protein anomalies during PD pathogenesis can be better understood by the application of proteomics approach. A number of proteomic studies conducted on brain tissue, blood, and cerebrospinal fluid of PD patients have identified a wide array of protein alterations underlying disease pathogenesis. However, these studies are limited by the types of brain regions or biofluids utilized in the research. For a complete understanding of PD mechanism and discovery of reliable protein biomarkers, it is essential to analyze the proteome of different PD-associated brain regions and easily accessible biofluids such as saliva and urine. The present review summarizes the major advances in the field of PD research in humans utilizing proteomic techniques. Moreover, potential samples for proteomic analysis and limitations associated with the analyses of different types of samples have also been discussed.
Collapse
Affiliation(s)
- Anubhuti Dixit
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Rachna Mehta
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
2
|
Barek H, Veraksa A, Sugumaran M. Drosophila melanogaster has the enzymatic machinery to make the melanic component of neuromelanin. Pigment Cell Melanoma Res 2018; 31:683-692. [PMID: 29741814 DOI: 10.1111/pcmr.12709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 11/28/2022]
Abstract
In Drosophila, the same set of genes that are used for cuticle pigmentation and sclerotization are present in the nervous system and are responsible for neurotransmitter recycling. In this study, we carried out biochemical analysis to determine whether insects have the enzymatic machinery to make melanic component of neuromelanin. We focused our attention on two key enzymes of melanogenesis, namely phenoloxidase and dopachrome decarboxylase/tautomerase. Activity staining of the proteins isolated from the Drosophila larval brain tissue, separated by native polyacrylamide gel electrophoresis, indicated the presence of these two enzymes. Mass spectral sequence analysis of the band also supported this finding. To best of our knowledge, this is the first report on the presence of the enzymatic machinery to make melanin part of neuromelanin in any insect brain.
Collapse
Affiliation(s)
- Hanine Barek
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Manickam Sugumaran
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| |
Collapse
|
3
|
Biesemann C, Grønborg M, Luquet E, Wichert SP, Bernard V, Bungers SR, Cooper B, Varoqueaux F, Li L, Byrne JA, Urlaub H, Jahn O, Brose N, Herzog E. Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J 2014; 33:157-70. [PMID: 24413018 DOI: 10.1002/embj.201386120] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non-synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high-resolution biochemical analyses of specific synapse subpopulations. Employing knock-in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high-resolution biochemical analyses of specific synapse subpopulations in health and disease.
Collapse
Affiliation(s)
- Christoph Biesemann
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Fasano M, Lopiano L. α-synuclein and Parkinson’s disease: a proteomic view. Expert Rev Proteomics 2014; 5:239-48. [DOI: 10.1586/14789450.5.2.239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Tribl F, Meyer HE, Marcus K. Analysis of organelles within the nervous system: impact on brain and organelle functions. Expert Rev Proteomics 2014; 5:333-51. [DOI: 10.1586/14789450.5.2.333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
|
7
|
Kwon KH, Kim JY, Kim SY, Min HK, Lee HJ, Ji IJ, Kang T, Park GW, An HJ, Lee B, Ravid R, Ferrer I, Chung CK, Paik YK, Hancock WS, Park YM, Yoo JS. Chromosome 11-Centric Human Proteome Analysis of Human Brain Hippocampus Tissue. J Proteome Res 2013; 12:97-105. [DOI: 10.1021/pr3008368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyung-Hoon Kwon
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea,
| | - Jin Young Kim
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea,
| | - Se-Young Kim
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea,
| | - Hye Kyeong Min
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea,
| | - Hyoung-Joo Lee
- Yonsei Proteome Research Center, Yonsei University, Seoul, Republic of Korea,
| | - In Jung Ji
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea,
- Graduate School of Analytical Science
and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Taewook Kang
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea,
- Graduate School of Analytical Science
and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Gun Wook Park
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea,
- Graduate School of Analytical Science
and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science
and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Bonghee Lee
- Lee Gil Ya Center and Diabetes Institute, Gachon University, Incheon, Republic of Korea,
| | - Rivka Ravid
- Royal Dutch Academy of Sciences, Amsterdam,
The Netherlands
| | - Isidro Ferrer
- Institut de Neuropatologia,
Servei Anatomia Patològica, IDIBELL-Hospital Universitari de
Bellvitge, Universitat de Barcelona, Spain
| | - Chun Kee Chung
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University, Seoul, Republic of Korea,
| | - William S. Hancock
- Barnett Institute, Northeastern University, Boston, Massachusetts, United States
| | - Young Mok Park
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea,
- Graduate School of Analytical Science
and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Jong Shin Yoo
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang, Chungbuk, Republic of Korea,
- Graduate School of Analytical Science
and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Yadav S, Dixit A, Agrawal S, Singh A, Srivastava G, Singh AK, Srivastava PK, Prakash O, Singh MP. Rodent models and contemporary molecular techniques: notable feats yet incomplete explanations of Parkinson's disease pathogenesis. Mol Neurobiol 2012; 46:495-512. [PMID: 22736079 DOI: 10.1007/s12035-012-8291-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/13/2012] [Indexed: 12/20/2022]
Abstract
Rodent models and molecular tools, mainly omics and RNA interference, have been rigorously used to decode the intangible etiology and pathogenesis of Parkinson's disease (PD). Although convention of contemporary molecular techniques and multiple rodent models paved imperative leads in deciphering the role of putative causative factors and sequential events leading to PD, complete and clear-cut mechanisms of pathogenesis are still hard to pin down. The current article reviews the implications and pros and cons of rodent models and molecular tools in understanding the molecular and cellular bases of PD pathogenesis based on the existing literature. Probable rationales for short of comprehensive leads and future possibilities in spite of the extensive applications of molecular tools and rodent models have also been discussed.
Collapse
Affiliation(s)
- Sharawan Yadav
- CSIR-Indian Institute of Toxicology Research, Lucknow-226 001, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Caudle WM, Bammler TK, Lin Y, Pan S, Zhang J. Using 'omics' to define pathogenesis and biomarkers of Parkinson's disease. Expert Rev Neurother 2010; 10:925-42. [PMID: 20518609 DOI: 10.1586/ern.10.54] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although great effort has been put forth to uncover the complex molecular mechanisms exploited in the pathogenesis of Parkinson's disease, a satisfactory explanation remains to be discovered. The emergence of several -omics techniques, transcriptomics, proteomics and metabolomics, have been integral in confirming previously identified pathways that are associated with dopaminergic neurodegeneration and subsequently Parkinson's disease, including mitochondrial and proteasomal function and synaptic neurotransmission. Additionally, these unbiased techniques, particularly in the brain regions uniquely associated with the disease, have greatly enhanced our ability to identify novel pathways, such as axon-guidance, that are potentially involved in Parkinson's pathogenesis. A comprehensive appraisal of the results obtained by different -omics has also reconfirmed the increase in oxidative stress as a common pathway likely to be critical in Parkinson's development/progression. It is hoped that further integration of these techniques will yield a more comprehensive understanding of Parkinson's disease etiology and the biological pathways that mediate neurodegeneration.
Collapse
|
10
|
Zhang C. Proteomic Studies on the Development of the Central Nervous System and Beyond. Neurochem Res 2010; 35:1487-500. [DOI: 10.1007/s11064-010-0218-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2010] [Indexed: 11/27/2022]
|
11
|
Tribl F. Sub-proteome processing: isolation of neuromelanin granules from the human brain. Methods Mol Biol 2010; 566:95-107. [PMID: 20058167 DOI: 10.1007/978-1-59745-562-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The sub-proteome analysis of organelles is a field of high relevance for molecular biology, because it provides detailed insights into the protein composition of cellular compartments. This approach not only results in a catalogue of organellar proteins, but in fact holds the potential to uncover the enzymatic armament engaged in biochemical reactions and to identify novel mechanisms of organelle biogenic pathways. Knowledge about protein localization may be a first step towards extensive functional analyses of specific target proteins engaged in development, aging, or disease. Moreover, several disorders of the human brain include aberrant protein function in specific compartments. Thus, a closer look at cellular organelles will allow for advancing our current perceptions of pathogenic processes. This chapter aims to provide a methodological workflow given by the isolation of neuromelanin granules from the human midbrain. This approach encompasses several modular steps that can easily be adjusted to any other organelle of interest and follows the sequence of (1) organelle isolation, (2) isolation quality controls by transmission electron microscopy and Western immuno blotting, and (3) gel-based protein separation towards protein identification by mass spectrometry.
Collapse
Affiliation(s)
- Florian Tribl
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany.
| |
Collapse
|
12
|
Proteomics in human Parkinson's disease research. J Proteomics 2009; 73:10-29. [PMID: 19632367 DOI: 10.1016/j.jprot.2009.07.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/25/2009] [Accepted: 07/08/2009] [Indexed: 11/20/2022]
Abstract
During the last decades, considerable advances in the understanding of specific mechanisms underlying neurodegeneration in Parkinson's disease have been achieved, yet neither definite etiology nor unifying sequence of molecular events has been formally established. Current unmet needs in Parkinson's disease research include exploring new hypotheses regarding disease susceptibility, occurrence and progression, identifying reliable diagnostic, prognostic and therapeutic biomarkers, and translating basic research into appropriate disease-modifying strategies. The most popular view proposes that Parkinson's disease results from the complex interplay between genetic and environmental factors and mechanisms believed to be at work include oxidative stress, mitochondrial dysfunction, excitotoxicity, iron deposition and inflammation. More recently, a plethora of data has accumulated pinpointing an abnormal processing of the neuronal protein alpha-synuclein as a pivotal mechanism leading to aggregation, inclusions formation and degeneration. This protein-oriented scenario logically opens the door to the application of proteomic strategies to this field of research. We here review the current literature on proteomics applied to Parkinson's disease research, with particular emphasis on pathogenesis of sporadic Parkinson's disease in humans. We propose the view that Parkinson's disease may be an acquired or genetically-determined brain proteinopathy involving an abnormal processing of several, rather than individual neuronal proteins, and discuss some pre-analytical and analytical developments in proteomics that may help in verifying this concept.
Collapse
|
13
|
Tribl F, Asan E, Arzberger T, Tatschner T, Langenfeld E, Meyer HE, Bringmann G, Riederer P, Gerlach M, Marcus K. Identification of L-ferritin in neuromelanin granules of the human substantia nigra: a targeted proteomics approach. Mol Cell Proteomics 2009; 8:1832-8. [PMID: 19318681 DOI: 10.1074/mcp.m900006-mcp200] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the pigmented dopaminergic neurons of the human substantia nigra pars compacta the system relevant in iron storage is the polymer neuromelanin (NM). Although in most cells this function is mainly accomplished by ferritin, this protein complex appears not to be expressed in NM-containing neurons. Nevertheless the conceivable presence of iron-storing proteins as part of the NM granules has recently been discussed on the basis of Mössbauer spectroscopy and synchrotron x-ray microspectroscopy. Intriguingly by combining subcellular fractionation of NM granules, peptide sequencing via tandem mass spectrometry, and the additional confirmation by multiple reaction monitoring and immunogold labeling for electron microscopy, L-ferritin could now be unambiguously identified and localized in NM granules for the first time. This finding not only supports direct evidence for a regulatory role of L-ferritin in neuroectodermal cell pigmentation but also integrates a new player within a complicated network governing iron homeostasis in the dopamine neurons of the human substantia nigra. Thus our finding entails far reaching implications especially when considering etiopathogenetic aspects of Parkinson disease.
Collapse
Affiliation(s)
- Florian Tribl
- Clinic and Polyclinic for Psychiatry and Psychotherapy, Julius-Maximilians-Universität Würzburg, Füchsleinstrasse 15, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Savvateeva-Popova E, Medvedeva A, Popov A, Evgen'ev M. Role of non-coding RNAs in neurodegeneration and stress response in Drosophila. Biotechnol J 2008; 3:1010-21. [PMID: 18702036 DOI: 10.1002/biot.200800120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inherent limitations of genetic analysis in humans and other mammals as well as striking conservation of most genes controlling nervous system functioning in flies and mammals made Drosophila an attractive model to investigate various aspects of brain diseases. Since RNA research has made great progress in recent years here we present an overview of studies demonstrating the role of various non-coding RNAs in neurodegeneration and stress response in Drosophila as a model organism. We put special emphasis on the role of non-coding micro RNAs, hsr-omega transcripts, and artificial small highly structured RNAs as triggers of neuropathology including aggregates formation, cognitive abnormalities and other symptoms. Cellular stress is a conspicuous feature of many neurodegenerative diseases and the production of specialized proteins protects the nerve cells against aggregates formation. Therefore, herein we describe some data implicating various classes of non-coding RNAs in stress response in Drosophila. All these findings highlight Drosophila as an important model system to investigate various brain diseases potentially mediated by some non-coding RNAs including polyglutamine diseases, Alzheimer's disease, Huntigton's disease, and many others.
Collapse
|
15
|
Pienaar IS, Daniels WMU, Götz J. Neuroproteomics as a promising tool in Parkinson's disease research. J Neural Transm (Vienna) 2008; 115:1413-30. [PMID: 18523721 PMCID: PMC2862282 DOI: 10.1007/s00702-008-0070-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 05/14/2008] [Indexed: 12/21/2022]
Abstract
Despite the vast number of studies on Parkinson's disease (PD), its effective diagnosis and treatment remains unsatisfactory. Hence, the relentless search for an optimal cure continues. The emergence of neuroproteomics, with its sophisticated techniques and non-biased ability to quantify proteins, provides a methodology with which to study the changes in neurons that are associated with neurodegeneration. Neuroproteomics is an emerging tool to establish disease-associated protein profiles, while also generating a greater understanding as to how these proteins interact and undergo post-translational modifications. Furthermore, due to the advances made in bioinformatics, insight is created concerning their functional characteristics. In this review, we first summarize the most prominent proteomics techniques and then discuss the major advances in the fast-growing field of neuroproteomics in PD. Ultimately, it is hoped that the application of this technology will lead towards a presymptomatic diagnosis of PD, and the identification of risk factors and new therapeutic targets at which pharmacological intervention can be aimed.
Collapse
Affiliation(s)
- Ilse S Pienaar
- Department of Medical Physiology, University of Stellenbosch, Matieland, South Africa.
| | | | | |
Collapse
|
16
|
Non-coding RNA as a trigger of neuropathologic disorder phenotypes in transgenic Drosophila. J Neural Transm (Vienna) 2008; 115:1629-42. [PMID: 18779919 DOI: 10.1007/s00702-008-0078-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 06/01/2008] [Indexed: 10/21/2022]
Abstract
At most, many protein-misfolding diseases develop as environmentally induced sporadic disorders. Recent studies indicate that the dynamic interplay between a wide repertoire of noncoding RNAs and the environment play an important role in brain development and pathogenesis of brain disorders. To elucidate this new issue, novel animal models which reproduce the most prominent disease manifestations are required. For this, transgenic Drosophila strains were constructed to express small highly structured, non-coding RNA under control of a heat shock promoter. Expression of the RNA induced formation of intracellular aggregates revealed by Thioflafin T in embryonic cell culture and Congo Red in the brain of transgenic flies. Also, this strongly perturbed the brain control of locomotion monitored by the parameters of sound production and memory retention of young 5-day-old males. This novel model demonstrates that expression of non-coding RNA alone is sufficient to trigger neuropathology.
Collapse
|
17
|
Pinaud R, Mello CV, Velho TA, Wynne RD, Tremere LA. Detection of two mRNA species at single-cell resolution by double-fluorescence in situ hybridization. Nat Protoc 2008; 3:1370-9. [DOI: 10.1038/nprot.2008.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Schindler J, Lewandrowski U, Sickmann A, Friauf E. Aqueous Polymer Two-Phase Systems for the Proteomic Analysis of Plasma Membranes from Minute Brain Samples. J Proteome Res 2008; 7:432-42. [DOI: 10.1021/pr0704736] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Tribl F, Arzberger T, Riederer P, Gerlach M. Tyrosinase is not detected in human catecholaminergic neurons by immunohistochemistry and Western blot analysis. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:51-5. [PMID: 17982878 DOI: 10.1007/978-3-211-73574-9_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Catecholaminergic neurons of the primate substantia nigra (SN) pars compacta (SNc) and the locus coeruleus contain neuromelanin (NM) granules as characteristic structures underlying the pigmentation of these brain areas. Due to a phylogenetic appearance NM granules are absent in the rodent brain, but gradually become present in primates until they reach a maximal expression in humans. Although a possible mechanism of pigment formation may be autoxidation of the NM precursors dopamine or noradrenalin, several groups have suggested an enzymatic formation of NM mediated by tyrosinase or a related enzyme. Since tyrosinase mRNA is suggested to be expressed in the SN of mice and humans, we reinvestigated the expression of tyrosinase in the human SNc and the locus coeruleus at the protein level by immunohistochemistry and Western blot analysis, but could not detect tyrosinase in these brain regions.
Collapse
Affiliation(s)
- F Tribl
- Laboratory of Clinical Neurochemistry, Clinic and Policlinic for Psychiatry and Psychotherapy, Bayerische Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| | | | | | | |
Collapse
|
20
|
Fasano M, Bergamasco B, Lopiano L. The proteomic approach in Parkinson's disease. Proteomics Clin Appl 2007; 1:1428-35. [DOI: 10.1002/prca.200700264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Indexed: 12/26/2022]
|
21
|
Behan ÁT, Foy M, Wynne K, Clarke M, Sullivan M, Cotter DR, Maguire PB. Analysis of membrane microdomain-associated proteins in the insular cortex of post-mortem human brain. Proteomics Clin Appl 2007; 1:1324-31. [DOI: 10.1002/prca.200700047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Indexed: 12/26/2022]
|
22
|
Cañas B, Piñeiro C, Calvo E, López-Ferrer D, Gallardo JM. Trends in sample preparation for classical and second generation proteomics. J Chromatogr A 2007; 1153:235-58. [PMID: 17276441 DOI: 10.1016/j.chroma.2007.01.045] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 12/18/2006] [Accepted: 01/12/2007] [Indexed: 11/16/2022]
Abstract
Sample preparation is a fundamental step in the proteomics workflow. However, it is not easy to find compiled information updating this subject. In this paper, the strategies and protocols for protein extraction and identification, following either classical or second generation proteomics methodologies, are reviewed. Procedures for: tissue disruption, cell lysis, sample pre-fractionation, protein separation by 2-DE, protein digestion, mass spectrometry analysis, multidimensional peptide separations and quantification of protein expression level are described.
Collapse
Affiliation(s)
- Benito Cañas
- Dept. Química Analítica, Facultad de CC, Químicas, UCM, Av.Complutense s/n, Madrid 28040, Spain.
| | | | | | | | | |
Collapse
|
23
|
Eravci M, Fuxius S, Broedel O, Weist S, Eravci S, Mansmann U, Schluter H, Tiemann J, Baumgartner A. Improved comparative proteome analysis based on two-dimensional gel electrophoresis. Proteomics 2007; 7:513-523. [PMID: 17309096 DOI: 10.1002/pmic.200600648] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The purpose of this study was to test the extent to which differences in spot intensity can be reliably recognized between two groups of two-dimensional electrophoresis gels (pH 4-7, visualized with ruthenium fluorescent stain) each loaded with different amounts of protein from rat brain (power analysis). Initial experiments yielded only unsatisfactory results: 546 spots were matched from two groups of 6 gels each loaded with 200 microg and 250 microg protein, respectively. Only 72 spots were higher (p<0.05), while 58 spots were significantly lower in the 250-microg group. The construction of new apparatuses that allowed the simultaneous processing of 24 gels throughout all steps between rehydration and staining procedure considerably lowered the between-gel variation. This resulted in the detection of significant differences in spot intensities in 77-90% of all matched spots on gel groups with a 25% difference in protein load. This applied both when protein from 24 biological replicates was loaded onto two groups of 12 gels and when two pooled tissue samples were each loaded onto 6 gels. At a difference of 50% in protein load, more than 90% of all spots differed significantly between two experimental groups.
Collapse
Affiliation(s)
- Murat Eravci
- Department of Radiology and Nuclear Medicine (Radiochemistry), Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
- A+M Proteome Science, Berlin, Germany
| | - Sandra Fuxius
- Department of Radiology and Nuclear Medicine (Radiochemistry), Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
- A+M Proteome Science, Berlin, Germany
| | | | | | | | - Ulrich Mansmann
- Department of Medical Informatics, Biometry and Epidemiology, University of Munich, Germany
| | - Hartmut Schluter
- Department of Internal Medicine IV, Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - Joachim Tiemann
- Department of Internal Medicine IV, Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - Andreas Baumgartner
- Department of Radiology and Nuclear Medicine (Radiochemistry), Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
- A+M Proteome Science, Berlin, Germany
| |
Collapse
|
24
|
Tribl F, Marcus K, Meyer HE, Bringmann G, Gerlach M, Riederer P. Subcellular proteomics reveals neuromelanin granules to be a lysosome-related organelle. J Neural Transm (Vienna) 2006; 113:741-9. [PMID: 16755378 DOI: 10.1007/s00702-006-0452-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 02/24/2006] [Indexed: 11/25/2022]
Abstract
The powerful combination of subcellular fractionation and protein identification by electrospray ionization tandem mass spectrometry (ESI-MS/MS) pioneered the molecular elucidation of neuromelanin (NM) granules. We recently isolated NM granules from the human brain and succeeded in the establishment of the first protein profile of this compartment. NM granules are pigmented organelles, which are mainly found in the catecholaminergic neurons of the human substantia nigra (SN) pars compacta and the locus coeruleus. These granules contain the insoluble pigment NM, which is regarded as the most important iron storage system in these neurons. A global examination of NM granules, however, has so far been hampered due to the lack of a pigmented brain stem in rodents, the absence of an appropriate experimental system and their scarcity in the human brain. 'Subcellular proteomics', which increasingly emerges as the method of choice to characterize cellular compartments and to elucidate their biogenesis, has recently been shown to be an adequate approach to tackle a thorough description of NM granules. Thereby, NM granules could be described as a 'lysosome-related organelle'. This indicates a genetic program underlying a biogenesis of NM rather than its autoxidative formation.
Collapse
Affiliation(s)
- F Tribl
- National Parkinson Foundation (NPF) Research Laboratory, Miami, FL, USA.
| | | | | | | | | | | |
Collapse
|