1
|
Delli Colli C, Borgi M, Poggini S, Chiarotti F, Cirulli F, Penninx BWJH, Benedetti F, Vai B, Branchi I. Time moderates the interplay between 5-HTTLPR and stress on depression risk: gene x environment interaction as a dynamic process. Transl Psychiatry 2022; 12:274. [PMID: 35821204 PMCID: PMC9276704 DOI: 10.1038/s41398-022-02035-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
The serotonin-transporter-linked promoter region (5-HTTLPR) has been widely investigated as contributing to depression vulnerability. Nevertheless, empirical research provides wide contrasting findings regarding its involvement in the etiopathogenesis of the disorder. Our hypothesis was that such discrepancy can be explained considering time as moderating factor. We explored this hypothesis, exploiting a meta analytic approach. We searched PubMed, PsychoINFO, Scopus and EMBASE databases and 1096 studies were identified and screened, resulting in 22 studies to be included in the meta-analyses. The effect of the 5-HTTLPR x stress interaction on depression risk was found to be moderated by the following temporal factors: the duration of stress (i.e. chronic vs. acute) and the time interval between end of stress and assessment of depression (i.e. within 1 year vs. more than 1 year). When stratifying for the duration of stress, the effect of the 5-HTTLPR x stress interaction emerged only in the case of chronic stress, with a significant subgroup difference (p = 0.004). The stratification according to time interval revealed a significant interaction only for intervals within 1 year, though no difference between subgroups was found. The critical role of time interval clearly emerged when considering only chronic stress: a significant effect of the 5-HTTLPR and stress interaction was confirmed exclusively within 1 year and a significant subgroup difference was found (p = 0.01). These results show that the 5-HTTLPR x stress interaction is a dynamic process, producing different effects at different time points, and indirectly confirm that s-allele carriers are both at higher risk and more capable to recover from depression. Overall, these findings expand the current view of the interplay between 5-HTTLPR and stress adding the temporal dimension, that results in a three-way interaction: gene x environment x time.
Collapse
Affiliation(s)
- Claudia Delli Colli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
- PhD program in Pharmacology and Toxicology, Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Marta Borgi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Chiarotti
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
2
|
Sarrouilhe D, Defamie N, Mesnil M. Is the Exposome Involved in Brain Disorders through the Serotoninergic System? Biomedicines 2021; 9:1351. [PMID: 34680468 PMCID: PMC8533279 DOI: 10.3390/biomedicines9101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine acting as a neurotransmitter in the central nervous system (CNS), local mediator in the gut, and vasoactive agent in the blood. It has been linked to a variety of CNS functions and is implicated in many CNS and psychiatric disorders. The high comorbidity between some neuropathies can be partially understood by the fact that these diseases share a common etiology involving the serotoninergic system. In addition to its well-known functions, serotonin has been shown to be a mitogenic factor for a wide range of normal and tumor cells, including glioma cells, in vitro. The developing CNS of fetus and newborn is particularly susceptible to the deleterious effects of neurotoxic substances in our environment, and perinatal exposure could result in the later development of diseases, a hypothesis known as the developmental origin of health and disease. Some of these substances affect the serotoninergic system and could therefore be the source of a silent pandemic of neurodevelopmental toxicity. This review presents the available data that are contributing to the appreciation of the effects of the exposome on the serotoninergic system and their potential link with brain pathologies (neurodevelopmental, neurodegenerative, neurobehavioral disorders, and glioblastoma).
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 Rue de la Milétrie, Bât D1, TSA 51115, CEDEX 09, 86073 Poitiers, France
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| | - Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| |
Collapse
|
3
|
Leschik J, Lutz B, Gentile A. Stress-Related Dysfunction of Adult Hippocampal Neurogenesis-An Attempt for Understanding Resilience? Int J Mol Sci 2021; 22:7339. [PMID: 34298958 PMCID: PMC8305135 DOI: 10.3390/ijms22147339] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
| |
Collapse
|
4
|
D’Alessandro G, Lauro C, Quaglio D, Ghirga F, Botta B, Trettel F, Limatola C. Neuro-Signals from Gut Microbiota: Perspectives for Brain Glioma. Cancers (Basel) 2021; 13:2810. [PMID: 34199968 PMCID: PMC8200200 DOI: 10.3390/cancers13112810] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of glioma tumor in adult brain. Among the numerous factors responsible for GBM cell proliferation and invasion, neurotransmitters such as dopamine, serotonin and glutamate can play key roles. Studies performed in mice housed in germ-free (GF) conditions demonstrated the relevance of the gut-brain axis in a number of physiological and pathological conditions. The gut-brain communication is made possible by vagal/nervous and blood/lymphatic routes and pave the way for reciprocal modulation of functions. The gut microbiota produces and consumes a wide range of molecules, including neurotransmitters (dopamine, norepinephrine, serotonin, gamma-aminobutyric acid [GABA], and glutamate) that reach their cellular targets through the bloodstream. Growing evidence in animals suggests that modulation of these neurotransmitters by the microbiota impacts host neurophysiology and behavior, and affects neural cell progenitors and glial cells, along with having effects on tumor cell growth. In this review we propose a new perspective connecting neurotransmitter modulation by gut microbiota to glioma progression.
Collapse
Affiliation(s)
- Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (D.Q.); (F.G.); (B.B.)
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (G.D.); (C.L.); (F.T.)
| | - Cristina Limatola
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
- Department of Physiology and Pharmacology, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia, 00185 Rome, Italy
| |
Collapse
|
5
|
Wilson C, Rogers J, Chen F, Li S, Adlard PA, Hannan AJ, Renoir T. Exercise ameliorates aberrant synaptic plasticity without enhancing adult-born cell survival in the hippocampus of serotonin transporter knockout mice. Brain Struct Funct 2021; 226:1991-1999. [PMID: 34052925 DOI: 10.1007/s00429-021-02283-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 04/21/2021] [Indexed: 12/28/2022]
Abstract
Deficits in hippocampal cellular and synaptic plasticity are frequently associated with cognitive and mood disorders, and indeed common mechanisms of antidepressants are thought to involve neuroplastic processes. Here, we investigate hippocampal adult-born cell survival and synaptic plasticity (long-term potentiation, LTP, and long-term depression, LTD) in serotonin transporter (5-HTT) knockout (KO) mice. From 8 weeks of age, mice either continued in standard-housing conditions or were given access to voluntary running wheels for 1 month. Electrophysiology was performed on hippocampal slices to measure LTP and LTD, and immunohistochemistry was used to assess cell proliferation and subsequent survival in the dentate gyrus. The results revealed a reduced LTP in 5-HTT KO mice that was restored to wild-type (WT) levels after chronic exercise. While LTD appeared normal in 5-HTT KO, exercise decreased the magnitude of LTD in both WT and 5-HTT KO mice. Furthermore, although 5-HTT KO mice had normal hippocampal adult-born cell survival, they did not benefit from the pro-proliferative effects of exercise observed in WT animals. Taken together, these findings suggest that reduced 5-HTT expression is associated with significant alterations to functional neuroplasticity. Interestingly, 5-HTT appeared necessary for exercise-induced augmentation of adult-born hippocampal cell survival, yet exercise corrected the LTP impairment displayed by 5-HTT KO mice. Together, our findings further highlight the salience of serotonergic signalling in mediating the neurophysiological benefits of exercise.
Collapse
Affiliation(s)
- Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Jake Rogers
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Feng Chen
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Paul A Adlard
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.,Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
6
|
Ishimoto T, Kato Y. Regulation of Neurogenesis by Organic Cation Transporters: Potential Therapeutic Implications. Handb Exp Pharmacol 2021; 266:281-300. [PMID: 33782772 DOI: 10.1007/164_2021_445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurogenesis is the process by which new neurons are generated from neural stem cells (NSCs), which are cells that have the ability to proliferate and differentiate into neurons, astrocytes, and oligodendrocytes. The process is essential for homeostatic tissue regeneration and the coordination of neural plasticity throughout life, as neurons cannot regenerate once injured. Therefore, defects in neurogenesis are related to the onset and exacerbation of several neuropsychiatric disorders, and therefore, the regulation of neurogenesis is considered to be a novel strategy for treatment. Neurogenesis is regulated not only by NSCs themselves, but also by the functional microenvironment surrounding the NSCs, known as the "neurogenic niche." The neurogenic niche consists of several types of neural cells, including neurons, glial cells, and vascular cells. To allow communication with these cells, transporters may be involved in the secretion and uptake of substrates that are essential for signal transduction. This chapter will focus on the involvement of polyspecific solute carriers transporting organic cations in the possible regulation of neurogenesis by controlling the concentration of several organic cation substrates in NSCs and the neurogenic niche. The potential therapeutic implications of neurogenesis regulation by these transporters will also be discussed.
Collapse
Affiliation(s)
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
7
|
Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol 2020; 18:e3000585. [PMID: 31905199 PMCID: PMC6964913 DOI: 10.1371/journal.pbio.3000585] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/16/2020] [Accepted: 12/12/2019] [Indexed: 11/23/2022] Open
Abstract
It was recently suggested that supplying the brain with new neurons could counteract Alzheimer’s disease (AD). This provocative idea requires further testing in experimental models in which the molecular basis of disease-induced neuronal regeneration could be investigated. We previously found that zebrafish stimulates neural stem cell (NSC) plasticity and neurogenesis in AD and could help to understand the mechanisms to be harnessed for developing new neurons in diseased mammalian brains. Here, by performing single-cell transcriptomics, we found that amyloid toxicity-induced interleukin-4 (IL4) promotes NSC proliferation and neurogenesis by suppressing the tryptophan metabolism and reducing the production of serotonin. NSC proliferation was suppressed by serotonin via down-regulation of brain-derived neurotrophic factor (BDNF)-expression in serotonin-responsive periventricular neurons. BDNF enhances NSC plasticity and neurogenesis via nerve growth factor receptor A (NGFRA)/ nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFkB) signaling in zebrafish but not in rodents. Collectively, our results suggest a complex neuron-glia interaction that regulates regenerative neurogenesis after AD conditions in zebrafish. Can regeneration of lost neurons counteract neurodegenerative disease? This study shows that serotonergic neurons alter neural stem cell proliferation and neurogenesis via a complex neuron-glia interaction involving interleukin-4, BDNF and NGF receptor in a zebrafish model of Alzheimer's disease.
Collapse
|
8
|
Caragher SP, Hall RR, Ahsan R, Ahmed AU. Monoamines in glioblastoma: complex biology with therapeutic potential. Neuro Oncol 2019; 20:1014-1025. [PMID: 29126252 DOI: 10.1093/neuonc/nox210] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is characterized by extremely poor prognoses, despite the use of gross surgical resection, alkylating chemotherapeutic agents, and radiotherapy. Evidence increasingly highlights the role of the tumor microenvironment in enabling this aggressive phenotype. Despite this interest, the role of neurotransmitters, brain-specific messengers underlying synaptic transmission, remains murky. These signaling molecules influence a complex network of molecular pathways and cellular behaviors in many CNS-resident cells, including neural stem cells and progenitor cells, neurons, and glia cells. Critically, available data convincingly demonstrate that neurotransmitters can influence proliferation, quiescence, and differentiation status of these cells. This ability to affect progenitors and glia-GBM-initiating cells-and their availability in the CNS strongly support the notion that neurotransmitters participate in the onset and progression of GBM. This review will focus on dopamine and serotonin, as studies indicate they contribute to gliomagenesis. Particular attention will be paid to how these neurotransmitters and their receptors can be utilized as novel therapeutic targets. Overall, this review will analyze the complex biology governing the interaction of GBM with neurotransmitter signaling and highlight how this interplay shapes the aggressive nature of GBM.
Collapse
Affiliation(s)
- Seamus Patrick Caragher
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Riasat Ahsan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
9
|
Rogers J, Chen F, Stanic D, Farzana F, Li S, Zeleznikow-Johnston AM, Nithianantharajah J, Churilov L, Adlard PA, Lanfumey L, Hannan AJ, Renoir T. Paradoxical effects of exercise on hippocampal plasticity and cognition in mice with a heterozygous null mutation in the serotonin transporter gene. Br J Pharmacol 2019; 176:3279-3296. [PMID: 31167040 DOI: 10.1111/bph.14760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Exercise is known to improve cognitive function, but the exact synaptic and cellular mechanisms remain unclear. We investigated the potential role of the serotonin (5-HT) transporter (SERT) in mediating these effects. EXPERIMENTAL APPROACH Hippocampal long-term potentiation (LTP) and neurogenesis were measured in standard-housed and exercising (wheel running) wild-type (WT) and SERT heterozygous (HET) mice. We also assessed hippocampal-dependent cognition using the Morris water maze (MWM) and a spatial pattern separation touchscreen task. KEY RESULTS SERT HET mice had impaired hippocampal LTP regardless of the housing conditions. Exercise increased hippocampal neurogenesis in WT mice. However, this was not observed in SERT HET animals, even though both genotypes used the running wheels to a similar extent. We also found that standard-housed SERT HET mice displayed altered cognitive flexibility than WT littermate controls in the MWM reversal learning task. However, SERT HET mice no longer exhibited this phenotype after exercise. Cognitive changes, specific to SERT HET mice in the exercise condition, were also revealed on the touchscreen spatial pattern separation task, especially when the cognitive pattern separation load was at its highest. CONCLUSIONS AND IMPLICATIONS Our study is the first evidence of reduced hippocampal LTP in SERT HET mice. We also show that functional SERT is required for exercise-induced increase in adult neurogenesis. Paradoxically, exercise had a negative impact on hippocampal-dependent cognitive tasks, especially in SERT HET mice. Taken together, our results suggest unique complex interactions between exercise and altered 5-HT homeostasis.
Collapse
Affiliation(s)
- Jake Rogers
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Feng Chen
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Davor Stanic
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Farheen Farzana
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Ariel M Zeleznikow-Johnston
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Jess Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia.,School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, VIC, Australia
| | - Paul A Adlard
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Laurence Lanfumey
- UMR S894, Université Paris Descartes, Paris, France.,Centre de Psychiatrie et Neurosciences, Inserm UMR 894, Paris, France
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Tolahunase MR, Sagar R, Dada R. 5-HTTLPR and MTHFR 677C>T polymorphisms and response to yoga-based lifestyle intervention in major depressive disorder: A randomized active-controlled trial. Indian J Psychiatry 2018; 60:410-426. [PMID: 30581206 PMCID: PMC6278208 DOI: 10.4103/psychiatry.indianjpsychiatry_398_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is growing evidence suggesting that both genetic and environmental factors modulate treatment outcome in, a highly heterogeneous, major depressive disorder (MDD). 5-HTTLPR variant of the serotonin transporter gene (SLC6A4) and MTHFR 677C>T polymorphisms have been linked to the pathogenesis of MDD, and antidepressant treatment response. The evidence is lacking on the clinical utility of yoga in patients with MDD who have 5-HTTLPR and MTHFR 677C>T polymorphisms and less likely to respond to medications (SSRIs). AIMS We aimed to examine the impact of YBLI in those who have susceptible 5-HTTLPR and MTHFR 677C>T polymorphisms and are less likely to drug therapy with SSRIs. SETTINGS AND DESIGN In a 12 week randomized active-controlled trial, MDD patients (n = 178) were randomized to receive YBLI or drug therapy. METHODS Genotyping was conducted using PCR-based methods. The clinical remission was defined as BDI-II score ≤ 9. STATISTICAL ANALYSIS USED An intent-to-treat analysis was performed, and the association of genotype with treatment remission consisted of the logistic regression model. A P value of <0.05 was considered statistically significant. RESULTS Multivariate logistic regression models for remission including either 5-HTTLPR or MTHFR 677C>T genotypes showed statistically significant odds of remission in YOGA arm vs. DRUG arm. Neither 5-HTTLPR nor MTHFR 677C>T genotype showed any influence on remission to YBLI (P = 0.73 and P = 0.64, respectively). Further analysis showed childhood adversity interact with 5-HTTLPR and MTHFR 677C>T polymorphisms to decrease treatment response in DRUG treatment arm, but not in YOGA arm. CONCLUSIONS YBLI provides MDD remission in those who have susceptible 5-HTTLPR and MTHFR 677C>T polymorphisms and are resistant to SSRIs treatment. YBLI may be therapeutic for MDD independent of heterogeneity in its etiopathogenesis.
Collapse
Affiliation(s)
- Madhuri R Tolahunase
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Sagar
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Department of Anatomy, Lab for Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Baptista P, Andrade JP. Adult Hippocampal Neurogenesis: Regulation and Possible Functional and Clinical Correlates. Front Neuroanat 2018; 12:44. [PMID: 29922131 PMCID: PMC5996050 DOI: 10.3389/fnana.2018.00044] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/11/2018] [Indexed: 01/19/2023] Open
Abstract
The formation of new neurons in the adult central nervous system (CNS) has been recognized as one of the major findings in neuroanatomical research. The hippocampal formation (HF), one of the main targets of these investigations, holds a neurogenic niche widely recognized among several mammalian species and whose existence in the human brain has sparked controversy and extensive debate. Many cellular features from this region emphasize that hippocampal neurogenesis suffers changes with normal aging and, among regulatory factors, physical exercise and chronic stress provoke opposite effects on cell proliferation, maturation and survival. Considering the numerous functions attributable to the HF, increasing or decreasing the integration of new neurons in the delicate neuronal network might be significant for modulation of cognition and emotion. The role that immature and mature adult-born neurons play in this circuitry is still mostly unknown but it could prove fundamental to understand hippocampal-dependent cognitive processes, the pathophysiology of depression, and the therapeutic effects of antidepressant medication in modulating behavior and mental health.
Collapse
Affiliation(s)
- Pedro Baptista
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine of University of Porto, Porto, Portugal
| | - José P Andrade
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine of University of Porto, Porto, Portugal.,Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine of University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Song NN, Huang Y, Yu X, Lang B, Ding YQ, Zhang L. Divergent Roles of Central Serotonin in Adult Hippocampal Neurogenesis. Front Cell Neurosci 2017; 11:185. [PMID: 28713247 PMCID: PMC5492328 DOI: 10.3389/fncel.2017.00185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
The central serotonin (5-HT) system is the main target of selective serotonin reuptake inhibitors (SSRIs), the first-line antidepressants widely used in current general practice. One of the prominent features of chronic SSRI treatment in rodents is the enhanced adult neurogenesis in the hippocampus, which has been proposed to contribute to antidepressant effects. Therefore, tremendous effort has been made to decipher how central 5-HT regulates adult hippocampal neurogenesis. In this paper, we review how changes in the central serotonergic system alter adult hippocampal neurogenesis. We focus on data obtained from three categories of genetically engineered mouse models: (1) mice with altered central 5-HT levels from embryonic stages, (2) mice with deletion of 5-HT receptors from embryonic stages, and (3) mice with altered central 5-HT system exclusively in adulthood. These recent findings provide unique insights to interpret the multifaceted roles of central 5-HT on adult hippocampal neurogenesis and its associated effects on depression.
Collapse
Affiliation(s)
- Ning-Ning Song
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Xin Yu
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Bing Lang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China.,Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South UniversityChangsha, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| |
Collapse
|
13
|
Enhanced dendritic morphogenesis of adult hippocampal newborn neurons in central 5-HT-deficient mice. Stem Cell Res 2017; 19:6-11. [DOI: 10.1016/j.scr.2016.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/24/2016] [Accepted: 12/09/2016] [Indexed: 11/20/2022] Open
|
14
|
Li M, Huang L, Wang J, Su B, Luo XJ. No association between schizophrenia susceptibility variants and macroscopic structural brain volume variation in healthy subjects. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:160-8. [PMID: 26437209 DOI: 10.1002/ajmg.b.32387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/25/2015] [Indexed: 01/21/2023]
Abstract
Previous studies have suggested that genetic variants for schizophrenia susceptibility might contribute to structural brain volume variations in schizophrenia patients, including total brain volume, hippocampal volume, and amygdalar volume. However, whether these schizophrenia susceptibility variants are associated with macroscopic structural brain volume (i.e., intracranial volume, total brain volume, and hippocampal volume) in healthy subjects is still unclear. In this study, we investigated the associations between 47 schizophrenia susceptibility variants (from 25 well-characterized schizophrenia susceptibility genes) and cranial volume variation in a healthy Chinese sample (N = 1,013). We also extracted the association between these 47 schizophrenia risk variants and the macroscopic structural brain volume (intracranial volume, total brain volume and hippocampal volume) in a large healthy sample of European ancestry (ENIGMA sample, N = 5,775). We identified several single-nucleotide polymorphisms (SNPs) nominally associated with intracranial volume, total brain volume, and hippocampal volume at P < 0.05 (uncorrected). However, after Bonferroni corrections for multiple testing, no SNP showed significant association. Hence, our results do not support previous observations that schizophrenia susceptibility variants are associated with brain structure (e.g., hippocampal volume) in healthy individuals, and indicate that single schizophrenia risk variant may not contribute significantly to macroscopic brain structure (e.g., intracranial volume or hippocampal volume) variation in healthy subjects.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Liang Huang
- First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinkai Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
15
|
Reducing central serotonin in adulthood promotes hippocampal neurogenesis. Sci Rep 2016; 6:20338. [PMID: 26839004 PMCID: PMC4738271 DOI: 10.1038/srep20338] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic administration of selective serotonin reuptake inhibitors (SSRIs), which up-regulates central serotonin (5-HT) system function, enhances adult hippocampal neurogenesis. However, the relationship between central 5-HT system and adult neurogenesis has not fully been understood. Here, we report that lowering 5-HT level in adulthood is also able to enhance adult hippocampal neurogenesis. We used tamoxifen (TM)-induced Cre in Pet1-CreERT2 mice to either deplete central serotonergic (5-HTergic) neurons or inactivate 5-HT synthesis in adulthood and explore the role of central 5-HT in adult hippocampal neurogenesis. A dramatic increase in hippocampal neurogenesis is present in these two central 5-HT-deficient mice and it is largely prevented by administration of agonist for 5-HTR2c receptor. In addition, the survival of new-born neurons in the hippocampus is enhanced. Furthermore, the adult 5-HT-deficient mice showed reduced depression-like behaviors but enhanced contextual fear memory. These findings demonstrate that lowering central 5-HT function in adulthood can also enhance adult hippocampal neurogenesis, thus revealing a new aspect of central 5-HT in regulating adult neurogenesis.
Collapse
|
16
|
Wolf K, Braun A, Haining EJ, Tseng YL, Kraft P, Schuhmann MK, Gotru SK, Chen W, Hermanns HM, Stoll G, Lesch KP, Nieswandt B. Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice. PLoS One 2016; 11:e0147664. [PMID: 26800051 PMCID: PMC4723080 DOI: 10.1371/journal.pone.0147664] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. OBJECTIVE To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. METHODS 5-HT transporter knockout mice (5Htt-/-) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. RESULTS In 5Htt-/- platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca2+ entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt-/- platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt-/- mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt-/- mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. CONCLUSION Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization.
Collapse
Affiliation(s)
- Karen Wolf
- Institute of Experimental Biomedicine, University Hospital of Würzburg, Würzburg, Germany
| | - Attila Braun
- Institute of Experimental Biomedicine, University Hospital of Würzburg, Würzburg, Germany
- * E-mail: (BN); (AB)
| | - Elizabeth J. Haining
- Institute of Experimental Biomedicine, University Hospital of Würzburg, Würzburg, Germany
| | - Yu-Lun Tseng
- Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Peter Kraft
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | | | - Sanjeev K. Gotru
- Institute of Experimental Biomedicine, University Hospital of Würzburg, Würzburg, Germany
| | - Wenchun Chen
- Institute of Experimental Biomedicine, University Hospital of Würzburg, Würzburg, Germany
| | - Heike M. Hermanns
- Department of Medical Clinic and Policlinic II, Hepatology, University Hospital of Würzburg, Würzburg, Germany
| | - Guido Stoll
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Department of Molecular Psychiatry, University Hospital of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
- * E-mail: (BN); (AB)
| |
Collapse
|
17
|
Apple DM, Fonseca RS, Kokovay E. The role of adult neurogenesis in psychiatric and cognitive disorders. Brain Res 2016; 1655:270-276. [PMID: 26801829 DOI: 10.1016/j.brainres.2016.01.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/15/2015] [Accepted: 01/13/2016] [Indexed: 12/23/2022]
Abstract
Neurogenesis in mammals occurs throughout life in two brain regions: the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Development and regulation of the V-SVZ and SGZ is unique to each brain region, but with several similar characteristics. Alterations to the production of new neurons in neurogenic regions have been linked to psychiatric and neurodegenerative disorders. Decline in neurogenesis in the SGZ correlates with affective and psychiatric disorders, and can be reversed by antidepressant and antipsychotic drugs. Likewise, neurogenesis in the V-SVZ can also be enhanced by antidepressant drugs. The regulation of neurogenesis by neurotransmitters, particularly monoamines, in both regions suggests that aberrant neurotransmitter signaling observed in psychiatric disease may play a role in the pathology of these mental health disorders. Similarly, the cognitive deficits that accompany neurodegenerative disease may also be exacerbated by decreased neurogenesis. This review explores the regulation and function of neural stem cells in rodents and humans, and the involvement of factors that contribute to psychiatric and cognitive deficits. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry.
Collapse
Affiliation(s)
- Deana M Apple
- University of Texas Health Science Center at San Antonio, Department of Cellular and Structural Biology, 7703, Floyd Curl Drive, San Antonio, TX 78229, United States.
| | - Rene Solano Fonseca
- University of Texas Health Science Center at San Antonio, Department of Cellular and Structural Biology, 7703, Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Erzsebet Kokovay
- University of Texas Health Science Center at San Antonio, Department of Cellular and Structural Biology, 7703, Floyd Curl Drive, San Antonio, TX 78229, United States
| |
Collapse
|
18
|
The role of serotonin in adult hippocampal neurogenesis. Behav Brain Res 2014; 277:49-57. [PMID: 25125239 DOI: 10.1016/j.bbr.2014.07.038] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 12/17/2022]
Abstract
Serotonin is probably best known for its role in conveying a sense of contentedness and happiness. It is one of the most unique and pharmacologically complex monoamines in both the peripheral and central nervous system (CNS). Serotonin has become in focus of interest for the treatment of depression with multiple serotonin-mimetic and modulators of adult neurogenesis used clinically. Here we will take a broad view of serotonin from development to its physiological role as a neurotransmitter and its contribution to homeostasis of the adult rodent hippocampus. This chapter reflects the most significant findings on cellular and molecular mechanisms from neuroscientists in the field over the last two decades. We illustrate the action of serotonin by highlighting basic receptor targeting studies, and how receptors impact brain function. We give an overview of recent genetically modified mouse models that differ in serotonin availability and focus on the role of the monoamine in antidepressant response. We conclude with a synthesis of the most recent data surrounding the role of serotonin in activity and hippocampal neurogenesis. This synopsis sheds light on the mechanisms and potential therapeutic model by which serotonin plays a critical role in the maintenance of mood.
Collapse
|
19
|
Karabeg MM, Grauthoff S, Kollert SY, Weidner M, Heiming RS, Jansen F, Popp S, Kaiser S, Lesch KP, Sachser N, Schmitt AG, Lewejohann L. 5-HTT deficiency affects neuroplasticity and increases stress sensitivity resulting in altered spatial learning performance in the Morris water maze but not in the Barnes maze. PLoS One 2013; 8:e78238. [PMID: 24167611 PMCID: PMC3805519 DOI: 10.1371/journal.pone.0078238] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/11/2013] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in naïve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised alertness, possibly impeding optimal learning performance in the more stressful WM.
Collapse
Affiliation(s)
- Margherita M. Karabeg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Sandra Grauthoff
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Sina Y. Kollert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Magdalena Weidner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Rebecca S. Heiming
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Friederike Jansen
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Sandy Popp
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Sylvia Kaiser
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Norbert Sachser
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Angelika G. Schmitt
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Lars Lewejohann
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
20
|
Berg DA, Belnoue L, Song H, Simon A. Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development 2013; 140:2548-61. [PMID: 23715548 DOI: 10.1242/dev.088005] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It was long thought that no new neurons are added to the adult brain. Similarly, neurotransmitter signaling was primarily associated with communication between differentiated neurons. Both of these ideas have been challenged, and a crosstalk between neurogenesis and neurotransmitter signaling is beginning to emerge. In this Review, we discuss neurotransmitter signaling as it functions at the intersection of stem cell research and regenerative medicine, exploring how it may regulate the formation of new functional neurons and outlining interactions with other signaling pathways. We consider evolutionary and cross-species comparative aspects, and integrate available results in the context of normal physiological versus pathological conditions. We also discuss the potential role of neurotransmitters in brain size regulation and implications for cell replacement therapies.
Collapse
Affiliation(s)
- Daniel A Berg
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
21
|
Berumen LC, Rodríguez A, Miledi R, García-Alcocer G. Serotonin receptors in hippocampus. ScientificWorldJournal 2012; 2012:823493. [PMID: 22629209 PMCID: PMC3353568 DOI: 10.1100/2012/823493] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/08/2011] [Indexed: 11/21/2022] Open
Abstract
Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system.
Collapse
Affiliation(s)
- Laura Cristina Berumen
- Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas, Querétaro 76010, Mexico
| | | | | | | |
Collapse
|
22
|
Benninghoff J, van der Ven A, Schloesser RJ, Moessner R, Möller HJ, Rujescu D. The complex role of the serotonin transporter in adult neurogenesis and neuroplasticity. A critical review. World J Biol Psychiatry 2012; 13:240-7. [PMID: 22409535 DOI: 10.3109/15622975.2011.640941] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Studies on the serotonin transporter (SERT) with regard to neurogenesis and neuroplastic effects on the adult brain are scarce. This is intriguing since neurogenesis is believed to play a decisive role in modulating the effect of selective serotonin reuptake inhibitors (SSRI), which are targeting SERT. METHODS Therefore, we reviewed the current scientific literature about the influence of serotonin on neurogenesis with particular emphasis on SERT in various settings, both in vivo and in vitro. RESULTS Experiments using SERT KO (knock-out) animal models showed that SERT does not directly or indirectly influence neurogenesis in vitro, whereas compensatory mechanism seem to participate in vivo. CONCLUSION At least with regard to adult neural stem cells, the impact of serotonin (5-HT) on neuroplasticity and neurogenesis is not due to SERT-mediated effcts. Instead, serotonergic fine-tuning may be exerted by a number of other different mechanisms including endogenous production of 5-HT in adult neural stem cells, uptake of 5-HT into adult neural stem cells by other monoamine transporters, and actions of the 5-HT1A receptors present on these cells.
Collapse
Affiliation(s)
- Jens Benninghoff
- Department of Psychiatry, LMU-University of Munich, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
The double edged sword of neural plasticity: increasing serotonin levels leads to both greater vulnerability to depression and improved capacity to recover. Psychoneuroendocrinology 2011; 36:339-51. [PMID: 20875703 DOI: 10.1016/j.psyneuen.2010.08.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/27/2010] [Accepted: 08/29/2010] [Indexed: 12/21/2022]
Abstract
Major depression is a chronic, recurring and potentially life-threatening illness that affects up to 10% of the population worldwide. Pharmacological and genetic studies highlight the serotonergic system as being a key player in the disorder. However, despite drugs designed to boost serotonin transmission represent the first line of therapy for depression, the role of this system still remains elusive. Here, I propose a new theoretical framework, the undirected susceptibility to change model, potentially accounting for the experimental and clinical results concerning the role of this neurotransmitter in depression. Since the capacity of the individual to change its physiology and behavior according to the environment is dependent on neural plasticity which, in turn, is controlled by serotonin, I assume that changes in the levels of serotonin affect the sensitivity to the environment. Consequently, the undirected susceptibility to change model predicts that an increase of serotonin levels, for instance induced through selective serotonin reuptake inhibitor (SSRI) administration, does not affect mood per se, but--acting as a catalyzer--enhances neural plasticity and, thus, the effects of the environment on mood. However, since the environment can be either supportive or adverse, its effects can be beneficial or detrimental. Therefore enhancing the serotonin system can increase the likelihood both of developing the psychopathology and recovering from it. This model, on the one hand, suggests an explanation for the limited SSRI efficacy described in clinical studies and allows apparently contradictory data to be reconciled; on the other, it describes neural plasticity as a double edged sword that, according to the quality of the environment, may have either positive or negative consequences.
Collapse
|
24
|
Jacobsen KX, Czesak M, Deria M, Le François B, Albert PR. Region-specific regulation of 5-HT1A receptor expression by Pet-1-dependent mechanisms in vivo. J Neurochem 2011; 116:1066-76. [PMID: 21182526 PMCID: PMC4540595 DOI: 10.1111/j.1471-4159.2010.07161.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) neurotransmission is negatively regulated by 5-HT1A autoreceptors on raphe neurons, and is implicated in mood disorders. Pet-1/FEV is an ETS transcription factor expressed exclusively in serotonergic neurons and is essential for serotonergic differentiation, although its regulation of 5-HT receptors has not yet been studied. Here, we show by electrophoretic mobility shift assay that recombinant human Pet-1/FEV binds directly to multiple Pet-1 elements of the human 5-HT1A receptor promoter to enhance its transcriptional activity. In luciferase reporter assays, mutational analysis indicated that while several sites contribute, the Pet-1 site at -1406 bp had the greatest effect on 5-HT1A promoter activity. To address the effect of Pet-1 on 5-HT1A receptor regulation in vivo, we compared the expression of 5-HT1A receptor RNA and protein in Pet-1 null and wild-type littermate mice. In the raphe nuclei of Pet-1-/- mice tryptophan hydroxylase 2 (TPH2) RNA, and 5-HT and TPH immunostaining were greatly reduced, indicating a deficit in 5-HT production. Raphe 5-HT1A RNA and protein levels were also reduced in Pet-1-deficient mice, consistent with an absence of Pet-1-mediated transcriptional enhancement of 5-HT1A autoreceptors in serotonergic neurons. Interestingly, 5-HT1A receptor expression was up-regulated in the hippocampus, but down-regulated in the striatum and cortex. These data indicate that, in addition to transcriptional regulation by Pet-1 in raphe neurons, 5-HT1A receptor expression is regulated indirectly by alterations in 5-HT neurotransmission in a region-specific manner that together may contribute to the aggressive/anxiety phenotype observed in Pet-1 null mice.
Collapse
Affiliation(s)
- Kristen X. Jacobsen
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Margaret Czesak
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mariam Deria
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Brice Le François
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Paul R. Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Benninghoff J, Gritti A, Rizzi M, Lamorte G, Schloesser RJ, Schmitt A, Robel S, Genius J, Moessner R, Riederer P, Manji HK, Grunze H, Rujescu D, Moeller HJ, Lesch KP, Vescovi AL. Serotonin depletion hampers survival and proliferation in neurospheres derived from adult neural stem cells. Neuropsychopharmacology 2010; 35:893-903. [PMID: 20010549 PMCID: PMC3055363 DOI: 10.1038/npp.2009.181] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serotonin (5-HT) and the serotonergic system have recently been indicated as modulators of adult hippocampal neurogenesis. In this study, we evaluated the role of 5-HT on the functional features in neurospheres derived from adult neural stem cells (ANSC). We cultured neurospheres derived from mouse hippocampus in serum-free medium containing epidermal (EGF) and type-2 fibroblast growth factor (FGF2). Under these conditions ANSC expressed both isoforms of tryptophane-hydroxylase (TPH) and produced 5-HT. Blocking TPH function by para-chlorophenylalanine (PCPA) reduced ANSC proliferation, which was rescued by exogenous 5-HT. 5-HT action on ANSC was mediated predominantly by the serotonin receptor subtype 5-HT1A and, to a lesser extent, through the 5-HT2C (receptor) subtype, as shown by selectively antagonizing these receptors. Finally, we documented a 5-HT-induced increase of ANSC migration activity. In summary, we demonstrated a powerful serotonergic impact on ANSC functional features, which was mainly mediated by 5-HT1A receptors.
Collapse
Affiliation(s)
- Jens Benninghoff
- S. Raffaele Scientific Institute, Stem Cell Research Institute (HSR-SCRI), Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Exploring stem cells is a fascinating task, especially in a discipline where the use of stem cells seems far-fetched at first glance, as is the case in psychiatry. In this article we would like to provide a brief overview of the current situation in relation to the treatment of mental diseases. For reasons that we will explain, this review will focus on affective disorders. The following section will give a more detailed account of stem-cell biology including current basic science approaches presenting in-vivo and in-vitro techniques. The final part will then look into future perspectives of using these stem cells to cure mental illnesses, and discuss the related challenges and opportunities.
Collapse
Affiliation(s)
- Jens Benninghoff
- Department of Psychiatry, Ludwig-Maximilian University, Munich, Germany.
| |
Collapse
|
27
|
Murphy DL, Fox MA, Timpano KR, Moya PR, Ren-Patterson R, Andrews AM, Holmes A, Lesch KP, Wendland JR. How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology 2008; 55:932-60. [PMID: 18824000 PMCID: PMC2730952 DOI: 10.1016/j.neuropharm.2008.08.034] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 08/15/2008] [Accepted: 08/15/2008] [Indexed: 12/19/2022]
Abstract
Discovered and crystallized over sixty years ago, serotonin's important functions in the brain and body were identified over the ensuing years by neurochemical, physiological and pharmacological investigations. This 2008 M. Rapport Memorial Serotonin Review focuses on some of the most recent discoveries involving serotonin that are based on genetic methodologies. These include examples of the consequences that result from direct serotonergic gene manipulation (gene deletion or overexpression) in mice and other species; an evaluation of some phenotypes related to functional human serotonergic gene variants, particularly in SLC6A4, the serotonin transporter gene; and finally, a consideration of the pharmacogenomics of serotonergic drugs with respect to both their therapeutic actions and side effects. The serotonin transporter (SERT) has been the most comprehensively studied of the serotonin system molecular components, and will be the primary focus of this review. We provide in-depth examples of gene-based discoveries primarily related to SLC6A4 that have clarified serotonin's many important homeostatic functions in humans, non-human primates, mice and other species.
Collapse
Affiliation(s)
- Dennis L Murphy
- Laboratory of Clinical Science, NIMH Intramural Research Program, NIH, Building 10, Room 3D41, 10 Center Drive, MSC 1264, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Balu DT, Lucki I. Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 2008; 33:232-52. [PMID: 18786562 DOI: 10.1016/j.neubiorev.2008.08.007] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 12/28/2022]
Abstract
It is now well established that the mammalian brain has the capacity to produce new neurons into adulthood. One such region that provides the proper milieu to sustain progenitor cells and is permissive to neuronal fate determination is located in the dentate gyrus of the hippocampus. This review will discuss in detail the complex process of adult hippocampal neurogenesis, including proliferation, differentiation, survival, and incorporation into neuronal networks. The regulation of this phenomenon by a number of factors is described, including neurotransmitter systems, growth factors, paracrine signaling molecules, neuropeptides, transcription factors, endogenous psychotropic systems, sex hormones, stress, and others. This review also addresses the functional significance of adult born hippocampal granule cells with regard to hippocampal circuitry dynamics and behavior. Furthermore, the relevance of perturbations in adult hippocampal neurogenesis to the pathophysiology of various disease states, including depression, schizophrenia, epilepsy, and diabetes are examined. Finally, this review discusses the potential of using hippocampal neurogenesis as a therapeutic target for these disorders.
Collapse
Affiliation(s)
- Darrick T Balu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|