1
|
Pascarella A, Manzo L, Ferlazzo E. Modern neurophysiological techniques indexing normal or abnormal brain aging. Seizure 2024:S1059-1311(24)00194-8. [PMID: 38972778 DOI: 10.1016/j.seizure.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Brain aging is associated with a decline in cognitive performance, motor function and sensory perception, even in the absence of neurodegeneration. The underlying pathophysiological mechanisms remain incompletely understood, though alterations in neurogenesis, neuronal senescence and synaptic plasticity are implicated. Recent years have seen advancements in neurophysiological techniques such as electroencephalography (EEG), magnetoencephalography (MEG), event-related potentials (ERP) and transcranial magnetic stimulation (TMS), offering insights into physiological and pathological brain aging. These methods provide real-time information on brain activity, connectivity and network dynamics. Integration of Artificial Intelligence (AI) techniques promise as a tool enhancing the diagnosis and prognosis of age-related cognitive decline. Our review highlights recent advances in these electrophysiological techniques (focusing on EEG, ERP, TMS and TMS-EEG methodologies) and their application in physiological and pathological brain aging. Physiological aging is characterized by changes in EEG spectral power and connectivity, ERP and TMS parameters, indicating alterations in neural activity and network function. Pathological aging, such as in Alzheimer's disease, is associated with further disruptions in EEG rhythms, ERP components and TMS measures, reflecting underlying neurodegenerative processes. Machine learning approaches show promise in classifying cognitive impairment and predicting disease progression. Standardization of neurophysiological methods and integration with other modalities are crucial for a comprehensive understanding of brain aging and neurodegenerative disorders. Advanced network analysis techniques and AI methods hold potential for enhancing diagnostic accuracy and deepening insights into age-related brain changes.
Collapse
Affiliation(s)
- Angelo Pascarella
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy.
| | - Lucia Manzo
- Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy
| |
Collapse
|
2
|
Olğun Y, Aksoy Poyraz C, Bozluolçay M, Gündüz A, Poyraz BÇ. A comparative transcranial magnetic stimulation study: Assessing cortical excitability and plasticity in Alzheimer's disease, dementia with Lewy bodies and Frontotemporal dementia. Psychogeriatrics 2024; 24:272-280. [PMID: 38131520 DOI: 10.1111/psyg.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Here, we aimed to investigate the roles of long-term potentiation-like (LTP-like) plasticity using intermittent theta burst (iTBS) protocol and resting motor threshold (rMT) in the differential diagnosis of Alzheimer's disease (AD), diffuse dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). METHOD We enrolled 21 subjects with AD, 28 subjects with DLB, 14 subjects with FTD, and 33 elderly subjects with normal cognitive functions into the study. We recorded rMT and percentage amplitude change of motor evoked potentials (MEPs) after the iTBS protocol in each group. RESULTS In patients with AD and DLB, the percentage amplitude change of MEPs, and rMTs were significantly lower than in healthy subjects. However, no significant difference was observed in individuals with FTD. CONCLUSION Our findings showed that transcranial magnetic stimulation measures, particularly rMTs and LTP-like plasticity, may be potential biomarkers to distinguish between different dementia subtypes. Impaired motor cortical excitability and synaptic plasticity were more prominent in AD and DLB than in FTD. This aligns with the evidence that cortical motor networks are usually spared in FTDs in early-to-middle stages.
Collapse
Affiliation(s)
- Yeşim Olğun
- Cerrahpaşa Medical Faculty, Department of Psychiatry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Cana Aksoy Poyraz
- Cerrahpaşa Medical Faculty, Department of Psychiatry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Melda Bozluolçay
- Cerrahpaşa Medical Faculty, Department of Neurology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ayşegül Gündüz
- Cerrahpaşa Medical Faculty, Department of Neurology, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Burç Çağrı Poyraz
- Cerrahpaşa Medical Faculty, Department of Psychiatry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
3
|
Spampinato DA, Ibanez J, Rocchi L, Rothwell J. Motor potentials evoked by transcranial magnetic stimulation: interpreting a simple measure of a complex system. J Physiol 2023; 601:2827-2851. [PMID: 37254441 PMCID: PMC10952180 DOI: 10.1113/jp281885] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique that is increasingly used to study the human brain. One of the principal outcome measures is the motor-evoked potential (MEP) elicited in a muscle following TMS over the primary motor cortex (M1), where it is used to estimate changes in corticospinal excitability. However, multiple elements play a role in MEP generation, so even apparently simple measures such as peak-to-peak amplitude have a complex interpretation. Here, we summarize what is currently known regarding the neural pathways and circuits that contribute to the MEP and discuss the factors that should be considered when interpreting MEP amplitude measured at rest in the context of motor processing and patients with neurological conditions. In the last part of this work, we also discuss how emerging technological approaches can be combined with TMS to improve our understanding of neural substrates that can influence MEPs. Overall, this review aims to highlight the capabilities and limitations of TMS that are important to recognize when attempting to disentangle sources that contribute to the physiological state-related changes in corticomotor excitability.
Collapse
Affiliation(s)
- Danny Adrian Spampinato
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Jaime Ibanez
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- BSICoS group, I3A Institute and IIS AragónUniversity of ZaragozaZaragozaSpain
- Department of Bioengineering, Centre for NeurotechnologiesImperial College LondonLondonUK
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - John Rothwell
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
| |
Collapse
|
4
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
5
|
van den Bos MAJ, Menon P, Vucic S. Cortical hyperexcitability and plasticity in Alzheimer's disease: developments in understanding and management. Expert Rev Neurother 2022; 22:981-993. [PMID: 36683586 DOI: 10.1080/14737175.2022.2170784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological tool that provides important insights into Alzheimer's Disease (AD). A significant body of work utilizing TMS techniques has explored the pathophysiological relevance of cortical hyperexcitability and plasticity in AD and their modulation in novel therapies. AREAS COVERED This review examines the technique of TMS, the use of TMS to examine specific features of cortical excitability and the use of TMS techniques to modulate cortical function. A search was performed utilizing the PubMed database to identify key studies utilizing TMS to examine cortical hyperexcitability and plasticity in Alzheimer's dementia. We then translate this understanding to the study of Alzheimer's disease pathophysiology, examining the underlying neurophysiologic links contributing to these twin signatures, cortical hyperexcitability and abnormal plasticity, in the cortical dysfunction characterizing AD. Finally, we examine utilization of TMS excitability to guide targeted therapies and, through the use of repetitive TMS (rTMS), modulate cortical plasticity. EXPERT OPINION The examination of cortical hyperexcitability and plasticity with TMS has potential to optimize and expand the window of therapeutic interventions in AD, though remains at relatively early stage of development.
Collapse
Affiliation(s)
- Mehdi A J van den Bos
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, Australia
| | - Parvathi Menon
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, Australia
| | - Steve Vucic
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, Australia
| |
Collapse
|
6
|
Chou YH, Sundman M, Ton That V, Green J, Trapani C. Cortical excitability and plasticity in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis of transcranial magnetic stimulation studies. Ageing Res Rev 2022; 79:101660. [PMID: 35680080 DOI: 10.1016/j.arr.2022.101660] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique. When stimulation is applied over the primary motor cortex and coupled with electromyography measures, TMS can probe functions of cortical excitability and plasticity in vivo. The purpose of this meta-analysis is to evaluate the utility of TMS-derived measures for differentiating patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) from cognitively normal older adults (CN). METHODS Databases searched included PubMed, Embase, APA PsycInfo, Medline, and CINAHL Plus from inception to July 2021. RESULTS Sixty-one studies with a total of 2728 participants (1454 patients with AD, 163 patients with MCI, and 1111 CN) were included. Patients with AD showed significantly higher cortical excitability, lower cortical inhibition, and impaired cortical plasticity compared to the CN cohorts. Patients with MCI exhibited increased cortical excitability and reduced plasticity compared to the CN cohort. Additionally, lower cognitive performance was significantly associated with higher cortical excitability and lower inhibition. No seizure events due to TMS were reported, and the mild adverse response rate is approximately 3/1000 (i.e., 9/2728). CONCLUSIONS Findings of our meta-analysis demonstrate the potential of using TMS-derived cortical excitability and plasticity measures as diagnostic biomarkers and therapeutic targets for AD and MCI.
Collapse
Affiliation(s)
- Ying-Hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA; Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, USA.
| | - Mark Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Viet Ton That
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Jacob Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Chrisopher Trapani
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| |
Collapse
|
7
|
Zadey S, Buss SS, McDonald K, Press DZ, Pascual-Leone A, Fried PJ. Higher motor cortical excitability linked to greater cognitive dysfunction in Alzheimer's disease: results from two independent cohorts. Neurobiol Aging 2021; 108:24-33. [PMID: 34479168 PMCID: PMC8616846 DOI: 10.1016/j.neurobiolaging.2021.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
Prior studies have reported increased cortical excitability in people with Alzheimer's disease (AD), but findings have been inconsistent, and how excitability relates to dementia severity remains incompletely understood. The objective of this study was to investigate the association between a transcranial magnetic stimulation (TMS) measure of motor cortical excitability and measures of cognition in AD. A retrospective cross-sectional analysis tested the relationship between resting motor threshold (RMT) and the Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-Cog) across two independent samples of AD participants (a discovery cohort, n=22 and a larger validation cohort, n=129) and a control cohort of cognitively normal adults (n=26). RMT was correlated with ADAS-Cog in the discovery-AD cohort (n=22, β=-.70, p<0.001) but not in the control cohort (n=26, β=-0.13, p=0.513). This relationship was confirmed in the validation-AD cohort (n=129, β=-.35, p<0.001). RMT can be a useful neurophysiological marker of progressive global cognitive dysfunction in AD. Future translational research should focus on the potential of RMT to predict and track individual pathophysiological trajectories of aging.
Collapse
Affiliation(s)
- Siddhesh Zadey
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Indian Institute of Science Education and Research, Pune, India; Duke Global Health Institute, Duke University, Durham, NC, USA; Association for Socially Applicable Research (ASAR), Pune, India
| | - Stephanie S Buss
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Katherine McDonald
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA
| | - Daniel Z Press
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Badalona, Spain; Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew Senior Life, Harvard Medical School, Boston, Massachusetts, USA.
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, Chen KHS, Chen R, Chistyakov AV, Classen J, Kiernan MC, Koch G, Lanza G, Lefaucheur JP, Matsumoto H, Nguyen JP, Orth M, Pascual-Leone A, Rektorova I, Simko P, Taylor JP, Tremblay S, Ugawa Y, Dubbioso R, Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 2021; 132:2568-2607. [PMID: 34482205 DOI: 10.1016/j.clinph.2021.05.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kai-Hsiang S Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Brain, Imaging& Behaviour, Krembil Brain Institute, Toronto, Canada
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig University Medical Center, Germany
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | - Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | - Jean-Paul Nguyen
- Pain Center, clinique Bretéché, groupe ELSAN, Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, Nantes, France
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Swiss Huntington's Disease Centre, Siloah, Bern, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Universitat Autonoma Barcelona, Spain
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Tremblay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada; Royal Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Joseph S, Knezevic D, Zomorrodi R, Blumberger DM, Daskalakis ZJ, Mulsant BH, Pollock BG, Voineskos A, Wang W, Rajji TK, Kumar S. Dorsolateral prefrontal cortex excitability abnormalities in Alzheimer's Dementia: Findings from transcranial magnetic stimulation and electroencephalography study. Int J Psychophysiol 2021; 169:55-62. [PMID: 34499960 DOI: 10.1016/j.ijpsycho.2021.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023]
Abstract
There is some evidence of cortical hyper-excitability in Alzheimer's Dementia (AD) but its relationship with cognition is not clear. In this study, we assessed dorsolateral prefrontal cortex (DLPFC) excitability and its relationship with cognition in AD. Twenty-four participants with AD (mean [SD] age = 74.1 [7.2] years) and eleven elderly healthy controls (HC) (mean [SD] age = 68.8 [7.3] years) were recruited. Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG) was used to assess cortical excitability. Cortical evoked activity (CEA) between 25 and 80 ms post-TMS stimulus was calculated as the primary measure of cortical excitability. TMS-evoked potential peak (TEP) amplitudes (P30, N45 and P60) were also calculated. Cognition was assessed using Montreal Cognitive Assessment (MoCA), Executive Interview (EXIT) and Cambridge Neuropsychological Test Automated Battery Stockings of Cambridge (SOC). There was no difference in TMS stimulus intensity between the groups. DLPFC-CEA was higher in the AD (mean [SD] = 134.64 [90.22] μV) than the HC group (mean [SD] = 82.65 [40.28] μV; t33 = 2.357, p = 0.025). There were no differences in TEP peak amplitudes between the groups. Further, DLPFC-CEA was inversely associated with MoCA and SOC, and positively associated with EXIT scores in AD. These results suggest increased DLPFC excitability in AD, and its inverse associations with global cognition and executive function. Future studies should examine these findings in larger samples and longitudinally, and could also assess these markers of cortical excitability in relation to other established markers of AD and in response to interventions.
Collapse
Affiliation(s)
- Shaylyn Joseph
- Centre for Addiction and Mental Health, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | - Reza Zomorrodi
- Centre for Addiction and Mental Health, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Daniel M Blumberger
- Centre for Addiction and Mental Health, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Toronto Dementia Research Alliance, Toronto, Canada
| | | | - Benoit H Mulsant
- Centre for Addiction and Mental Health, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Toronto Dementia Research Alliance, Toronto, Canada
| | - Bruce G Pollock
- Centre for Addiction and Mental Health, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Toronto Dementia Research Alliance, Toronto, Canada
| | - Aristotle Voineskos
- Centre for Addiction and Mental Health, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Toronto Dementia Research Alliance, Toronto, Canada
| | - Wei Wang
- Centre for Addiction and Mental Health, Toronto, Canada; University of South Florida, FL, United States
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Toronto Dementia Research Alliance, Toronto, Canada
| | - Sanjeev Kumar
- Centre for Addiction and Mental Health, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Toronto Dementia Research Alliance, Toronto, Canada.
| |
Collapse
|
10
|
Meder A, Liepelt-Scarfone I, Sulzer P, Berg D, Laske C, Preische O, Desideri D, Zipser CM, Salvadore G, Tatikola K, Timmers M, Ziemann U. Motor cortical excitability and paired-associative stimulation-induced plasticity in amnestic mild cognitive impairment and Alzheimer’s disease. Clin Neurophysiol 2021; 132:2264-2273. [DOI: 10.1016/j.clinph.2021.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
|
11
|
Joseph S, Patterson R, Wang W, Blumberger DM, Rajji T, Kumar S. Quantitative Assessment of Cortical Excitability in Alzheimer's Dementia and Its Association with Clinical Symptoms: A Systematic Review and Meta-Analyses. J Alzheimers Dis 2021; 88:867-891. [PMID: 34219724 DOI: 10.3233/jad-210311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by cognitive and neuropsychiatric symptoms (NPS) due to underlying neurodegenerative pathology. Some studies using electroencephalography (EEG) have shown increased epileptiform and epileptic activity in AD. OBJECTIVE This review and meta-analyses aims to synthesize the existing evidence for quantitative abnormalities of cortical excitability in AD and their relationship with clinical symptoms. METHODS We systematically searched and reviewed publications that quantitatively assessed cortical excitability, using transcranial magnetic stimulation (TMS) resting motor threshold (rMT), active motor threshold (aMT), motor evoked potential (MEP) or directly from the cortex using TMS-EEG via TMS-evoked potential (TEP). We meta-analyzed studies that assessed rMT and aMT using random effects model. RESULTS We identified 895 publications out of which 37 were included in the qualitative review and 30 studies using rMT or aMT were included in the meta-analyses. The AD group had reduced rMT (Hedges' g = -0.99, 95%CI [-1.29, -0.68], p < 0.00001) and aMT (Hedges' g = -0.87, 95%CI [-1.50, -0.24], p < 0.00001) as compared with control groups, indicative of higher cortical excitability. Qualitative review found some evidence of increased MEP amplitude, whereas findings related to TEP were inconsistent. There was some evidence supporting an inverse association between cortical excitability and global cognition. No publications reported on the relationship between cortical excitability and NPS. CONCLUSION There is strong evidence of increased motor cortex excitability in AD and some evidence of an inverse association between excitability and cognition. Future studies should assess cortical excitability from non-motor areas using TMS-EEG and examine its relationship with cognition and NPS.
Collapse
Affiliation(s)
- Shaylyn Joseph
- Centre for Addiction and Mental Health, Toronto, Canada.,University of Toronto, Toronto, Canada
| | - Rachel Patterson
- Centre for Addiction and Mental Health, Toronto, Canada.,University of Toronto, Toronto, Canada
| | - Wei Wang
- Centre for Addiction and Mental Health, Toronto, Canada
| | - Daniel M Blumberger
- Centre for Addiction and Mental Health, Toronto, Canada.,University of Toronto, Toronto, Canada
| | - Tarek Rajji
- Centre for Addiction and Mental Health, Toronto, Canada.,University of Toronto, Toronto, Canada.,Toronto Dementia Research Alliance, Toronto, Canada
| | - Sanjeev Kumar
- Centre for Addiction and Mental Health, Toronto, Canada.,University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Antczak J, Rusin G, Słowik A. Transcranial Magnetic Stimulation as a Diagnostic and Therapeutic Tool in Various Types of Dementia. J Clin Med 2021; 10:jcm10132875. [PMID: 34203558 PMCID: PMC8267667 DOI: 10.3390/jcm10132875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/03/2023] Open
Abstract
Dementia is recognized as a healthcare and social burden and remains challenging in terms of proper diagnosis and treatment. Transcranial magnetic stimulation (TMS) is a diagnostic and therapeutic tool in various neurological diseases that noninvasively investigates cortical excitability and connectivity and can induce brain plasticity. This article reviews findings on TMS in common dementia types as well as therapeutic results. Alzheimer’s disease (AD) is characterized by increased cortical excitability and reduced cortical inhibition, especially as mediated by cholinergic neurons and as documented by impairment of short latency inhibition (SAI). In vascular dementia, excitability is also increased. SAI may have various outcomes, which probably reflects its frequent overlap with AD. Dementia with Lewy bodies (DLB) is associated with SAI decrease. Motor cortical excitability is usually normal, reflecting the lack of corticospinal tract involvement. DLB and other dementia types are also characterized by impairment of short interval intracortical inhibition. In frontotemporal dementia, cortical excitability is increased, but SAI is normal. Repetitive transcranial magnetic stimulation has the potential to improve cognitive function. It has been extensively studied in AD, showing promising results after multisite stimulation. TMS with electroencephalography recording opens new possibilities for improving diagnostic accuracy; however, more studies are needed to support the existing data.
Collapse
|
13
|
Intracortical and Intercortical Motor Disinhibition to Transcranial Magnetic Stimulation in Newly Diagnosed Celiac Disease Patients. Nutrients 2021. [PMID: 34062843 DOI: 10.3390/nu13051530.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Celiac disease (CD) may present or be complicated by neurological and neuropsychiatric manifestations. Transcranial magnetic stimulation (TMS) probes brain excitability non-invasively, also preclinically. We previously demonstrated an intracortical motor disinhibition and hyperfacilitation in de novo CD patients, which revert back after a long-term gluten-free diet (GFD). In this cross-sectional study, we explored the interhemispheric excitability by transcallosal inhibition, which has never been investigated in CD. METHODS A total of 15 right-handed de novo, neurologically asymptomatic, CD patients and 15 age-matched healthy controls were screened for cognitive and depressive symptoms to the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively. TMS consisted of resting motor threshold, amplitude, latency, and duration of the motor evoked potentials, duration and latency of the contralateral silent period (cSP). Transcallosal inhibition was evaluated as duration and latency of the ipsilateral silent period (iSP). RESULTS MoCA and HDRS scored significantly worse in patients. The iSP and cSP were significantly shorter in duration in patients, with a positive correlation between the MoCA and iSP. CONCLUSIONS An intracortical and interhemispheric motor disinhibition was observed in CD, suggesting the involvement of GABA-mediated cortical and callosal circuitries. Further studies correlating clinical, TMS, and neuroimaging data are needed.
Collapse
|
14
|
Fisicaro F, Lanza G, D’Agate CC, Ferri R, Cantone M, Falzone L, Pennisi G, Bella R, Pennisi M. Intracortical and Intercortical Motor Disinhibition to Transcranial Magnetic Stimulation in Newly Diagnosed Celiac Disease Patients. Nutrients 2021; 13:nu13051530. [PMID: 34062843 PMCID: PMC8147364 DOI: 10.3390/nu13051530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Celiac disease (CD) may present or be complicated by neurological and neuropsychiatric manifestations. Transcranial magnetic stimulation (TMS) probes brain excitability non-invasively, also preclinically. We previously demonstrated an intracortical motor disinhibition and hyperfacilitation in de novo CD patients, which revert back after a long-term gluten-free diet (GFD). In this cross-sectional study, we explored the interhemispheric excitability by transcallosal inhibition, which has never been investigated in CD. METHODS A total of 15 right-handed de novo, neurologically asymptomatic, CD patients and 15 age-matched healthy controls were screened for cognitive and depressive symptoms to the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively. TMS consisted of resting motor threshold, amplitude, latency, and duration of the motor evoked potentials, duration and latency of the contralateral silent period (cSP). Transcallosal inhibition was evaluated as duration and latency of the ipsilateral silent period (iSP). RESULTS MoCA and HDRS scored significantly worse in patients. The iSP and cSP were significantly shorter in duration in patients, with a positive correlation between the MoCA and iSP. CONCLUSIONS An intracortical and interhemispheric motor disinhibition was observed in CD, suggesting the involvement of GABA-mediated cortical and callosal circuitries. Further studies correlating clinical, TMS, and neuroimaging data are needed.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy;
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-095-3782448
| | - Carmela Cinzia D’Agate
- Gastroenterology and Endoscopy Unit, University Hospital “Policlinico G. Rodolico-San Marco”, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Raffaele Ferri
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Via Luigi Russo 6, 93100 Caltanissetta, Italy;
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Instituto Nazionale Tumori-IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy;
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy;
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (M.P.)
| |
Collapse
|
15
|
Mimura Y, Nishida H, Nakajima S, Tsugawa S, Morita S, Yoshida K, Tarumi R, Ogyu K, Wada M, Kurose S, Miyazaki T, Blumberger DM, Daskalakis ZJ, Chen R, Mimura M, Noda Y. Neurophysiological biomarkers using transcranial magnetic stimulation in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis. Neurosci Biobehav Rev 2020; 121:47-59. [PMID: 33307047 DOI: 10.1016/j.neubiorev.2020.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/08/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological tool that enables the investigation of cortical excitability in the human brain. Paired-pulse TMS paradigms include short- and long-interval intracortical inhibition (SICI/LICI), intracortical facilitation (ICF), and short-latency afferent inhibition (SAI), which can assess neurophysiological functions of GABAergic, glutamatergic, and cholinergic neural circuits, respectively. We conducted the first systematic review and meta-analysis to compare these TMS indices among patients with AD, mild cognitive impairment (MCI), and healthy controls (HC). Our meta-analyses indicated that RMT, SAI, SICI, and LICI were significantly lower in patients with AD, while ICF did not show a difference in patients with AD compared with HC. In patients with MCI, RMT and SAI were significantly lower than in HC. In conclusion, motor cortical excitability was increased, while cholinergic function was decreased in AD and MCI in comparison with HC and patients with AD had decreased GABAergic and glutamatergic functions compared with HC. Our results warrant further studies to differentiate AD, MCI, and HC, employing multimodal TMS neurophysiology.
Collapse
Affiliation(s)
- Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hana Nishida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Morita
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shin Kurose
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Miyazaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
16
|
Evaluation and Treatment of Vascular Cognitive Impairment by Transcranial Magnetic Stimulation. Neural Plast 2020. [PMID: 33193753 DOI: 10.1155/2020/8820881.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The exact relationship between cognitive functioning, cortical excitability, and synaptic plasticity in dementia is not completely understood. Vascular cognitive impairment (VCI) is deemed to be the most common cognitive disorder in the elderly since it encompasses any degree of vascular-based cognitive decline. In different cognitive disorders, including VCI, transcranial magnetic stimulation (TMS) can be exploited as a noninvasive tool able to evaluate in vivo the cortical excitability, the propension to undergo neural plastic phenomena, and the underlying transmission pathways. Overall, TMS in VCI revealed enhanced cortical excitability and synaptic plasticity that seem to correlate with the disease process and progression. In some patients, such plasticity may be considered as an adaptive response to disease progression, thus allowing the preservation of motor programming and execution. Recent findings also point out the possibility to employ TMS to predict cognitive deterioration in the so-called "brains at risk" for dementia, which may be those patients who benefit more of disease-modifying drugs and rehabilitative or neuromodulatory approaches, such as those based on repetitive TMS (rTMS). Finally, TMS can be exploited to select the responders to specific drugs in the attempt to maximize the response and to restore maladaptive plasticity. While no single TMS index owns enough specificity, a panel of TMS-derived measures can support VCI diagnosis and identify early markers of progression into dementia. This work reviews all TMS and rTMS studies on VCI. The aim is to evaluate how cortical excitability, plasticity, and connectivity interact in the pathophysiology of the impairment and to provide a translational perspective towards novel treatments of these patients. Current pitfalls and limitations of both studies and techniques are also discussed, together with possible solutions and future research agenda.
Collapse
|
17
|
Rawji V, Latorre A, Sharma N, Rothwell JC, Rocchi L. On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. Front Neurol 2020; 11:584664. [PMID: 33224098 PMCID: PMC7669623 DOI: 10.3389/fneur.2020.584664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are a collection of disorders that result in the progressive degeneration and death of neurons. They are clinically heterogenous and can present as deficits in movement, cognition, executive function, memory, visuospatial awareness and language. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation tool that allows for the assessment of cortical function in vivo. We review how TMS has been used for the investigation of three neurodegenerative diseases that differ in their neuroanatomical axes: (1) Motor cortex-corticospinal tract (motor neuron diseases), (2) Non-motor cortical areas (dementias), and (3) Subcortical structures (parkinsonisms). We also make four recommendations that we hope will benefit the use of TMS in neurodegenerative diseases. Firstly, TMS has traditionally been limited by the lack of an objective output and so has been confined to stimulation of the motor cortex; this limitation can be overcome by the use of concurrent neuroimaging methods such as EEG. Given that neurodegenerative diseases progress over time, TMS measures should aim to track longitudinal changes, especially when the aim of the study is to look at disease progression and symptomatology. The lack of gold-standard diagnostic confirmation undermines the validity of findings in clinical populations. Consequently, diagnostic certainty should be maximized through a variety of methods including multiple, independent clinical assessments, imaging and fluids biomarkers, and post-mortem pathological confirmation where possible. There is great interest in understanding the mechanisms by which symptoms arise in neurodegenerative disorders. However, TMS assessments in patients are usually carried out during resting conditions, when the brain network engaged during these symptoms is not expressed. Rather, a context-appropriate form of TMS would be more suitable in probing the physiology driving clinical symptoms. In all, we hope that the recommendations made here will help to further understand the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
18
|
Transcranial Magnetic Stimulation-Induced Motor Evoked Potentials in Hirayama Disease: Systematic Review of the Literature. J Clin Neurophysiol 2020; 37:181-190. [PMID: 32142026 DOI: 10.1097/wnp.0000000000000611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Hirayama disease (HD) is a rare motor disorder mainly affecting young men, characterized by atrophy and unilateral weakness of forearm and hand muscles corresponding to a C7-T1 myotome distribution. The progression is self-limited. The etiology of HD is unclear. The usefulness of motor evoked potentials (MEPs) in pyramidal tracts damage evaluation still appears to be somehow equivocal. METHODS We searched PubMed for original articles, evaluating the use of transcranial magnetic stimulation elicited MEPs in HD using keywords "motor evoked potentials Hirayama" and "transcranial magnetic stimulation Hirayama." RESULTS We found seven articles using the above keywords that met inclusion criteria. The number of participants was small, and diagnostic procedures varied. There were also differences in methodology. Abnormal central motor conduction time was found in 17.1% of patients in one study, whereas it was normal in two other studies. Peripheral motor latency was evaluated in one study, which found abnormally increased peripheral motor latencies in at least one tested muscle in 16 of 41 HD patients (39.0%). Abnormal MEP parameters were found in three studies in 14.3% to 100% patients. In one study they were not evaluated, in three other studies they were normal, and in one they were normal also in standard and flexed neck position In one study, inconsistent results were found in MEP size after neck flexion in patients after treatment with neck collar. CONCLUSIONS Although MEP parameters may be abnormal in some HD patients, these have not been thoroughly assessed. Further studies are indispensable to evaluate their usefulness in assessing pyramidal tract damage in HD.
Collapse
|
19
|
Cantone M, Lanza G, Fisicaro F, Pennisi M, Bella R, Di Lazzaro V, Di Pino G. Evaluation and Treatment of Vascular Cognitive Impairment by Transcranial Magnetic Stimulation. Neural Plast 2020; 2020:8820881. [PMID: 33193753 PMCID: PMC7641667 DOI: 10.1155/2020/8820881] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The exact relationship between cognitive functioning, cortical excitability, and synaptic plasticity in dementia is not completely understood. Vascular cognitive impairment (VCI) is deemed to be the most common cognitive disorder in the elderly since it encompasses any degree of vascular-based cognitive decline. In different cognitive disorders, including VCI, transcranial magnetic stimulation (TMS) can be exploited as a noninvasive tool able to evaluate in vivo the cortical excitability, the propension to undergo neural plastic phenomena, and the underlying transmission pathways. Overall, TMS in VCI revealed enhanced cortical excitability and synaptic plasticity that seem to correlate with the disease process and progression. In some patients, such plasticity may be considered as an adaptive response to disease progression, thus allowing the preservation of motor programming and execution. Recent findings also point out the possibility to employ TMS to predict cognitive deterioration in the so-called "brains at risk" for dementia, which may be those patients who benefit more of disease-modifying drugs and rehabilitative or neuromodulatory approaches, such as those based on repetitive TMS (rTMS). Finally, TMS can be exploited to select the responders to specific drugs in the attempt to maximize the response and to restore maladaptive plasticity. While no single TMS index owns enough specificity, a panel of TMS-derived measures can support VCI diagnosis and identify early markers of progression into dementia. This work reviews all TMS and rTMS studies on VCI. The aim is to evaluate how cortical excitability, plasticity, and connectivity interact in the pathophysiology of the impairment and to provide a translational perspective towards novel treatments of these patients. Current pitfalls and limitations of both studies and techniques are also discussed, together with possible solutions and future research agenda.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- 1Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta 93100, Italy
| | - Giuseppe Lanza
- 2Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- 3Department of Neurology IC, Oasi Research Institute–IRCCS, Troina 94108, Italy
| | - Francesco Fisicaro
- 4Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Manuela Pennisi
- 4Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Rita Bella
- 5Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania 95123, Italy
| | - Vincenzo Di Lazzaro
- 6Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome 00128, Italy
| | - Giovanni Di Pino
- 7Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome 00128, Italy
| |
Collapse
|
20
|
Raggi A, Tasca D, Ferri R. A brief essay on non-pharmacological treatment of Alzheimer's disease. Rev Neurosci 2018; 28:587-597. [PMID: 28422708 DOI: 10.1515/revneuro-2017-0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/11/2017] [Indexed: 12/27/2022]
Abstract
Current pharmacological therapies for Alzheimer's disease (AD) do not modify its course and are not always beneficial. Therefore, the optimization of quality of life represents the best possible outcome achievable in all stages of the disease. Cognitive and behavioural rehabilitation represents the main therapeutic approach for this purpose, also in order to mitigate indirectly the burden of distress of family caregivers. The aim of this mini-review is to go through this theme by discussing cognitive activation, virtual reality and neuromodulation techniques. The practices summarized in this essay are not alternative but, often, complementary therapies to standardized pharmacological treatment. The present mini-review has found encouraging results but also the need for more conclusive evidence for all types of non-invasive/non-pharmacological treatment of AD.
Collapse
|
21
|
Discrimination of atypical parkinsonisms with transcranial magnetic stimulation. Brain Stimul 2018; 11:366-373. [DOI: 10.1016/j.brs.2017.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/16/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022] Open
|
22
|
Kuo YL, Dubuc T, Boufadel DF, Fisher BE. Measuring ipsilateral silent period: Effects of muscle contraction levels and quantification methods. Brain Res 2017; 1674:77-83. [DOI: 10.1016/j.brainres.2017.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/20/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
|
23
|
Polak T, Herrmann MJ, Müller LD, Zeller JBM, Katzorke A, Fischer M, Spielmann F, Weinmann E, Hommers L, Lauer M, Fallgatter AJ, Deckert J. Near-infrared spectroscopy (NIRS) and vagus somatosensory evoked potentials (VSEP) in the early diagnosis of Alzheimer’s disease: rationale, design, methods, and first baseline data of the Vogel study. J Neural Transm (Vienna) 2017; 124:1473-1488. [DOI: 10.1007/s00702-017-1781-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 08/23/2017] [Indexed: 01/06/2023]
|
24
|
Vucic S, Kiernan MC. Transcranial Magnetic Stimulation for the Assessment of Neurodegenerative Disease. Neurotherapeutics 2017; 14:91-106. [PMID: 27830492 PMCID: PMC5233629 DOI: 10.1007/s13311-016-0487-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive technique that has provided important information about cortical function across an array of neurodegenerative disorders, including Alzheimer's disease, frontotemporal dementia, Parkinson's disease, and related extrapyramidal disorders. Application of TMS techniques in neurodegenerative diseases has provided important pathophysiological insights, leading to the development of pathogenic and diagnostic biomarkers that could be used in the clinical setting and therapeutic trials. Abnormalities of TMS outcome measures heralding cortical hyperexcitability, as evidenced by a reduction of short-interval intracortical inhibition and increased in motor-evoked potential amplitude, have been consistently identified as early and intrinsic features of amyotrophic lateral sclerosis (ALS), preceding and correlating with the ensuing neurodegeneration. Cortical hyperexcitability appears to form the pathogenic basis of ALS, mediated by trans-synaptic glutamate-mediated excitotoxic mechanisms. As a consequence of these research findings, TMS has been developed as a potential diagnostic biomarker, capable of identifying upper motor neuronal pathology, at earlier stages of the disease process, and thereby aiding in ALS diagnosis. Of further relevance, marked TMS abnormalities have been reported in other neurodegenerative diseases, which have varied from findings in ALS. With time and greater utilization by clinicians, TMS outcome measures may prove to be of utility in future therapeutic trial settings across the neurodegenerative disease spectrum, including the monitoring of neuroprotective, stem-cell, and genetic-based strategies, thereby enabling assessment of biological effectiveness at early stages of drug development.
Collapse
Affiliation(s)
- Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, Australia
| | - Matthew C Kiernan
- Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Camperdown, Australia.
| |
Collapse
|
25
|
Ferreri F, Vecchio F, Vollero L, Guerra A, Petrichella S, Ponzo D, Määtta S, Mervaala E, Könönen M, Ursini F, Pasqualetti P, Iannello G, Rossini PM, Di Lazzaro V. Sensorimotor cortex excitability and connectivity in Alzheimer's disease: A TMS-EEG Co-registration study. Hum Brain Mapp 2016; 37:2083-96. [PMID: 26945686 DOI: 10.1002/hbm.23158] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 02/13/2016] [Accepted: 02/17/2016] [Indexed: 12/27/2022] Open
Abstract
Several studies have shown that, in spite of the fact that motor symptoms manifest late in the course of Alzheimer's disease (AD), neuropathological progression in the motor cortex parallels that in other brain areas generally considered more specific targets of the neurodegenerative process. It has been suggested that motor cortex excitability is enhanced in AD from the early stages, and that this is related to disease's severity and progression. To investigate the neurophysiological hallmarks of motor cortex functionality in early AD we combined transcranial magnetic stimulation (TMS) with electroencephalography (EEG). We demonstrated that in mild AD the sensorimotor system is hyperexcitable, despite the lack of clinically evident motor manifestations. This phenomenon causes a stronger response to stimulation in a specific time window, possibly due to locally acting reinforcing circuits, while network activity and connectivity is reduced. These changes could be interpreted as a compensatory mechanism allowing for the preservation of sensorimotor programming and execution over a long period of time, regardless of the disease's progression. Hum Brain Mapp 37:2083-2096, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Florinda Ferreri
- Department of Neurology, University Campus Biomedico, Rome, Italy.,Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, IRCCS S. Raffaele-Pisana, Rome, Italy
| | - Luca Vollero
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - Andrea Guerra
- Department of Neurology, University Campus Biomedico, Rome, Italy
| | - Sara Petrichella
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - David Ponzo
- Department of Neurology, University Campus Biomedico, Rome, Italy.,Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Sara Määtta
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Esa Mervaala
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Francesca Ursini
- Department of Neurology, University Campus Biomedico, Rome, Italy
| | - Patrizio Pasqualetti
- Brain Connectivity Laboratory, IRCCS S. Raffaele-Pisana, Rome, Italy.,AFaR Division, Service of Medical Statistics and Information Technology, Fatebenefratelli Foundation for Health Research and Education, Rome, Italy
| | - Giulio Iannello
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, IRCCS S. Raffaele-Pisana, Rome, Italy.,Institute of Neurology, Department of Geriatrics, Neurosciences, Orthopaedics, Policlinic a. Gemelli, Catholic University, Rome, Italy
| | | |
Collapse
|
26
|
Magalhães SC, Kaelin-Lang A, Sterr A, do Prado GF, Eckeli AL, Conforto AB. Transcranial magnetic stimulation for evaluation of motor cortical excitability in restless legs syndrome/Willis-Ekbom disease. Sleep Med 2015; 16:1265-73. [PMID: 26429756 DOI: 10.1016/j.sleep.2015.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/27/2015] [Accepted: 03/29/2015] [Indexed: 11/30/2022]
Abstract
There is no consensus about mechanisms underlying restless legs syndrome (RLS), also known as Willis-Ekbom disease (WED). Cortical excitability may be abnormal in RLS. Transcranial magnetic stimulation (TMS) can provide insight about cortical excitability. We reviewed studies about measures of excitability to TMS in RLS. Original studies published between January 1999 and January 2015 were searched in PubMed, Scopus, and Web of Science databases. Inclusion criteria were as follows: original studies involving primary RLS in patients from both sexes and ages between 18 and 85 years; TMS protocols clearly described; and they were written in English, in peer-reviewed journals. Fifteen manuscripts were identified. TMS protocols were heterogeneous across studies. Resting motor threshold, active motor threshold, and amplitudes of motor-evoked potentials were typically reported to be normal in RLS. A reduction in short-interval intracortical inhibition (SICI) was the most consistent finding, whereas conflicting results were described in regard to short-interval intracortical facilitation and the contralateral silent period. Decreased SICI can be reversed by treatment with dopaminergic agonists. Plasticity in the motor cortex and sensorimotor integration may be disrupted. TMS may become a useful biomarker of responsiveness to drug treatment in RLS. The field can benefit from increases in homogeneity and sizes of samples, as well as from decrease in methodological variability across studies.
Collapse
Affiliation(s)
| | | | | | | | - Alan Luiz Eckeli
- Hospital das Clínicas da Faculdade de Medicina da USP, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
27
|
Bembenek JP, Kurczych K, Członkowska A. TMS-induced motor evoked potentials in Wilson's disease: a systematic literature review. Bioelectromagnetics 2015; 36:255-66. [PMID: 25808411 DOI: 10.1002/bem.21909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/22/2015] [Indexed: 12/18/2022]
Abstract
Wilson's disease (WD) is a metabolic brain disease resulting from improper copper metabolism. Although pyramidal symptoms are rarely observed, subclinical injury is highly possible as copper accumulates in all brain structures. The usefulness of motor evoked potentials (MEPs) in pyramidal tracts damage evaluation still appears to be somehow equivocal. We searched for original papers assessing the value of transcranial magnetic stimulation elicited MEPs with respect to motor function of upper and lower extremity in WD. We searched PubMed for original papers evaluating use of MEPs in WD using key words: "motor evoked potentials Wilson's disease" and "transcranial magnetic stimulation Wilson's disease." We found six articles using the above key words. One additional article and one case report were found while viewing the references lists. Therefore, we included eight studies. Number of patients in studies was low and their clinical characteristic was variable. There were also differences in methodology. Abnormal MEPs were confirmed in 20-70% of study participants. MEPs were not recorded in 7.6-66.7% of patients. Four studies reported significantly increased cortical excitability (up to 70% of patients). Prolonged central motor conduction time was observed in four studies (30-100% of patients). One study reported absent or prolonged central motor latency in 66.7% of patients. Although MEPs may be abnormal in WD, this has not been thoroughly assessed. Hence, further studies are indispensable to evaluate MEPs' usefulness in assessing pyramidal tract damage in WD.
Collapse
Affiliation(s)
- Jan P Bembenek
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | | |
Collapse
|
28
|
Guerra A, Petrichella S, Vollero L, Ponzo D, Pasqualetti P, Määttä S, Mervaala E, Könönen M, Bressi F, Iannello G, Rossini PM, Ferreri F. Neurophysiological features of motor cortex excitability and plasticity in Subcortical Ischemic Vascular Dementia: a TMS mapping study. Clin Neurophysiol 2014; 126:906-13. [PMID: 25262646 DOI: 10.1016/j.clinph.2014.07.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/11/2014] [Accepted: 07/13/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate neurophysiological features of M1 excitability and plasticity in Subcortical Ischemic Vascular Dementia (SIVD), by means of a TMS mapping study. METHODS Seven SIVD and nine AD patients, along with nine control subjects were tested. The M1 excitability was studied by resting thresholds, area and volume of active cortical sites for forearm and hand's examined muscles. For M1 plasticity, coordinates of the hot-spot and the center of gravity (CoG) were evaluated. The correlation between the degree of hyperexcitability and the amount of M1 plastic rearrangement was also calculated. RESULTS Multivariate analysis of excitability measures demonstrated similarly enhanced cortical excitability in AD and SIVD patients with respect to controls. SIVD patients showed a medial and frontal shift of CoG from the hot-spot, not statistically different from that observed in AD. A significant direct correlation was seen between parameters related to cortical excitability and those related to cortical plasticity. CONCLUSIONS The results suggest the existence of common compensatory mechanisms in different kind of dementing diseases supporting the idea that cortical hyperexcitability can promote cortical plasticity. SIGNIFICANCE This study characterizes neurophysiological features of motor cortex excitability and plasticity in SIVD, providing new insights on the correlation between cortical excitability and plasticity.
Collapse
Affiliation(s)
- Andrea Guerra
- Department of Neurology, University Campus Bio-Medico, Rome, Italy
| | - Sara Petrichella
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - Luca Vollero
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - David Ponzo
- Department of Neurology, University Campus Bio-Medico, Rome, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Patrizio Pasqualetti
- Service of Medical Statistics and Information Technology, Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Esa Mervaala
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Federica Bressi
- Department of Physical Medicine and Rehabilitation, University Campus Biomedico, Rome, Italy
| | - Giulio Iannello
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - Paolo Maria Rossini
- Institute of Neurology, Dept. Geriatrics, Neurosciences, Orthopaedics, Policlinic A. Gemelli, Catholic University, Rome, Italy; IRCCS S. Raffaele-Pisana, Rome, Italy
| | - Florinda Ferreri
- Department of Neurology, University Campus Bio-Medico, Rome, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
29
|
Nardone R, Tezzon F, Höller Y, Golaszewski S, Trinka E, Brigo F. Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer's disease. Acta Neurol Scand 2014; 129:351-66. [PMID: 24506061 DOI: 10.1111/ane.12223] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 12/20/2022]
Abstract
Several Transcranial Magnetic Stimulation (TMS) techniques can be applied to noninvasively measure cortical excitability and brain plasticity in humans. TMS has been used to assess neuroplastic changes in Alzheimer's disease (AD), corroborating findings that cortical physiology is altered in AD due to the underlying neurodegenerative process. In fact, many TMS studies have provided physiological evidence of abnormalities in cortical excitability, connectivity, and plasticity in patients with AD. Moreover, the combination of TMS with other neurophysiological techniques, such as high-density electroencephalography (EEG), makes it possible to study local and network cortical plasticity directly. Interestingly, several TMS studies revealed abnormalities in patients with early AD and even with mild cognitive impairment (MCI), thus enabling early identification of subjects in whom the cholinergic degeneration has occurred. Furthermore, TMS can influence brain function if delivered repetitively; repetitive TMS (rTMS) is capable of modulating cortical excitability and inducing long-lasting neuroplastic changes. Preliminary findings have suggested that rTMS can enhance performances on several cognitive functions impaired in AD and MCI. However, further well-controlled studies with appropriate methodology in larger patient cohorts are needed to replicate and extend the initial findings. The purpose of this paper was to provide an updated and comprehensive systematic review of the studies that have employed TMS/rTMS in patients with MCI and AD.
Collapse
Affiliation(s)
- R. Nardone
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
| | - F. Tezzon
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
| | - Y. Höller
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| | - S. Golaszewski
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| | - E. Trinka
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| | - F. Brigo
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences; Section of Clinical Neurology; University of Verona; Verona Italy
| |
Collapse
|
30
|
Cantone M, Di Pino G, Capone F, Piombo M, Chiarello D, Cheeran B, Pennisi G, Di Lazzaro V. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol 2014; 125:1509-32. [PMID: 24840904 DOI: 10.1016/j.clinph.2014.04.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/01/2014] [Accepted: 04/19/2014] [Indexed: 12/11/2022]
Abstract
Transcranial magnetic stimulation (TMS) is emerging as a promising tool to non-invasively assess specific cortical circuits in neurological diseases. A number of studies have reported the abnormalities in TMS assays of cortical function in dementias. A PubMed-based literature review on TMS studies targeting primary and secondary dementia has been conducted using the key words "transcranial magnetic stimulation" or "motor cortex excitability" and "dementia" or "cognitive impairment" or "memory impairment" or "memory decline". Cortical excitability is increased in Alzheimer's disease (AD) and in vascular dementia (VaD), generally reduced in secondary dementias. Short-latency afferent inhibition (SAI), a measure of central cholinergic circuitry, is normal in VaD and in frontotemporal dementia (FTD), but suppressed in AD. In mild cognitive impairment, abnormal SAI may predict the progression to AD. No change in cortical excitability has been observed in FTD, in Parkinson's dementia and in dementia with Lewy bodies. Short-interval intracortical inhibition and controlateral silent period (cSP), two measures of gabaergic cortical inhibition, are abnormal in most dementias associated with parkinsonian symptoms. Ipsilateral silent period (iSP), which is dependent on integrity of the corpus callosum is abnormal in AD. While single TMS measure owns low specificity, a panel of measures can support the clinical diagnosis, predict progression and possibly identify earlier the "brain at risk". In dementias, TMS can be also exploited to select and evaluate the responders to specific drugs and, it might become a rehabilitative tool, in the attempt to restore impaired brain plasticity.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy
| | - Giovanni Di Pino
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Fioravante Capone
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Marianna Piombo
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Daniela Chiarello
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Binith Cheeran
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Giovanni Pennisi
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia, 78-95123 Catania, Italy
| | - Vincenzo Di Lazzaro
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy.
| |
Collapse
|
31
|
Motor cortical excitability assessed by transcranial magnetic stimulation in psychiatric disorders: a systematic review. Brain Stimul 2013; 7:158-69. [PMID: 24472621 DOI: 10.1016/j.brs.2013.08.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/16/2013] [Accepted: 08/26/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a popular neurostimulation technique suitable for the investigation of inhibitory and facilitatory networks in the human motor system. In the last 20 years, several studies have used TMS to investigate cortical excitability in various psychiatric disorders, leading to a consequent improvement in pathophysiological understanding. However, little is known about the overlap and specificity of these findings across these conditions. OBJECTIVE To provide a systematic review of TMS studies (1985-2013) focusing on motor cortical excitability in dementia, schizophrenia, affective disorders (major depression and bipolar), attention deficit hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), Tourette Syndrome (TS), substance abuse (alcohol, cocaine, cannabis, nicotine) and other disorders (borderline personality disorder, posttraumatic stress disorder (PTSD)). METHODS Systematic literature-based review. RESULTS Across disorders, patients displayed a general pattern of cortical disinhibition, while the most consistent results of reduced short-interval intracortical inhibition could be found in schizophrenia, OCD and Tourette Syndrome. In dementia, the most frequently reported finding was reduced short-latency afferent inhibition as a marker of cholinergic dysfunction. CONCLUSIONS The results of this systematic review indicate a general alteration in motor cortical inhibition in mental illness, rather than disease-specific changes. Changes in motor cortical excitability provide insight that can advance understanding of the pathophysiology underlying various psychiatric disorders. Further investigations are needed to improve the diagnostic application of these parameters.
Collapse
|
32
|
Preserved transcallosal inhibition to transcranial magnetic stimulation in nondemented elderly patients with leukoaraiosis. BIOMED RESEARCH INTERNATIONAL 2013. [PMID: 23984349 DOI: 10.1155/2013/351680.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Structural corpus callosum (CC) changes in patients with leukoaraiosis (LA) are significantly associated with cognitive and motor impairment. The aim of this study is to investigate the transcallosal fibers functioning by means of transcranial magnetic stimulation (TMS) in elderly patients with LA. The resting motor threshold (rMT), the motor-evoked potentials (MEPs), and the controlateral (cSP) and ipsilateral silent periods (iSP) were determined using single-pulse TMS in 15 patients and 15 age-matched controls. The neuropsychological profile and the vascular burden at brain magnetic resonance imaging (MRI) were concomitantly explored. Patients reported abnormal scores at tests evaluating executive control functions. No significant difference was found in TMS measures of intra- and intercortical excitability. No CC lesion was evident at MRI. Transcallosal inhibitory mechanisms to TMS seem to be spared in LA patients, a finding which is in line with neuroimaging features and suggests a functional integrity of the CC despite the ischemic interruption of corticosubcortical loops implicated in cognition and behavior. The observed neurophysiological finding differs from that reported in degenerative dementia, even in the preclinical or early stage. In our group of patients, the pure extent of LA is more related to impairment of frontal lobe abilities rather than functional callosal changes.
Collapse
|
33
|
Wegrzyn M, Teipel SJ, Oltmann I, Bauer A, Thome J, Großmann A, Hauenstein K, Höppner J. Structural and functional cortical disconnection in Alzheimer's disease: a combined study using diffusion tensor imaging and transcranial magnetic stimulation. Psychiatry Res 2013; 212:192-200. [PMID: 23149037 DOI: 10.1016/j.pscychresns.2012.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 04/07/2012] [Accepted: 04/20/2012] [Indexed: 10/27/2022]
Abstract
We investigated the functional consequences of compromised white matter integrity in Alzheimer's disease by combining Diffusion Tensor Imaging (DTI) and Transcranial Magnetic Stimulation (TMS) in 19 patients with AD (Alzheimer's disease) and 19 healthy controls. We used a region of interest approach and correlated the ipsilateral silent period (iSP) and the resting motor threshold (RMT) from TMS with fractional anisotropy (FA) and mean diffusivity (MD) values of the corpus callosum and corticospinal tract. AD patients showed significant reductions of FA in intracortical projecting fibre tracts compared to controls and widespread increases in MD. TMS data showed increased latency of iSP in AD patients and a decreased RMT, indicating decreased motor cortical inhibition. Although both TMS and DTI metrics were prominently altered in AD patients, impaired white matter integrity was not associated with increased iSP latency or reduced RMT, as correlation of TMS parameters with FA and MD values in the a priori defined regions showed no significant effects. Therefore, we argue that beside the direct degeneration of the underlying fibre tracts, other pathophysiological mechanisms may account for the observation of decreased transcallosal inhibition and increased motor excitability in AD.
Collapse
Affiliation(s)
- Martin Wegrzyn
- DZNE, German Centre for Neurodegenerative Diseases, Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lanza G, Bella R, Giuffrida S, Cantone M, Pennisi G, Spampinato C, Giordano D, Malaguarnera G, Raggi A, Pennisi M. Preserved transcallosal inhibition to transcranial magnetic stimulation in nondemented elderly patients with leukoaraiosis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:351680. [PMID: 23984349 PMCID: PMC3741902 DOI: 10.1155/2013/351680] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/24/2013] [Accepted: 07/14/2013] [Indexed: 02/07/2023]
Abstract
Structural corpus callosum (CC) changes in patients with leukoaraiosis (LA) are significantly associated with cognitive and motor impairment. The aim of this study is to investigate the transcallosal fibers functioning by means of transcranial magnetic stimulation (TMS) in elderly patients with LA. The resting motor threshold (rMT), the motor-evoked potentials (MEPs), and the controlateral (cSP) and ipsilateral silent periods (iSP) were determined using single-pulse TMS in 15 patients and 15 age-matched controls. The neuropsychological profile and the vascular burden at brain magnetic resonance imaging (MRI) were concomitantly explored. Patients reported abnormal scores at tests evaluating executive control functions. No significant difference was found in TMS measures of intra- and intercortical excitability. No CC lesion was evident at MRI. Transcallosal inhibitory mechanisms to TMS seem to be spared in LA patients, a finding which is in line with neuroimaging features and suggests a functional integrity of the CC despite the ischemic interruption of corticosubcortical loops implicated in cognition and behavior. The observed neurophysiological finding differs from that reported in degenerative dementia, even in the preclinical or early stage. In our group of patients, the pure extent of LA is more related to impairment of frontal lobe abilities rather than functional callosal changes.
Collapse
Affiliation(s)
- Giuseppe Lanza
- 1“G. F. Ingrassia” Department, Section of Neurosciences, University of Catania, 78 Via Santa Sofia, 95123 Catania, Italy
| | - Rita Bella
- 1“G. F. Ingrassia” Department, Section of Neurosciences, University of Catania, 78 Via Santa Sofia, 95123 Catania, Italy
- *Rita Bella:
| | - Salvatore Giuffrida
- 1“G. F. Ingrassia” Department, Section of Neurosciences, University of Catania, 78 Via Santa Sofia, 95123 Catania, Italy
| | - Mariagiovanna Cantone
- 2Department of Neurology I.C., Oasi Institute (IRCCS), 73 Via Conte Ruggiero, 94018 Troina, Italy
| | - Giovanni Pennisi
- 1“G. F. Ingrassia” Department, Section of Neurosciences, University of Catania, 78 Via Santa Sofia, 95123 Catania, Italy
| | - Concetto Spampinato
- 3Department of Electrical, Electronics and Informatics Engineering, University of Catania, 6 Viale Andrea Doria, 95125 Catania, Italy
| | - Daniela Giordano
- 3Department of Electrical, Electronics and Informatics Engineering, University of Catania, 6 Viale Andrea Doria, 95125 Catania, Italy
| | - Giulia Malaguarnera
- 1“G. F. Ingrassia” Department, Section of Neurosciences, University of Catania, 78 Via Santa Sofia, 95123 Catania, Italy
| | - Alberto Raggi
- 4Unit of Neurology, Morgagni-Pierantoni Hospital, 34 Via Carlo Forlanini, 47121 Forlì, Italy
| | - Manuela Pennisi
- 5Department of Chemistry, University of Catania, 6 Viale Andrea Doria, 95125 Catania, Italy
| |
Collapse
|