1
|
Deng IB, Follett J, Fox JD, Wall S, Farrer MJ. Characterization of Dnajc12 knockout mice, a model of hypodopaminergia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602343. [PMID: 39026821 PMCID: PMC11257452 DOI: 10.1101/2024.07.06.602343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Homozygous DNAJC12 c.79-2A>G (p. V27Wfs*14) loss-of-function mutations were first reported as a cause of young-onset Parkinson's disease. However, bi-allelic autosomal recessive pathogenic variants in DNAJC12 may lead to an alternative constellation of neurological features, including infantile dystonia, developmental delay, intellectual disability and neuropsychiatric disorders. DNAJC12 is understood to co-chaperone aromatic amino acid hydroxylases to foster the synthesis of biogenic amines. In vitro, we discover overexpressed DNAJC12 forms a complex with guanine triphosphate cyclohydrolase 1 (GCH1), the rate-limiting enzyme in the synthesis of tetrahydrobiopterin, a cofactor paramount for biogenic amines synthesis. We also confirm DNAJC12's interaction with tyrosine (TH) and tryptophan hydroxylase (TPH), which are rate-limiting enzymes for synthesis of biogenic amines dopamine (DA) and serotonin (5-HT). In-vitro knock-down of DNAJC12 with a siRNA destabilizes the DNAJC12-TH-GCH1 complex, reducing GCH1 levels, whereas reciprocal overexpression of both TH and GCH1 increases endogenous DNAJC12, alluding to the significance of modulating the DNAJC12-TH-GCH1 complex as a therapy for DNAJC12 and other biogenic amine disorders. We extend these investigations to a Cre-conditional knock-out mice (cDKO) in which loxP sites flanking Dnajc12 exon 2 enable its excision by cre-recombinase. With germline Cre expression, we have created a constitutive Dnajc12 knock-out (DKO). DKO mice exhibit reduced locomotion/ exploratory behavior at 3 months in automated open-field testing, accompanied by increased plasma phenylalanine which is a cardinal feature of patients with pathogenic DNAJC12 variants. In striatal tissue, total DA and 5-HT, their metabolites, and electrically-evoked DA release are all reduced. Biochemical alterations in synaptic proteins are also apparent, with enhanced phosphorylation of Th pSer31 and pSer40 reflecting biological compensation. Most immediately, cDKO and DKO mice present models to develop and refine therapeutic approaches for biogenic amines disorders, including dystonia and parkinsonism. They will also enable the pleiotropic functions of biogenic amines (including DA), usually synthesized in the brain or periphery, to be separated.
Collapse
|
2
|
Douma EH, Stoop J, Lingl MVR, Smidt MP, van der Heide LP. Phosphodiesterase inhibition and Gucy2C activation enhance tyrosine hydroxylase Ser40 phosphorylation and improve 6-hydroxydopamine-induced motor deficits. Cell Biosci 2024; 14:132. [PMID: 39456033 PMCID: PMC11515495 DOI: 10.1186/s13578-024-01312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Parkinson's disease is characterized by a progressive loss of dopaminergic neurons in the nigrostriatal pathway, leading to dopamine deficiency and motor impairments. Current treatments, such as L-DOPA, provide symptomatic relief but result in off-target effects and diminished efficacy over time. This study explores an alternative approach by investigating the activation of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Specifically, we explore the effects of phosphodiesterase (PDE) inhibition and guanylate cyclase-C (GUCY2C) activation on tyrosine hydroxylase Ser40 phosphorylation and their impact on motor behavior in a 6-hydroxydopamine (6-OHDA) Parkinson's disease model. RESULTS Our findings demonstrate that increasing cyclic nucleotide levels through PDE inhibition and GUCY2C activation significantly enhances tyrosine hydroxylase Ser40 phosphorylation. In a Pitx3-deficient mouse model, which mimics the loss of dopaminergic neurons seen in Parkinson's disease, Ser40 phosphorylation remained manipulable despite reduced tyrosine hydroxylase protein levels. Moreover, we observed no evidence of tyrosine hydroxylase degradation due to Ser40 phosphorylation, challenging previous reports. Furthermore, both PDE inhibition and GUCY2C activation resulted in improved motor behavior in the 6-OHDA Parkinson's disease mouse model, highlighting the potential therapeutic benefits of these approaches. CONCLUSIONS This study underscores the therapeutic potential of enhancing tyrosine hydroxylase Ser40 phosphorylation to improve motor function in Parkinson's disease. Both PDE inhibition and GUCY2C activation represent promising non-invasive strategies to modulate endogenous dopamine biosynthesis and address motor deficits. These findings suggest that targeting cyclic nucleotide pathways could lead to novel therapeutic approaches, either as standalone treatments or in combination with existing therapies like L-DOPA, aiming to provide more durable symptom relief and potentially mitigate neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Erik H Douma
- Macrobian-Biotech B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Parkinnova Therapeutics B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jesse Stoop
- Macrobian-Biotech B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Matthijs V R Lingl
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lars P van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Li X, He E, Chen G, Cao X, Zhao L, Xu X, Fu Z, Qiu H. Intergenerational neurotoxicity of polystyrene nanoplastics in offspring mice is mediated by dysfunctional microbe-gut-brain axis. ENVIRONMENT INTERNATIONAL 2024; 192:109026. [PMID: 39321539 DOI: 10.1016/j.envint.2024.109026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Nanoplastics (NPs) are ubiquitous in daily life, posing potential risks to the environment and human. While their negative effects on parental organisms have been extensively studied, intergenerational effects are still in the early stages of investigation. Here, we aimed to investigate the impact of maternal exposure to an environmentally relevant level of polystyrene NPs (PSNPs, 100 nm) during gestation and lactation (∼32 days, 50 μg/mouse/day) on neurotoxicity mediated by the microbe-gut-brain axis in offspring mice. Maternal PSNPs exposure significantly increased brain TNF-α level and microglia by 1.43 and 1.48 folds respectively, compared to control, accompanied by nuclear pyknosis and cell vacuolization in cortex and hippocampus. Targeted neurotransmitter metabolomics analysis revealed dysregulation in dopamine and serotonin metabolism. Specifically, dopamine levels increased significantly from 0.007 ng/L to 0.015 ng/L, while N-acetylseroton and 3,4-dihydroxyphenylacetic acid decreased significantly from 0.002 and 0.929 ng/L to 0.001 and 0.680 ng/L, respectively. Through a combination of 16S rRNA sequencing and biochemical analysis, we discovered that maternal PSNPs exposure led to a depletion of anti-inflammatory bacteria and an enrichment of pro-inflammatory bacteria resulting in intestinal barrier damage, elevated levels of lipopolysaccharide in blood, and subsequent activation of neuroinflammation. Meanwhile, gut bacteria dysbiosis interfered with communication between gut and brain by dysregulating neurotransmitter synthesis, as evidenced by significant associations between neurotransmitter-related bacteria (Akkermansia, Family_XIII_AD3011_group, Lachnoclostridium) and dopamine/serotonin related metabolites. Furthermore, transcriptional alterations in dopamine and serotonin related pathways were observed in the enteric nervous system, suggesting abnormal signal transduction from gut to brain contributes to neurotoxicity. This study provides new insights into NPs-induced neurotoxicity within the context of microbe-gut-brain axis and highlights the risk of cerebral dysfunction in offspring with maternal NPs exposure.
Collapse
Affiliation(s)
- Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Guangquan Chen
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhuozhong Fu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Bulbule S, Gottschalk CG, Drosen ME, Peterson D, Arnold LA, Roy A. Dysregulation of tetrahydrobiopterin metabolism in myalgic encephalomyelitis/chronic fatigue syndrome by pentose phosphate pathway. J Cent Nerv Syst Dis 2024; 16:11795735241271675. [PMID: 39161795 PMCID: PMC11331476 DOI: 10.1177/11795735241271675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024] Open
Abstract
Background Tetrahydrobiopterin (BH4) and its oxidized derivative dihydrobiopterin (BH2) were found to be strongly elevated in ME/CFS patients with orthostatic intolerance (ME + OI). Objective However, the molecular mechanism of biopterin biogenesis is poorly understood in ME + OI subjects. Here, we report that the activation of the non-oxidative pentose phosphate pathway (PPP) plays a critical role in the biogenesis of biopterins (BH4 and BH2) in ME + OI subjects. Research Design and Results Microarray-based gene screening followed by real-time PCR-based validation, ELISA assay, and finally enzyme kinetic studies of glucose-6-phosphate dehydrogenase (G6PDH), transaldolase (TALDO1), and transketolase (TK) enzymes revealed that the augmentation of anaerobic PPP is critical in the regulations of biopterins. To further investigate, we devised a novel cell culture strategy to induce non-oxidative PPP by treating human microglial cells with ribose-5-phosphate (R5P) under a hypoxic condition of 85%N2/10%CO2/5%O2 followed by the analysis of biopterin metabolism via ELISA, immunoblot, and dual immunocytochemical analyses. Moreover, the siRNA knocking down of the taldo1 gene strongly inhibited the bioavailability of phosphoribosyl pyrophosphate (PRPP), reduced the expressions of purine biosynthetic enzymes, attenuated GTP cyclohydrolase 1 (GTPCH1), and suppressed subsequent production of BH4 and its metabolic conversion to BH2 in R5P-treated and hypoxia-induced C20 human microglia cells. These results confirmed that the activation of non-oxidative PPP is indeed required for the upregulation of both BH4 and BH2 via the purine biosynthetic pathway. To test the functional role of ME + OI plasma-derived biopterins, exogenously added plasma samples of ME + OI plasma with high BH4 upregulated inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in human microglial cells indicating that the non-oxidative PPP-induced-biopterins could stimulate inflammatory response in ME + OI patients. Conclusion Taken together, our current research highlights that the induction of non-oxidative PPP regulates the biogenesis of biopterins contributing to ME/CFS pathogenesis.
Collapse
Affiliation(s)
- Sarojini Bulbule
- Research and Development Laboratory, Simmaron Research Institute, Milwaukee, WI, USA
| | - Carl Gunnar Gottschalk
- Research and Development Laboratory, Simmaron Research Institute, Milwaukee, WI, USA
- Simmaron Research Institute, Incline Village, NV, USA
| | - Molly E. Drosen
- Research and Development Laboratory, Simmaron Research Institute, Milwaukee, WI, USA
| | | | - Leggy A. Arnold
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Avik Roy
- Research and Development Laboratory, Simmaron Research Institute, Milwaukee, WI, USA
- Simmaron Research Institute, Incline Village, NV, USA
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
5
|
Tai MDS, Gamiz-Arco G, Martinez A. Dopamine synthesis and transport: current and novel therapeutics for parkinsonisms. Biochem Soc Trans 2024; 52:1275-1291. [PMID: 38813865 PMCID: PMC11346439 DOI: 10.1042/bst20231061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Parkinsonism is the primary type of movement disorder in adults, encompassing a set of clinical symptoms, including rigidity, tremors, dystonia, bradykinesia, and postural instability. These symptoms are primarily caused by a deficiency in dopamine (DA), an essential neurotransmitter in the brain. Currently, the DA precursor levodopa (synthetic L-DOPA) is the standard medication to treat DA deficiency, but it only addresses symptoms rather than provides a cure. In this review, we provide an overview of disorders associated with DA dysregulation and deficiency, particularly Parkinson's disease and rare inherited disorders leading predominantly to dystonia and/or parkinsonism, even in childhood. Although levodopa is relatively effective for the management of motor dysfunctions, it is less effective for severe forms of parkinsonism and is also associated with side effects and a loss of efficacy over time. We present ongoing efforts to reinforce the effect of levodopa and to develop innovative therapies that target the underlying pathogenic mechanisms affecting DA synthesis and transport, increasing neurotransmission through disease-modifying approaches, such as cell-based therapies, nucleic acid- and protein-based biologics, and small molecules.
Collapse
Affiliation(s)
| | - Gloria Gamiz-Arco
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, 5020 Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
6
|
Yao JY, Li L, Xu JX, Liu YH, Shi J, Yu XQ, Kong QQ, Li K. Real-Time Monitoring of Tyrosine Hydroxylase Activity with a Ratiometric Fluorescent Probe. Anal Chem 2024; 96:7082-7090. [PMID: 38652135 DOI: 10.1021/acs.analchem.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Parkinson's disease (PD) represents the second most widespread neurodegenerative disease, and early monitoring and diagnosis are urgent at present. Tyrosine hydroxylase (TH) is a key enzyme for producing dopamine, the levels of which can serve as an indicator for assessing the severity and progression of PD. This renders the specific detection and visualization of TH a strategically vital way to meet the above demands. However, a fluorescent probe for TH monitoring is still missing. Herein, three rationally designed wash-free ratiometric fluorescent probes were proposed. Among them, TH-1 exhibited ideal photophysical properties and specific dual-channel bioimaging of TH activity in SH-SY5Y nerve cells. Moreover, the probe allowed for in vivo imaging of TH activity in zebrafish brain and living striatal slices of mice. Overall, the ratiometric fluorescent probe TH-1 could serve as a potential tool for real-time monitoring of PD in complex biosystems.
Collapse
Affiliation(s)
- Jia-Yi Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Lu Li
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ji-Xuan Xu
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jing Shi
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Qing-Quan Kong
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
7
|
Ngando FJ, Zhang X, Qu H, Xiao J, Ren L, Yang F, Feng Y, Shang Y, Chen S, Zhang C, Guo Y. Age determination of Chrysomya megacephala (Diptera: Calliphoridae) using lifespan patterns, gene expression, and pteridine concentration under constant and variable temperatures. Forensic Sci Int 2024; 354:111916. [PMID: 38141350 DOI: 10.1016/j.forsciint.2023.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae), is a blowfly species widely studied in medical, veterinary, and entomological research. Our study examined the impact of constant (15, 20, 25, 30, and 35 °C) and variable (ranging from 21.0 to 25.4 °C, with an average of 23.31 °C) temperatures on the development and larval body length of C. megacephala. Additionally, we analyzed the age of the adult C. megacephala through pteridine content and related metabolic genes analysis. Our findings revealed three distinct growth patterns: isomorphen diagram, isomegalen diagram, and thermal accumulated models. At constant temperatures of 15, 20, 25, 30, and 35 °C, egg-hatching times were 44.5 ± 8.9, 26.7 ± 4.6, 12.6 ± 1.1, 11.0 ± 1.0, and 9.9 ± 1.9 h, respectively, while it was 15.3 ± 5.9 h at variable temperatures. The total development times from oviposition to adult eclosion in C. megacephala required 858.1 ± 69.2, 362.3 ± 5.9, 289.6 ± 17.8, 207.3 ± 9.3, and 184.7 ± 12.1 h at constant temperatures of 15, 20, 25, 30, and 35 °C, respectively. This duration was extended to 282.0 ± 64.1 h under variable temperatures. However, no significant differences were found in hatching times and the total developmental durations between 25 °C and variable temperatures. A developmental threshold temperature (D0) of 9.90 ± 0.77 °C and a thermal summation constant (K) of 4244.0 ± 347.0° hours were ascertained. Pteridine content patterns varied significantly across constant temperatures, but not between 25 °C and variable temperatures. Sex and temperature were identified as the primary factors influencing pteridine levels in the head of C. megacephala. Gene expression associated with pteridine metabolism decreased following adult eclosion, matching with increased pteridine concentration. Further investigations are needed to explore the use of pteridine cofactors for age-grading adult necrophagous flies. These findings provide valuable insights into the lifespan of C. megacephala, thereby offering valuable groundwork for forthcoming investigations and PMImin determination.
Collapse
Affiliation(s)
- Fernand Jocelin Ngando
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Hongke Qu
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Jiao Xiao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yakai Feng
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Sile Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
8
|
Gupta P, Kumar R. GTP cyclohydroxylase1 (GCH1): Role in neurodegenerative diseases. Gene 2023; 888:147749. [PMID: 37652170 DOI: 10.1016/j.gene.2023.147749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
GCH1 gene provides directions for the synthesis of GTP cyclohydrolase 1 which regulates the formation of Tetrahydrobiopterin (BH4). BH4 is a crucial cofactor for essential neurotransmitters synthesis such as dopamine, serotonin and nitric oxide synthases. Deficiency of GCH1 limits the synthesis of BH4 which is responsible for neuropsychiatric diseases such as dopa-responsive dystonia, hyperalaninemia, Parkinson's disease and depression. Few single nucleotide polymorphisms of GCH1 gene are also responsible for pain in sickle cell disease. Furthermore, GCH1 regulates NO activity which controls the blood pressure, vasodilatory functions and oxidative stress. Understanding the therapeutic implications of targeting GCH1 which holds promise for treating various diseases. Novel therapeutic strategies could involve small molecule drugs or gene therapy techniques that enhance GCH1 expression or activity.
Collapse
Affiliation(s)
- Parul Gupta
- ICMR-National Institute of Research in Tribal Health, India
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, India.
| |
Collapse
|
9
|
Kawahata I, Fukunaga K. Pathogenic Impact of Fatty Acid-Binding Proteins in Parkinson's Disease-Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2023; 24:17037. [PMID: 38069360 PMCID: PMC10707307 DOI: 10.3390/ijms242317037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition characterized by motor dysfunction resulting from the degeneration of dopamine-producing neurons in the midbrain. This dopamine deficiency gives rise to a spectrum of movement-related symptoms, including tremors, rigidity, and bradykinesia. While the precise etiology of Parkinson's disease remains elusive, genetic mutations, protein aggregation, inflammatory processes, and oxidative stress are believed to contribute to its development. In this context, fatty acid-binding proteins (FABPs) in the central nervous system, FABP3, FABP5, and FABP7, impact α-synuclein aggregation, neurotoxicity, and neuroinflammation. These FABPs accumulate in mitochondria during neurodegeneration, disrupting their membrane potential and homeostasis. In particular, FABP3, abundant in nigrostriatal dopaminergic neurons, is responsible for α-synuclein propagation into neurons and intracellular accumulation, affecting the loss of mesencephalic tyrosine hydroxylase protein, a rate-limiting enzyme of dopamine biosynthesis. This review summarizes the characteristics of FABP family proteins and delves into the pathogenic significance of FABPs in the pathogenesis of Parkinson's disease. Furthermore, it examines potential novel therapeutic targets and early diagnostic biomarkers for Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
- BRI Pharma Inc., Sendai 982-0804, Japan
| |
Collapse
|
10
|
Kono H, Hara S, Furuta T, Ichinose H. Binding profile of quinonoid-dihydrobiopterin to quinonoid-dihydropteridine reductase examined by in silico and in vitro analyses. J Biochem 2023; 174:441-450. [PMID: 37540845 DOI: 10.1093/jb/mvad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023] Open
Abstract
Quinonoid dihydropteridine reductase (QDPR) catalyses the reduction of quinonoid-form dihydrobiopterin (qBH2) to tetrahydrobiopterin (BH4). BH4 metabolism is a drug target for neglected tropical disorders because trypanosomatid protozoans, including Leishmania and Trypanosoma, require exogenous sources of biopterin for growth. Although QDPR is a key enzyme for maintaining intracellular BH4 levels, the precise catalytic properties and reaction mechanisms of QDPR are poorly understood due to the instability of quinonoid-form substrates. In this study, we analysed the binding profile of qBH2 to human QDPR in combination with in silico and in vitro methods. First, we performed docking simulation of qBH2 to QDPR to obtain possible binding modes of qBH2 at the active site of QDPR. Then, among them, we determined the most plausible binding mode using molecular dynamics simulations revealing its atomic-level interactions and confirmed it with the in vitro assay of mutant enzymes. Moreover, it was found that not only qBH2 but also quinonoid-form dihydrofolate (qDHF) could be potential physiological substrates for QDPR, suggesting that QDPR may be a bifunctional enzyme. These findings in this study provide important insights into biopterin and folate metabolism and would be useful for developing drugs for neglected tropical diseases.
Collapse
Key Words
- molecular dynamics
- pteridine reductase
- quinonoid-dihydropteridine reductase
- tetrahydrobiopterinAbbreviations:
AAAH, aromatic aminoacid hydroxylase;
BH2, dihydrobiopterin; BH4, tetrahydrobiopterin; DHFR, dihydrofolate reductase; NADH, nicotinamide adenine dinucleotide; NAM, nicotinamide; MD, molecular dynamics; PT, pterin; PTR1, pteridine reductase 1; qBH2; quinonoid dihydrobiopterin; qDHF, quinonoid dihydrofolate; QDPR, quinonoid dihydropteridine reductase; SDR, short-chain dehydrogenase/reductase; THF, tetrahydrofolate
Collapse
Affiliation(s)
- Haruka Kono
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B7, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Satoshi Hara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B7, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B7, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B7, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
11
|
Huerta-Canseco C, Caba M, Camacho-Morales A. Obesity-mediated Lipoinflammation Modulates Food Reward Responses. Neuroscience 2023; 529:37-53. [PMID: 37591331 DOI: 10.1016/j.neuroscience.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Accumulation of white adipose tissue (WAT) during obesity is associated with the development of chronic low-grade inflammation, a biological process known as lipoinflammation. Systemic and central lipoinflammation accumulates pro-inflammatory cytokines including IL-6, IL-1β and TNF-α in plasma and also in brain, disrupting neurometabolism and cognitive behavior. Obesity-mediated lipoinflammation has been reported in brain regions of the mesocorticolimbic reward circuit leading to alterations in the perception and consumption of ultra-processed foods. While still under investigation, lipoinflammation targets two major outcomes of the mesocorticolimbic circuit during food reward: perception and motivation ("Wanting") and the pleasurable feeling of feeding ("Liking"). This review will provide experimental and clinical evidence supporting the contribution of obesity- or overnutrition-related lipoinflammation affecting the mesocorticolimbic reward circuit and enhancing food reward responses. We will also address neuroanatomical targets of inflammatory profiles that modulate food reward responses during obesity and describe potential cellular and molecular mechanisms of overnutrition linked to addiction-like behavior favored by brain lipoinflammation.
Collapse
Affiliation(s)
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico; Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico.
| |
Collapse
|
12
|
Liu X, Yang M, Liu R, Zhou F, Zhu H, Wang X. The impact of Parkinson's disease-associated gut microbiota on the transcriptome in Drosophila. Microbiol Spectr 2023; 11:e0017623. [PMID: 37754772 PMCID: PMC10581176 DOI: 10.1128/spectrum.00176-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people, and many studies have confirmed that the disorder of gut microbiota is involved in the pathophysiological process of PD. However, the molecular mechanism of gut microbiota in regulating the pathogenesis of PD is still lacking. In this study, to investigate the impact of PD-associated gut microbiota on host transcriptome, we established various PD models with fecal microbiota transplantation (FMT) in the model organism Drosophila followed by integrative data analysis of microbiome and transcriptome. We first constructed rotenone-induced PD models in Drosophila followed by FMT in different groups. Microbial analysis by 16S rDNA sequencing showed that gut microbiota from PD Drosophila could affect bacterial structure of normal Drosophila, and gut microbiota from normal Drosophila could affect bacterial structure of PD Drosophila. Transcriptome analysis revealed that PD-associated gut microbiota influenced expression patterns of genes enriched in neuroactive ligand-receptor interaction, lysosome, and diverse metabolic pathways. Importantly, to verify our findings, we transplanted Drosophila with fecal samples from clinical PD patients. Compared to the control, Drosophila transplanted with fecal samples from PD patients had reduced microbiota Acetobacter and Lactobacillus, and differentially expressed genes enriched in diverse metabolic pathways. In summary, our results reveal the influence of PD-associated gut microbiota on host gene expression, and this study can help better understand the link between gut microbiota and PD pathogenesis through gut-brain axis. IMPORTANCE Gut microbiota plays important roles in regulating host gene expression and physiology through complex mechanisms. Recently, it has been suggested that disorder of gut microbiota is involved in the pathophysiological process of Parkinson's disease (PD). However, the molecular mechanism of gut microbiota in regulating the pathogenesis of PD is still lacking. In this study, to investigate the impact of PD-associated gut microbiota on host transcriptome, we established various PD models with fecal microbiota transplantation in the model organism Drosophila followed by integrative data analysis of microbiome and transcriptome. We also verified our findings by transplanting Drosophila with fecal samples from clinical PD patients. Our results demonstrated that PD-associated gut microbiota can induce differentially expressed genes enriched in diverse metabolic pathways. This study can help better understand the link between gut microbiota and PD pathogenesis through gut-brain axis.
Collapse
Affiliation(s)
- Xin Liu
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Meng Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Runzhou Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fan Zhou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Haibing Zhu
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou Panyu Central Hospital, Guangzhou, China
- Department of Psychiatry, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Xiaoyun Wang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
Wang Y, Wu S, Li Q, Sun H, Wang H. Pharmacological Inhibition of Ferroptosis as a Therapeutic Target for Neurodegenerative Diseases and Strokes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300325. [PMID: 37341302 PMCID: PMC10460905 DOI: 10.1002/advs.202300325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Emerging evidence suggests that ferroptosis, a unique regulated cell death modality that is morphologically and mechanistically different from other forms of cell death, plays a vital role in the pathophysiological process of neurodegenerative diseases, and strokes. Accumulating evidence supports ferroptosis as a critical factor of neurodegenerative diseases and strokes, and pharmacological inhibition of ferroptosis as a therapeutic target for these diseases. In this review article, the core mechanisms of ferroptosis are overviewed and the roles of ferroptosis in neurodegenerative diseases and strokes are described. Finally, the emerging findings in treating neurodegenerative diseases and strokes through pharmacological inhibition of ferroptosis are described. This review demonstrates that pharmacological inhibition of ferroptosis by bioactive small-molecule compounds (ferroptosis inhibitors) could be effective for treatments of these diseases, and highlights a potential promising therapeutic avenue that could be used to prevent neurodegenerative diseases and strokes. This review article will shed light on developing novel therapeutic regimens by pharmacological inhibition of ferroptosis to slow down the progression of these diseases in the future.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care MedicineAerospace Center HospitalPeking University Aerospace School of Clinical MedicineBeijing100049P. R. China
| | - Shuang Wu
- Department of NeurologyZhongnan Hospital of Wuhan UniversityWuhan430000P. R. China
| | - Qiang Li
- Department of NeurologyThe Affiliated Hospital of Chifeng UniversityChifeng024005P. R. China
| | - Huiyan Sun
- Chifeng University Health Science CenterChifeng024000P. R. China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| |
Collapse
|
14
|
Li M, Zhang J, Jiang L, Wang W, Feng X, Liu M, Yang D. Neuroprotective effects of morroniside from Cornus officinalis sieb. Et zucc against Parkinson's disease via inhibiting oxidative stress and ferroptosis. BMC Complement Med Ther 2023; 23:218. [PMID: 37393274 PMCID: PMC10314491 DOI: 10.1186/s12906-023-03967-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/19/2023] [Indexed: 07/03/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenera-tive disorder after Alzheimer disease accompanied by the death of dopaminergic neurons and brain nigrostriatal mitochondrial damage in the elderly population. The features of the disease include tremor, rigidity, postural instability, and motor retardation. The pathogenesis of Parkinson's disease is complex, and abnormal lipid metabolism resulting in ferroptosis due to the excessive accumulation of free radicals from oxidative stress in the substantia nigra of the brain was thought to be one of the factors causing the disease. Morroniside has been reported to have significant neuroprotective effects, although it has not been studied in PD. Therefore, this study focused on determining the neuroprotective effects of morroniside (25, 50, and 100 mg/kg) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg)-induced mice models of PD and explored 1-methyl-4-phenylpyridinium MPP+-induced ferroptosis in PC12 cells. Morroniside restored impaired motor function in the PD mice models while reducing neuronal injury. The activation of nuclear factor erythroid 2-related factor 2/antioxidant response elements (Nrf2/ARE) by morroniside promoted antioxidation, the content of reducing agent glutathione (GSH) increased, and the level of the lipid metabolite malondialdehyde (MDA) decreased. Notably, morroniside inhibited ferroptosis in substantia nigra of the brain and PC12 cells, reduced iron levels, and upregulated the expression of the iron-regulated proteins glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), ferritin heavy chain 1 (FTH-1), and ferroportin (FPN). More importantly, morroniside repaired the mitochondrial damage, restored the mitochondrial respiratory chain, and inhibited the production of reactive oxygen species (ROS). These data indicated that morroniside could activate the Nrf2/ARE signaling pathway to increase the antioxidant capacity, thereby inhibiting abnormal lipid metabolism and protecting dopaminergic neurons from ferroptosis in PD.
Collapse
Affiliation(s)
- Mao Li
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Junli Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianyan Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wujun Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xianrong Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Meijun Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dongdong Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
15
|
Gottschalk CG, Whelan R, Peterson D, Roy A. Detection of Elevated Level of Tetrahydrobiopterin in Serum Samples of ME/CFS Patients with Orthostatic Intolerance: A Pilot Study. Int J Mol Sci 2023; 24:ijms24108713. [PMID: 37240059 DOI: 10.3390/ijms24108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is a multisystem chronic illness characterized by severe muscle fatigue, pain, dizziness, and brain fog. Many patients with ME/CFS experience orthostatic intolerance (OI), which is characterized by frequent dizziness, light-headedness, and feeling faint while maintaining an upright posture. Despite intense investigation, the molecular mechanism of this debilitating condition is still unknown. OI is often manifested by cardiovascular alterations, such as reduced cerebral blood flow, reduced blood pressure, and diminished heart rate. The bioavailability of tetrahydrobiopterin (BH4), an essential cofactor of endothelial nitric oxide synthase (eNOS) enzyme, is tightly coupled with cardiovascular health and circulation. To explore the role of BH4 in ME/CFS, serum samples of CFS patients (n = 32), CFS patients with OI only (n = 10; CFS + OI), and CFS patients with both OI and small fiber polyneuropathy (n = 12; CFS + OI + SFN) were subjected to BH4 ELISA. Interestingly, our results revealed that the BH4 expression is significantly high in CFS, CFS + OI, and CFS + OI + SFN patients compared to age-/gender-matched controls. Finally, a ROS production assay in cultured microglial cells followed by Pearson correlation statistics indicated that the elevated BH4 in serum samples of CFS + OI patients might be associated with the oxidative stress response. These findings suggest that the regulation of BH4 metabolism could be a promising target for understanding the molecular mechanism of CFS and CFS with OI.
Collapse
Affiliation(s)
- Carl Gunnar Gottschalk
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
- Simmaron Research and Development Laboratory, Chemistry Building, University of Wisconsin-Milwaukee, 3210 N Cramer Street, Suite # 214, Milwaukee, WI 53211, USA
| | - Ryan Whelan
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
| | - Daniel Peterson
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
- Sierra Internal Medicine, 920 Incline Way, Incline Village, NV 89451, USA
| | - Avik Roy
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
- Simmaron Research and Development Laboratory, Chemistry Building, University of Wisconsin-Milwaukee, 3210 N Cramer Street, Suite # 214, Milwaukee, WI 53211, USA
| |
Collapse
|
16
|
Eichwald T, da Silva LDB, Staats Pires AC, Niero L, Schnorrenberger E, Filho CC, Espíndola G, Huang WL, Guillemin GJ, Abdenur JE, Latini A. Tetrahydrobiopterin: Beyond Its Traditional Role as a Cofactor. Antioxidants (Basel) 2023; 12:1037. [PMID: 37237903 PMCID: PMC10215290 DOI: 10.3390/antiox12051037] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Tetrahydrobiopterin (BH4) is an endogenous cofactor for some enzymatic conversions of essential biomolecules, including nitric oxide, and monoamine neurotransmitters, and for the metabolism of phenylalanine and lipid esters. Over the last decade, BH4 metabolism has emerged as a promising metabolic target for negatively modulating toxic pathways that may result in cell death. Strong preclinical evidence has shown that BH4 metabolism has multiple biological roles beyond its traditional cofactor activity. We have shown that BH4 supports essential pathways, e.g., to generate energy, to enhance the antioxidant resistance of cells against stressful conditions, and to protect from sustained inflammation, among others. Therefore, BH4 should not be understood solely as an enzyme cofactor, but should instead be depicted as a cytoprotective pathway that is finely regulated by the interaction of three different metabolic pathways, thus assuring specific intracellular concentrations. Here, we bring state-of-the-art information about the dependency of mitochondrial activity upon the availability of BH4, as well as the cytoprotective pathways that are enhanced after BH4 exposure. We also bring evidence about the potential use of BH4 as a new pharmacological option for diseases in which mitochondrial disfunction has been implicated, including chronic metabolic disorders, neurodegenerative diseases, and primary mitochondriopathies.
Collapse
Affiliation(s)
- Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Lucila de Bortoli da Silva
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Ananda Christina Staats Pires
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Laís Niero
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Erick Schnorrenberger
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Clovis Colpani Filho
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Gisele Espíndola
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wei-Lin Huang
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Gilles J. Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - José E. Abdenur
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| |
Collapse
|
17
|
Hou L, Liu J, Sun F, Huang R, Chang R, Ruan Z, Wang Y, Zhao J, Wang Q. Integrin Mac1 mediates paraquat and maneb-induced learning and memory impairments in mice through NADPH oxidase-NLRP3 inflammasome axis-dependent microglial activation. J Neuroinflammation 2023; 20:42. [PMID: 36804009 PMCID: PMC9938991 DOI: 10.1186/s12974-023-02732-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/13/2023] [Indexed: 02/20/2023] Open
Abstract
INTRODUCTION The mechanisms of cognitive impairments in Parkinson's disease (PD) remain unknown. Accumulating evidence revealed that brain neuroinflammatory response mediated by microglial cells contributes to cognitive deficits in neuropathological conditions and macrophage antigen complex-1 (Mac1) is a key factor in controlling microglial activation. OBJECTIVES To explore whether Mac1-mediated microglial activation participates in cognitive dysfunction in PD using paraquat and maneb-generated mouse PD model. METHODS Cognitive performance was measured in wild type and Mac1-/- mice using Morris water maze test. The role and mechanisms of NADPH oxidase (NOX)-NLRP3 inflammasome axis in Mac1-mediated microglial dysfunction, neuronal damage, synaptic degeneration and phosphorylation (Ser129) of α-synuclein were explored by immunohistochemistry, Western blot and RT-PCR. RESULTS Genetic deletion of Mac1 significantly ameliorated learning and memory impairments, neuronal damage, synaptic loss and α-synuclein phosphorylation (Ser129) caused by paraquat and maneb in mice. Subsequently, blocking Mac1 activation was found to mitigate paraquat and maneb-elicited microglial NLRP3 inflammasome activation in both in vivo and in vitro. Interestingly, stimulating activation of NOX by phorbol myristate acetate abolished the inhibitory effects of Mac1 blocking peptide RGD on paraquat and maneb-provoked NLRP3 inflammasome activation, indicating a key role of NOX in Mac1-mediated NLRP3 inflammasome activation. Furthermore, NOX1 and NOX2, two members of NOX family, and downstream PAK1 and MAPK pathways were recognized to be essential for NOX to regulate NLRP3 inflammasome activation. Finally, a NLRP3 inflammasome inhibitor glybenclamide abrogated microglial M1 activation, neurodegeneration and phosphorylation (Ser129) of α-synuclein elicited by paraquat and maneb, which were accompanied by improved cognitive capacity in mice. CONCLUSIONS Mac1 was involved in cognitive dysfunction in a mouse PD model through NOX-NLRP3 inflammasome axis-dependent microglial activation, providing a novel mechanistic basis of cognitive decline in PD.
Collapse
Affiliation(s)
- Liyan Hou
- grid.411971.b0000 0000 9558 1426Dalian Medical University Library, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China ,grid.411971.b0000 0000 9558 1426National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044 China
| | - Jianing Liu
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Fuqiang Sun
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Ruixue Huang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Rui Chang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Zhengzheng Ruan
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Ying Wang
- grid.411971.b0000 0000 9558 1426School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044 China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China. .,School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
18
|
Dumbhare O, Gaurkar SS. A Review of Genetic and Gene Therapy for Parkinson's Disease. Cureus 2023; 15:e34657. [PMID: 36909056 PMCID: PMC9991874 DOI: 10.7759/cureus.34657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/05/2023] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a syndrome with deterioration of neurons, with its onset starting in the '20s, known as the young beginning of Parkinson's to the late inception of the ailment in the 60s. The majority of the environmental risk associated with PD is age. The pathophysiology of PD is related to the accretion of synuclein alpha (SNCA) protein leading to toxicity. This toxicity further leads to a depletion in dopamine levels, creating both motor and non-motor symptoms. PD is the combination of genetic and environmental risk factors. Linkage and association studies provided data on autosomal dominant and recessive genes linked to PD. Current treatment regimes involve using levodopa, catechol-O-methyl transferase inhibitors, anticholinergics, and monoamine oxidase B (MAO-B) inhibitors. Genetic treatment is done by identifying possible targets. Gene therapy includes silencing, replacing, or correcting the flawed gene with a good gene. This therapy has the advantage of eliminating significant PD symptoms with fewer to no adverse effects than conventional treatment. These targets are organized into disease-modifying or non-disease modifying. The distinction between these two is that disease-modifying treatment stops the degeneration of neurons, while non-disease modifying treatment involves dopaminergic enzyme expression. In non-modifying targets, aromatic L-amino acid decarboxylase (AADC) therapy is used but not as a standalone, so the presentation of AADC, tyrosine hydroxylase (TH), and GTP cyclohydrolase 1 (GCH) is done together as a tricistronic system. With these developments, a drug named prosavin is under clinical phase 1 trial. Disease-modifying targets involve glial cell-derived neurotrophic factor (GDNF). Direct GDNF delivery reduces PD symptoms. This GDNF infusion technique works with a tetracycline-controlled transactivator. Gene therapy introduction into the treatment of PD would be beneficial as there would be lesser adverse effects seen as linked with conventional treatment involving levodopa, MAO-B inhibitors, and anticholinergics, among a few. This article discusses the genetic basis and genetic model of therapy for PD.
Collapse
Affiliation(s)
- Omkar Dumbhare
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sagar S Gaurkar
- Otolaryngology - Head and Neck Surgery and Surgical Oncology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
19
|
LUHMES Cells: Phenotype Refinement and Development of an MPP +-Based Test System for Screening Antiparkinsonian Drugs. Int J Mol Sci 2023; 24:ijms24010733. [PMID: 36614176 PMCID: PMC9821222 DOI: 10.3390/ijms24010733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The low effectiveness of symptomatic pharmacotherapy for Parkinson's disease (PD), which compensates for dopamine (DA) deficiency under degeneration of nigrostriatal dopaminergic (DAergic) neurons, could apparently be improved with neuroprotective therapy, which slows down neurodegeneration and PD progression. For this, it is necessary to have a DAergic cell line for the development of a PD model to screen neuroprotectors. We used immortalized human embryonic mesencephalon LUHMES cells (LCs) differentiated into DAergic neurons. The aim of this study was to characterize the phenotype of differentiated LCs and develop an 1-methyl-4-phenylpyridinium iodide (MPP+)-based test system for screening neuroprotectors. Using polymerase chain reaction (PCR) and immunocytochemistry, it has been shown that all differentiated LCs express genes and synthesize proteins characteristic of all neurons (microtubule-associated protein 2, bIII-tubulin, synaptotagmin 1) and specifically of DAergic neurons (tyrosine hydroxylase, aromatic L-amino acid decarboxylase, DA transporter, vesicular monoamine transporter 2). Furthermore, LCs are able to produce a small amount of DA, but under special conditions. To assess the mechanisms of neurodegeneration and neuroplasticity under the influence of toxins and antiparkinsonian drugs, including neuroprotectors, we have developed an LCs-based MPP+ PD model and proposed an original panel of markers for testing functional and structural cell disorders.
Collapse
|
20
|
Ge PY, Qu SY, Ni SJ, Yao ZY, Qi YY, Zhao X, Guo R, Yang NY, Zhang QC, Zhu HX. Berberine ameliorates depression-like behavior in CUMS mice by activating TPH1 and inhibiting IDO1-associated with tryptophan metabolism. Phytother Res 2023; 37:342-357. [PMID: 36089660 DOI: 10.1002/ptr.7616] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 06/24/2022] [Accepted: 08/20/2022] [Indexed: 01/19/2023]
Abstract
Berberine, which is a potential antidepressant, exhibits definite efficiency in modulating the gut microbiota. Depressive behaviors in mice induced using chronic unpredictable mild stress (CUMS) stimulation were evaluated by behavioral experiments. The markers of neurons and synapses were measured using immunohistochemical staining. An enzyme-linked immunosorbent assay was adopted to analyze serum inflammatory cytokines levels and neurotransmitters were evaluated by LC-MS/MS. Untargeted metabolomics of tryptophan metabolism was further performed using LC-MS/MS. The target enzymes of berberine involved in tryptophan metabolism were assayed using AutoDock and GRMACS softwares. Then, antibiotics was utilized to induce intestinal flora disturbance. Berberine improved the depressive behaviors of mice in a microbiota-dependent manner. Increased neurons and synaptic plasticity were observed following berberine treatment. Meanwhile, berberine decreased serum levels of TNF-α, IL-1β, and IL-4 and increased levels of IL-10. Moreover, berberine induced retraction of the abnormal neurotransmitters and metabolomics assays revealed that berberine promoted tryptophan biotransformation into serotonin and inhibited the kynurenine metabolism pathway, which was attributed to the potential agonist of tryptophan 5-hydroxylase 1 (TPH1) and inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1). In conclusion, berberine improves depressive symptoms in CUMS-stimulated mice by targeting both TPH1 and IDO1, which are involved in tryptophan metabolism.
Collapse
Affiliation(s)
- Ping-Yuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Yue Qu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sai-Jia Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zeng-Ying Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi-Yu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nian-Yun Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Chun Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua-Xu Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
21
|
Salahi S, Mousavi MA, Azizi G, Hossein-Khannazer N, Vosough M. Stem Cell-based and Advanced Therapeutic Modalities for Parkinson's Disease: A Risk-effectiveness Patient-centered Analysis. Curr Neuropharmacol 2022; 20:2320-2345. [PMID: 35105291 PMCID: PMC9890289 DOI: 10.2174/1570159x20666220201100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Treatment of Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, is currently considered a challenging issue since it causes substantial disability, poor quality of life, and mortality. Despite remarkable progress in advanced conventional therapeutic interventions, the global burden of the disease has nearly doubled, prompting us to assess the riskeffectiveness of different treatment modalities. Each protocol could be considered as the best alternative treatment depending on the patient's situation. Prescription of levodopa, the most effective available medicine for this disorder, has been associated with many complications, i.e., multiple episodes of "off-time" and treatment resistance. Other medications, which are typically used in combination with levodopa, may have several adverse effects as well. As a result, the therapies that are more in line with human physiology and make the least interference with other pathways are worth investigating. On the other hand, remaining and persistent symptoms after therapy and the lack of effective response to the conventional approaches have raised expectations towards innovative alternative approaches, such as stem cell-based therapy. It is critical to not overlook the unexplored side effects of innovative approaches due to the limited number of research. In this review, we aimed to compare the efficacy and risk of advanced therapies with innovative cell-based and stemcell- based modalities in PD patients. This paper recapitulated the underlying factors/conditions, which could lead us to more practical and established therapeutic outcomes with more advantages and few complications. It could be an initial step to reconsider the therapeutic blueprint for patients with Parkinson's disease.
Collapse
Affiliation(s)
- Sarvenaz Salahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
22
|
Liu D, Liu Y, Wang R, Feng L, Xu L, Jin C. Metabolic profiling disturbance of PM 2.5 revealed by Raman spectroscopy and mass spectrometry-based nontargeted metabolomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74500-74511. [PMID: 35639313 DOI: 10.1007/s11356-022-20506-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) is an important risk factor affecting human health. Therefore, a quick method for finding metabolic targets in situ in ambient fine particulate matter is crucial. In this study, the impact of PM2.5 on human lung epithelial cells (A549) was investigated by Raman spectroscopy and mass spectrometry (MS)-based nontargeted metabolomics analysis. Raman detection indicated that exposure to PM2.5 reduced the levels of phenylalanine, tyrosine, and nucleotides. Metabolomics results not only demonstrated a significant decrease of the aforementioned metabolites but also added some important metabolite information that could not be detected by Raman spectroscopy. Our study demonstrated that Raman spectroscopy was an in situ, real-time, and rapid detection method for detecting metabolites, especially suitable for the assignment of phenylalanine/tyrosine and nucleotides, which play important roles in cellular growth. Moreover, the metabolic profiling changes observed upon PM2.5 treatment mainly involved phenylalanine, tyrosine metabolism, purine and pyrimidine metabolism, and energy metabolism, clearly demonstrating that PM2.5 can inhibit the synthesis of protein and DNA/RNA and reduce cellular energy supplies, further influencing cellular proliferation and other activities.
Collapse
Affiliation(s)
- Daojie Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yumin Liu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruibing Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengyu Jin
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
23
|
Gao H, Sun H, Yan N, Zhao P, Xu H, Zheng W, Zhang X, Wang T, Guo C, Zhong M. ATP13A2 Declines Zinc-Induced Accumulation of α-Synuclein in a Parkinson’s Disease Model. Int J Mol Sci 2022; 23:ijms23148035. [PMID: 35887392 PMCID: PMC9318580 DOI: 10.3390/ijms23148035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by the presence of Lewy bodies caused by α-synuclein. The imbalance of zinc homeostasis is a major cause of PD, promoting α-synuclein accumulation. ATP13A2, a transporter found in acidic vesicles, plays an important role in Zn2+ homeostasis and is highly expressed in Lewy bodies in PD-surviving neurons. ATP13A2 is involved in the transport of zinc ions in lysosomes and exosomes and inhibits the aggregation of α-synuclein. However, the potential mechanism underlying the regulation of zinc homeostasis and α-synuclein accumulation by ATP13A2 remains unexplored. We used α-synuclein-GFP transgenic mice and HEK293 α-synuclein-DsRed cell line as models. The spatial exploration behavior of mice was significantly reduced, and phosphorylation levels of α-synuclein increased upon high Zn2+ treatment. High Zn2+ also inhibited the autophagy pathway by reducing LAMP2a levels and changing the expression of LC3 and P62, by reducing mitochondrial membrane potential and increasing the expression of cytochrom C, and by activating the ERK/P38 apoptosis signaling pathway, ultimately leading to increased caspase 3 levels. These protein changes were reversed after ATP13A2 overexpression, whereas ATP13A2 knockout exacerbated α-synuclein phosphorylation levels. These results suggest that ATP13A2 may have a protective effect on Zn2+-induced abnormal aggregation of α-synuclein, lysosomal dysfunction, and apoptosis.
Collapse
Affiliation(s)
- Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Hehong Sun
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Nan Yan
- School of Medical Applied Technology, Shenyang Medical College, Shenyang 110034, China;
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen 518060, China;
| | - Wei Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, China Medical University, Shenyang 110122, China;
| | - Xiaoyu Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (H.G.); (H.S.); (P.Z.); (T.W.); (C.G.)
- Correspondence:
| |
Collapse
|
24
|
Peridontitis as a Risk Factor for Attention Deficit Hyperactivity Disorder: Possible Neuro-inflammatory Mechanisms. Neurochem Res 2022; 47:2925-2935. [PMID: 35764847 DOI: 10.1007/s11064-022-03650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
Periodontitis is a condition caused mostly by the creation of a biofilm by the bacterium P. gingivalis, which releases toxins and damages the tooth structure. Recent research studies have reported association between dental health and neuropsychiatric illnesses. Neuroinflammation triggered by the first systemic inflammation caused by the bacterium present in the oral cavities is a plausible explanation for such a relationship. Substantial amount of evidence supports the role of neuroinflammation and dysfunction of the dopaminergic system in the pathology of ADHD (Attention deficit hyperactivity disorders). Recent epidemiological, microbiological and inflammatory findings strengthen that, periodontal bacteria, which cause systemic inflammation can contribute to neuroinflammation and finally ADHD. Although both diseases are characterized by inflammation, the specific pathways and crosslink's between periodontitis and ADHD remain unknown. Here, the authors describe the inflammatory elements of periodontitis, how this dental illness causes systemic inflammation, and how this systemic inflammation contributes to deteriorating neuroinflammation in the evolution of ADHD. Therefore, the aim of this review is to present possible links and mechanisms that could confirm the evidence of this association.
Collapse
|
25
|
Zhang W, Li Z, Li Z, Sun T, He Z, Manyande A, Xu W, Xiang H. The Role of the Superior Cervical Sympathetic Ganglion in Ischemia Reperfusion-Induced Acute Kidney Injury in Rats. Front Med (Lausanne) 2022; 9:792000. [PMID: 35530034 PMCID: PMC9069004 DOI: 10.3389/fmed.2022.792000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Acute kidney injury (AKI) has been found to be a serious clinical problem with high morbidity and mortality, and is associated with acute inflammatory response and sympathetic activation that subsequently play an important role in the development of AKI. It is well known that the sympathetic nervous system (SNS) and immune system intensely interact and mutually control each other in order to maintain homeostasis in response to stress or injury. Evidence has shown that the superior cervical sympathetic ganglion (SCG) participates in the bidirectional network between the immune and the SNS, and that the superior cervical ganglionectomy has protective effect on myocardial infarction, however, the role of the SCG in the setting of renal ischemic reperfusion injury has not been studied. Here, we sought to determine whether or not the SCG modulates renal ischemic reperfusion (IR) injury in rats. Our results showed that bilateral superior cervical ganglionectomy (SCGx) 14 days before IR injury markedly reduced the norepinephrine (NE) in plasma, and down-regulated the increased expression of tyrosine hydroxylase (TH) in the kidney and hypothalamus. Sympathetic denervation by SCGx in the AKI group increased the level of blood urea nitrogen (BUN) and kidney injury molecule-1 (KIM-1), and exacerbated renal pathological damage. Sympathetic denervation by SCGx in the AKI group enhanced the expression of pro-inflammatory cytokines in plasma, kidney and hypothalamus, and increased levels of Bax in denervated rats with IR injury. In addition, the levels of purinergic receptors, P2X3R and P2X7R, in the spinal cord were up-regulated in the denervated rats of the IR group. In conclusion, these results demonstrate that the sympathetic denervation by SCGx aggravated IR-induced AKI in rats via enhancing the inflammatory response, thus, the activated purinergic signaling in the spinal cord might be the potential mechanism in the aggravated renal injury.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Anesthesiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Li
- Department of Anesthesiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiao Li
- Department of Anesthesiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tianning Sun
- Department of Anesthesiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigang He
- Department of Anesthesiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Weiguo Xu
- Department of Orthopedics, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weiguo Xu,
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hongbing Xiang,
| |
Collapse
|
26
|
Nagatsu T, Nakashima A, Watanabe H, Ito S, Wakamatsu K. Neuromelanin in Parkinson's Disease: Tyrosine Hydroxylase and Tyrosinase. Int J Mol Sci 2022; 23:4176. [PMID: 35456994 PMCID: PMC9029562 DOI: 10.3390/ijms23084176] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is an aging-related disease and the second most common neurodegenerative disease after Alzheimer's disease. The main symptoms of PD are movement disorders accompanied with deficiency of neurotransmitter dopamine (DA) in the striatum due to cell death of the nigrostriatal DA neurons. Two main histopathological hallmarks exist in PD: cytosolic inclusion bodies termed Lewy bodies that mainly consist of α-synuclein protein, the oligomers of which produced by misfolding are regarded to be neurotoxic, causing DA cell death; and black pigments termed neuromelanin (NM) that are contained in DA neurons and markedly decrease in PD. The synthesis of human NM is regarded to be similar to that of melanin in melanocytes; melanin synthesis in skin is via DOPAquinone (DQ) by tyrosinase, whereas NM synthesis in DA neurons is via DAquinone (DAQ) by tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). DA in cytoplasm is highly reactive and is assumed to be oxidized spontaneously or by an unidentified tyrosinase to DAQ and then, synthesized to NM. Intracellular NM accumulation above a specific threshold has been reported to be associated with DA neuron death and PD phenotypes. This review reports recent progress in the biosynthesis and pathophysiology of NM in PD.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Center for Research Promotion and Support, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Akira Nakashima
- Department of Physiological Chemistry, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.I.); (K.W.)
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.I.); (K.W.)
| |
Collapse
|
27
|
Li J, Xu S. Tilianin attenuates MPP+‑induced oxidative stress and apoptosis of dopaminergic neurons in a cellular model of Parkinson's disease. Exp Ther Med 2022; 23:293. [PMID: 35340873 PMCID: PMC8931633 DOI: 10.3892/etm.2022.11223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
The flavonoid tilianin is derived from the leaves of Dracocephalum moldavica L. amiales and has been proven to serve a neuroprotective role in cerebral ischemia. Therefore, the aim of the present study was to determine whether tilianin could prevent oxidative stress and the apoptosis of dopaminergic neurons in Parkinson's disease (PD). The dopaminergic neuron MES23.5 cell line was treated with 1-methyl-4-phenylpyridinium (MPP+) to construct a PD cell model. Following pretreatment with tilianin, the Cell Counting Kit-8 assay was used to assess cell viability. The protein and mRNA expression levels of tyrosine hydroxylase were determined using immunofluorescence, reverse transcription-quantitative PCR (RT-qPCR) and western blotting. mRNA and protein expression levels of inflammatory cytokines IL-6, IL-1β and TNF-α and oxidative stress-related enzymes manganese superoxide dismutase and catalase were also quantified using RT-qPCR and western blotting, respectively. Cell apoptotic rate was analyzed using the TUNEL assay and the expressions of apoptosis-related proteins Bcl-2, Bax and cleaved caspase-3 were detected by western blotting. MAPK signaling pathway-related protein expression levels were assessed via western blotting in MPP+-stimulated MES23.5 cells with or without tilianin pretreatment. Tilianin was demonstrated to exert no cytotoxic effects on MES23.5 cells and was able to prevent MPP+-induced reductions in cell viability. Pretreatment with tilianin also inhibited MPP+-induced inflammatory cytokine secretion, oxidative stress and apoptosis of MES23.5 cells. In addition, the protein expression levels of MAPK signaling pathway-related proteins were upregulated by MPP+, whereas pretreatment with tilianin downregulated these in a dose-dependent manner. The results of the present study indicated that tilianin may exert anti-inflammatory and antioxidant effects and inhibit the MAPK signaling pathway, which may ameliorate injury to dopaminergic neurons induced by PD.
Collapse
Affiliation(s)
- Jie Li
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou, Jiangsu 215009, P.R. China
| | - Sui Xu
- Department of Traditional Chinese Medicine, Huamu Community Health Service Center, Shanghai 200120, P.R. China
| |
Collapse
|
28
|
Yu XJ, Xiao T, Liu XJ, Li Y, Qi J, Zhang N, Fu LY, Liu KL, Li Y, Kang YM. Effects of Nrf1 in Hypothalamic Paraventricular Nucleus on Regulating the Blood Pressure During Hypertension. Front Neurosci 2021; 15:805070. [PMID: 34938159 PMCID: PMC8685333 DOI: 10.3389/fnins.2021.805070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
The incidence rate and mortality of hypertension increase every year. Hypothalamic paraventricular nucleus (PVN) plays a critical role on the pathophysiology of hypertension. It has been demonstrated that the imbalance of neurotransmitters including norepinephrine (NE), glutamate (Glu) and γ-aminobutyric acid (GABA) are closely related to sympathetic overactivity and pathogenesis of hypertension. N-methyl-D-aspartate receptor (NMDAR), consisting of GluN1 and GluN2 subunits, is considered to be a glutamate-gated ion channel, which binds to Glu, and activates neuronal activity. Studies have found that the synthesis of respiratory chain enzyme complex was affected and mitochondrial function was impaired in spontaneously hypertensive rats (SHR), further indicating that mitochondria is associated with hypertension. Nuclear respiratory factor 1 (Nrf1) is a transcription factor that modulates mitochondrial respiratory chain and is related to GluN1, GluN2A, and GluN2B promoters. However, the brain mechanisms underlying PVN Nrf1 modulating sympathoexcitation and blood pressure during the development of hypertension remains unclear. In this study, an adeno-associated virus (AAV) vector carrying the shRNA targeting rat Nrf1 gene (shNrf1) was injected into bilateral PVN of male rats underwent two kidneys and one clip to explore the role of Nrf1 in mediating the development of hypertension and sympathoexcitation. Administration of shNrf1 knocked down the expression of Nrf1 and reduced the expression of excitatory neurotransmitters, increased the expression of inhibitory neurotransmitters, and reduced the production of reactive oxygen species (ROS), and attenuated sympathoexcitation and hypertension. The results indicate that knocking down Nrf1 suppresses sympathoexcitation in hypertension by reducing PVN transcription of NMDAR subunits (GluN1, GluN2A, and GluN2B), rebalancing PVN excitatory and inhibitory neurotransmitters, inhibiting PVN neuronal activity and oxidative stress, and attenuating sympathetic activity.
Collapse
Affiliation(s)
- Xiao-Jing Yu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Tong Xiao
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Xiao-Jing Liu
- Department of Cardiology, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ying Li
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Jie Qi
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Nianping Zhang
- Department of Clinical Medicine, Shanxi Datong University School of Medicine, Datong, China
| | - Li-Yan Fu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Kai-Li Liu
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Yanjun Li
- Department of Microbiology and Immunology, Shanxi Datong University School of Medicine, Datong, China
| | - Yu-Ming Kang
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| |
Collapse
|
29
|
Ma K, Wu HY, Wang SY, Li BX. The Keap1/Nrf2-ARE signaling pathway is involved in atrazine induced dopaminergic neurons degeneration via microglia activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112862. [PMID: 34624533 DOI: 10.1016/j.ecoenv.2021.112862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the mechanisms of ATR-induced dopaminergic toxicity by microglia activation and the response of the Keap1/ Nrf2- ARE signaling pathway. METHODS Wistar rats were treated with 50, 100 and 200 mg/kg ATR and BV-2 microglia cells were treated with 50, 100 μM ATR or 100 ng/mL LPS, respectively. Rats behavioral responses and histopathological changes were monitored. Immunohistochemical and immunofluorescence analysis detected Iba-1 and TH+ cells in rats. Keap1/Nrf2-ARE signaling-related proteins and inflammatory factors from BV-2 cells and rats were detected using ELISA, Western blot and Real-time PCR. RESULTS After ATR treatment, the grip strength of Wistar rats was significantly decreased, and anxiety were clearly observed. TH+ neurons were reduced, however, the number of microglia cells and Iba-1 levels were increased clearly in SN. The release of ROS, TNF-α and IL-Iβ were increased, and levels of SOD and GSH-Px were significantly decreased. Keap1 mRNA expression and protein levels were decreased, while nuclear Nrf2 mRNA expression and protein levels were both increased in vivo and in vitro. CONCLUSION ATR could significantly activate microglia and exacerbate neurotoxicity and neuroinflammation, leading to accelerate dopaminergic neuron cell death by inhibiting Keap1/Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Kun Ma
- Department of Hygienic Toxicology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province 150081, PR China.
| | - Hao-Yu Wu
- Department of Environmental Health, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province 150081, PR China.
| | - Sheng-Yuan Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province 150081, PR China.
| | - Bai-Xiang Li
- Department of Hygienic Toxicology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province 150081, PR China.
| |
Collapse
|
30
|
Xiao G, Zhao M, Liu Z, Du F, Zhou B. Zinc antagonizes iron-regulation of tyrosine hydroxylase activity and dopamine production in Drosophila melanogaster. BMC Biol 2021; 19:236. [PMID: 34732185 PMCID: PMC8564973 DOI: 10.1186/s12915-021-01168-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background Dopamine (DA) is a neurotransmitter that plays roles in movement, cognition, attention, and reward responses, and deficient DA signaling is associated with the progression of a number of neurological diseases, such as Parkinson’s disease. Due to its critical functions, DA expression levels in the brain are tightly controlled, with one important and rate-limiting step in its biosynthetic pathway being catalyzed by tyrosine hydroxylase (TH), an enzyme that uses iron ion (Fe2+) as a cofactor. A role for metal ions has additionally been associated with the etiology of Parkinson’s disease. However, the way dopamine synthesis is regulated in vivo or whether regulation of metal ion levels is a component of DA synthesis is not fully understood. Here, we analyze the role of Catsup, the Drosophila ortholog of the mammalian zinc transporter SLC39A7 (ZIP7), in regulating dopamine levels. Results We found that Catsup is a functional zinc transporter that regulates intracellular zinc distribution between the ER/Golgi and the cytosol. Loss-of-function of Catsup leads to increased DA levels, and we showed that the increased dopamine production is due to a reduction in zinc levels in the cytosol. Zinc ion (Zn2+) negatively regulates dopamine synthesis through direct inhibition of TH activity, by antagonizing Fe2+ binding to TH, thus rendering the enzyme ineffective or non-functional. Conclusions Our findings uncovered a previously unknown mechanism underlying the control of cellular dopamine expression, with normal levels of dopamine synthesis being maintained through a balance between Fe2+ and Zn2+ ions. The findings also provide support for metal modulation as a possible therapeutic strategy in the treatment of Parkinson’s disease and other dopamine-related diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01168-0.
Collapse
Affiliation(s)
- Guiran Xiao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Mengran Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhihua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Fan Du
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
31
|
Scheffer DDL, Freitas FC, Aguiar AS, Ward C, Guglielmo LGA, Prediger RD, Cronin SJF, Walz R, Andrews NA, Latini A. Impaired dopamine metabolism is linked to fatigability in mice and fatigue in Parkinson's disease patients. Brain Commun 2021; 3:fcab116. [PMID: 34423297 PMCID: PMC8374980 DOI: 10.1093/braincomms/fcab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Fatigue is a common symptom of Parkinson’s disease that compromises significantly the patients’ quality of life. Despite that, fatigue has been under-recognized as symptom, its pathophysiology remains poorly understood, and there is no adequate treatment so far. Parkinson’s disease is characterized by the progressive loss of midbrain dopaminergic neurons, eliciting the classical motor symptoms including slowing of movements, muscular rigidity and resting tremor. The dopamine synthesis is mediated by the rate-limiting enzyme tyrosine hydroxylase, which requires tetrahydrobiopterin as a mandatory cofactor. Here, we showed that reserpine administration (1 mg/kg, two intraperitoneal injections with an interval of 48 h) in adult Swiss male mice (8–10 weeks; 35–45 g) provoked striatal depletion of dopamine and tetrahydrobiopterin, and intolerance to exercise. The poor exercise performance of reserpinized mice was not influenced by emotional or anhedonic factors, mechanical nociceptive thresholds, electrocardiogram pattern alterations or muscle-impaired bioenergetics. The administration of levodopa (100 mg/kg; i.p.) plus benserazide (50 mg/kg; i.p.) rescued reserpine-induced fatigability-like symptoms and restored striatal dopamine and tetrahydrobiopterin levels. Remarkably, it was observed, for the first time, that impaired blood dopamine metabolism inversely and idependently correlated with fatigue scores in eighteen idiopathic Parkinson’s disease patients (male n = 13; female n = 5; age 61.3 ± 9.59 years). Altogether, this study provides new experimental and clinical evidence that fatigue symptoms might be caused by the impaired striatal dopaminergic neurotransmission, pointing to a central origin of fatigue in Parkinson’s disease.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Fernando Cini Freitas
- Graduate Program in Medical Sciences, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Neurology Division, Hospital Governador Celso Ramos, Florianópolis, SC 88015-270, Brazil
| | - Aderbal Silva Aguiar
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Catherine Ward
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Roger Walz
- Graduate Program in Medical Sciences, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Center for Applied Neuroscience, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Neurology Division, Departament of Internal Medicine, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Nick A Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,The Salk in Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
32
|
Bai L, Yan F, Deng R, Gu R, Zhang X, Bai J. Thioredoxin-1 Rescues MPP +/MPTP-Induced Ferroptosis by Increasing Glutathione Peroxidase 4. Mol Neurobiol 2021; 58:3187-3197. [PMID: 33634378 DOI: 10.1007/s12035-021-02320-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/03/2021] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD), a common neurodegenerative disease, is typically associated with the loss of dopaminergic neuron in the substantia nigra pars compacta (SNpc). Ferroptosis is a newly identified cell death, which associated with iron accumulation, glutathione (GSH) depletion, lipid peroxidation formation, reactive oxygen species (ROS) accumulation, and glutathione peroxidase 4 (GPX4) reduction. It has been reported that ferroptosis is linked with PD.Thioredoxin-1 (Trx-1) is a redox regulating protein and plays various roles in regulating the activity of transcription factors and inhibiting apoptosis. However, whether Trx-1 plays the role in regulating ferroptosis involved in PD is still unknown. Our present study showed that 1-methyl-4-phenylpyridinium (MPP+) decreased cell viability, GPX4, and Trx-1, which were reversed by Ferrostatin-1 (Fer-1) in PC 12 cells and SH-SY5Y cells. Moreover, the decreased GPX4 and GSH, and increased ROS were inhibited by Fer-1 and Trx-1 overexpression. We further repeated that behavior deficits resulted from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were improved in Trx-1 overexpression transgenic mice. Trx-1 reversed the decreases of GPX4 and tyrosine hydroxylase (TH) induced by MPTP in the substantia nigra pars compacta (SNpc). Our results suggest that Trx-1 inhibits ferroptosis in PD through regulating GPX4 and GSH.
Collapse
Affiliation(s)
- Liping Bai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650500, China
| | - Fang Yan
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650500, China
| | - Ruhua Deng
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650500, China
| | - Xianwen Zhang
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650500, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650500, China.
| |
Collapse
|
33
|
Cacabelos R, Carrera I, Martínez O, Alejo R, Fernández-Novoa L, Cacabelos P, Corzo L, Rodríguez S, Alcaraz M, Nebril L, Tellado I, Cacabelos N, Pego R, Naidoo V, Carril JC. Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Med Res Rev 2021; 41:2841-2886. [PMID: 34106485 DOI: 10.1002/med.21838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Olaia Martínez
- Department of Medical Epigenetics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | | | | | - Pablo Cacabelos
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Susana Rodríguez
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Margarita Alcaraz
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Laura Nebril
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Tellado
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Rocío Pego
- Department of Neuropsychology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Vinogran Naidoo
- Department of Neuroscience, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Juan C Carril
- Department of Genomics & Pharmacogenomics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| |
Collapse
|
34
|
Long-term treatment with transcranial pulsed electromagnetic fields improves movement speed and elevates cerebrospinal erythropoietin in Parkinson's disease. PLoS One 2021; 16:e0248800. [PMID: 33909634 PMCID: PMC8081215 DOI: 10.1371/journal.pone.0248800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/04/2021] [Indexed: 12/01/2022] Open
Abstract
Background Parkinson’s disease is characterized by motor dysfunctions including bradykinesia. In a recent study, eight weeks of daily transcranial stimulation with bipolar pulsed electromagnetic fields improved functional rate of force development and decreased inter-hand tremor coherence in patients with mild Parkinson’s disease. Objective To investigate the effect of long-term treatment with transcranial bipolar pulsed electromagnetic fields on motor performance in terms of movement speed and on neurotrophic and angiogenic factors. Methods Patients diagnosed with idiopathic Parkinson’s disease had either daily 30-min treatment with bipolar (±50 V) transcranial pulsed electromagnetic stimulation (squared pulses, 3ms duration) for three eight-week periods separated by one-week pauses (T-PEMF group) (n = 16) or were included in a PD-control group (n = 8). Movement speed was assessed in a six-cycle sit-to-stand task performed on a force plate. Cerebrospinal fluid and venous blood were collected and analyzed for erythropoietin and vascular endothelial growth factor. Results Major significant improvement of movement speed compared to the natural development of the disease was found (p = 0.001). Thus, task completion time decreased gradually during the treatment period from 10.10s to 8.23s (p<0.001). The untreated PD-control group did not change (p = 0.458). The treated group did not differ statistically from that of a healthy age matched reference group at completion of treatment. Erythropoietin concentration in the cerebrospinal fluid also increased significantly in the treated group (p = 0.012). Conclusion Long-term treatment with transcranial bipolar pulsed electromagnetic fields increased movement speed markedly and elevated erythropoietin levels. We hypothesize that treatment with transcranial bipolar pulsed electromagnetic fields improved functional performance by increasing dopamine levels in the brain, possibly through erythropoietin induced neural repair and/or protection of dopaminergic neurons.
Collapse
|
35
|
Luo Z, Li M, Ye M, Ji P, Lou X, Huang J, Yao K, Zhao Y, Zhang H. Effect of Electrical Stimulation of Cervical Sympathetic Ganglia on Intraocular Pressure Regulation According to Different Circadian Rhythms in Rats. Invest Ophthalmol Vis Sci 2021; 61:40. [PMID: 32976562 PMCID: PMC7521184 DOI: 10.1167/iovs.61.11.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose The purpose of this study was to investigate the relationship between circadian rhythm and intraocular pressure (IOP), and to explore whether electrical stimulation of cervical sympathetic ganglia (SCG) can regulate IOP via neurotransmitter distribution around the Schlemm's canal (SC) in rats. Methods Sprague Dawley rats were housed under normal (N-normal), constant dark (N-dark), and constant light (N-light) rhythms (n = 6 per group). Electrical stimulation (intermittent wave [20 hertz {Hz}, 2 mA, 10 minutes]) was used to stimulate the SCG. Atropine sulfate eye gel was applied three times a day. DiI was injected into the SCG and anterior chamber. The cross-sectional area and circumference of SC were evaluated using hematoxylin-eosin staining. Immunofluorescence staining was used to evaluate dopamine-β-hydroxylase (DβH) expression in SC endothelial (SCE) cells. Results N-Dark increased the IOP, decreased the cross-sectional area of SC, and increased DβH levels in SCE cells. Nerve projection between SC and SCG was detected, and electrical stimulation of SCG upregulated DβH expression in SCE cells. Under normal and constant light rhythms, electrical stimulation of SCG increased DβH and decreased the cross-sectional area and circumference of SC, while simultaneously increasing IOP and decreasing IOP fluctuations. After paralyzing the ciliary muscles, electrical stimulation of SCG decreased the cross-sectional area and circumference of SC under normal and constant light rhythms. Conclusions N-Dark increased DβH in SCE cells, reduced the cross-sectional area of SC, and increased IOP. Under the normal and light rhythms, electrical stimulation of SCG increased DβH in SCE cells, reduced the cross-sectional area and circumference of SC, and in turn elevated IOP and decreased IOP fluctuations.
Collapse
Affiliation(s)
- Zhaoxia Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingting Ji
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingqiu Huang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Hewlings SJ, Draayer K, Kalman DS. Palm Fruit Bioactive Complex (PFBc), a Source of Polyphenols, Demonstrates Potential Benefits for Inflammaging and Related Cognitive Function. Nutrients 2021; 13:nu13041127. [PMID: 33808068 PMCID: PMC8066389 DOI: 10.3390/nu13041127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cognitive function is a key aspect of healthy aging. Inflammation associated with normal aging, also called inflammaging is a primary risk factor for cognitive decline. A diet high in fruits and vegetable and lower in calories, particularly a Mediterranean Diet, may lower the risk of age-related cognitive decline due in part to the associated high intake of antioxidants and polyphenols. A phenolic, Palm Fruit Bioactive complex (PFBc) derived from the extraction process of palm oil from oil palm fruit (Elaeis guineensis), is reported to offset inflammation due to its high antioxidant, especially vitamin E, and polyphenol content. The benefit is thought to be achieved via the influence of antioxidants on gene expression. It is the purpose of this comprehensive review to discuss the etiology, including gene expression, of mild cognitive impairment (MCI) specific to dietary intake of antioxidants and polyphenols and to focus on the potential impact of nutritional interventions specifically PFBc has on MCI. Several in vitro, in vivo and animal studies support multiple benefits of PFBc especially for improving cognitive function via anti-inflammatory and antioxidant mechanisms. While more human studies are needed, those completed thus far support the benefit of consuming PFBc to enhance cognitive function via its anti-inflammatory antioxidant functions.
Collapse
Affiliation(s)
- Susan J. Hewlings
- The Herbert H & Grace A. Dow College of Health Professions, Nutrition, Central Michigan University, Mt. Pleasant, MI 48859, USA
- Nutrasource/GRAS Associates, Scientific Affairs, Guelph, ON N1G0B4, Canada;
- Correspondence:
| | - Kristin Draayer
- EDGE Veterinary Vaccines Consulting Group, 315 MAIN STREET 201, Ames, IA 50010, USA;
| | - Douglas S. Kalman
- Nutrasource/GRAS Associates, Scientific Affairs, Guelph, ON N1G0B4, Canada;
- Nutrion Department, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
37
|
Fanet H, Capuron L, Castanon N, Calon F, Vancassel S. Tetrahydrobioterin (BH4) Pathway: From Metabolism to Neuropsychiatry. Curr Neuropharmacol 2021; 19:591-609. [PMID: 32744952 PMCID: PMC8573752 DOI: 10.2174/1570159x18666200729103529] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022] Open
Abstract
Tetrahydrobipterin (BH4) is a pivotal enzymatic cofactor required for the synthesis of serotonin, dopamine and nitric oxide. BH4 is essential for numerous physiological processes at periphery and central levels, such as vascularization, inflammation, glucose homeostasis, regulation of oxidative stress and neurotransmission. BH4 de novo synthesis involves the sequential activation of three enzymes, the major controlling point being GTP cyclohydrolase I (GCH1). Complementary salvage and recycling pathways ensure that BH4 levels are tightly kept within a physiological range in the body. Even if the way of transport of BH4 and its ability to enter the brain after peripheral administration is still controversial, data showed increased levels in the brain after BH4 treatment. Available evidence shows that GCH1 expression and BH4 synthesis are stimulated by immunological factors, notably pro-inflammatory cytokines. Once produced, BH4 can act as an anti- inflammatory molecule and scavenger of free radicals protecting against oxidative stress. At the same time, BH4 is prone to autoxidation, leading to the release of superoxide radicals contributing to inflammatory processes, and to the production of BH2, an inactive form of BH4, reducing its bioavailability. Alterations in BH4 levels have been documented in many pathological situations, including Alzheimer's disease, Parkinson's disease and depression, in which increased oxidative stress, inflammation and alterations in monoaminergic function are described. This review aims at providing an update of the knowledge about metabolism and the role of BH4 in brain function, from preclinical to clinical studies, addressing some therapeutic implications.
Collapse
Affiliation(s)
- H. Fanet
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - L. Capuron
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - N. Castanon
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - F. Calon
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| | - S. Vancassel
- INRAe, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrated Neurobiology, UMR 1286, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NurtriNeuro France-INAF Canada), Quebec City, Canada
| |
Collapse
|
38
|
Magalingam KB, Radhakrishnan AK, Somanath SD, Md S, Haleagrahara N. Influence of serum concentration in retinoic acid and phorbol ester induced differentiation of SH-SY5Y human neuroblastoma cell line. Mol Biol Rep 2020; 47:8775-8788. [PMID: 33098048 DOI: 10.1007/s11033-020-05925-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Numerous protocols to establish dopaminergic phenotype in SH-SY5Y cells have been reported. In most of these protocols there are variations in concentration of serum used. In this paper, we compared the effects of high (10%), low (3%) and descending (2.5%/1%) serum concentration in differentiation medium containing different proportion of retinoic acid (RA) and 12-O-Tetradecanoylphorbol-13-acetate (TPA) or RA-only on the undifferentiated SH-SY5Y cells with regards to cell morphology, biochemical and gene expression alterations. Cells differentiated in culture medium containing low and descending serum concentrations showed increased number of neurite projections and reduced proliferation rates when compared to undifferentiated cells. The SH-SY5Y cells differentiated in culture medium containing 3% RA and low serum or descending (2.5%/1% RA/TPA) were found to be more susceptible to 6-hydroxydopamine (6-OHDA) induced cytotoxicity. Cells differentiated with RA/TPA or RA differentiated showed increased production of the α-synuclein (SNCA) neuroprotein and dopamine neurotransmitter compared to undifferentiated cells, regardless serum concentrations used. There was no significant difference in the expression of tyrosine hydroxylase (TH) gene between undifferentiated and differentiated SH-SY5Y cells. However, the expression of dopamine receptor D2 (DRD2) gene was markedly increased (p<0.05) in differentiated cells with 3% serum and RA only when compared to undifferentiated cells. In conclusion, to terminally differentiate SH-SY5Y cells to be used as a cell-based model to study Parkinson's disease (PD) to investigate molecular mechanisms and drug discovery, the optimal differentiation medium should contain 3% serum in RA-only.
Collapse
Affiliation(s)
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Bandar Sunway, Malaysia
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Sushela Devi Somanath
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Nagaraja Haleagrahara
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia.
- College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
39
|
Chang KH, Chen CM. The Role of Oxidative Stress in Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070597. [PMID: 32650609 PMCID: PMC7402083 DOI: 10.3390/antiox9070597] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Parkinson’s disease (PD) is caused by progressive neurodegeneration of dopaminergic (DAergic) neurons with abnormal accumulation of α-synuclein in substantia nigra (SN). Studies have suggested the potential involvement of dopamine, iron, calcium, mitochondria and neuroinflammation in contributing to overwhelmed oxidative stress and neurodegeneration in PD. Function studies on PD-causative mutations of SNCA, PRKN, PINK1, DJ-1, LRRK2, FBXO7 and ATP13A2 further indicate the role of oxidative stress in the pathogenesis of PD. Therefore, it is reasonable that molecules involved in oxidative stress, such as DJ-1, coenzyme Q10, uric acid, 8-hydroxy-2’-deoxyguanosin, homocysteine, retinoic acid/carotenes, vitamin E, glutathione peroxidase, superoxide dismutase, xanthine oxidase and products of lipid peroxidation, could be candidate biomarkers for PD. Applications of antioxidants to modulate oxidative stress could be a strategy in treating PD. Although a number of antioxidants, such as creatine, vitamin E, coenzyme Q10, pioglitazone, melatonin and desferrioxamine, have been tested in clinical trials, none of them have demonstrated conclusive evidence to ameliorate the neurodegeneration in PD patients. Difficulties in clinical studies may be caused by the long-standing progression of neurodegeneration, lack of biomarkers for premotor stage of PD and inadequate drug delivery across blood–brain barrier. Solutions for these challenges will be warranted for future studies with novel antioxidative treatment in PD patients.
Collapse
Affiliation(s)
| | - Chiung-Mei Chen
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8347); Fax: +886-3-3288849
| |
Collapse
|
40
|
Park HW, Park CG, Park M, Lee SH, Park HR, Lim J, Paek SH, Choy YB. Intrastriatal administration of coenzyme Q10 enhances neuroprotection in a Parkinson's disease rat model. Sci Rep 2020; 10:9572. [PMID: 32533070 PMCID: PMC7293316 DOI: 10.1038/s41598-020-66493-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder, and no treatment has been yet established to prevent disease progression. Coenzyme Q10, an antioxidant, has been considered a promising neuroprotective agent; however, conventional oral administration provides limited efficacy due to its very low bioavailability. In this study, we hypothesised that continuous, intrastriatal administration of a low dose of Coenzyme Q10 could effectively prevent dopaminergic neuron degeneration. To this end, a Parkinson's disease rat model induced by 6-hydroxydopamine was established, and the treatment was applied a week before the full establishment of this disease model. Behavioural tests showed a dramatically decreased number of asymmetric rotations in the intrastriatal Coenzyme Q10 group compared with the no treatment group. Rats with intrastriatal Coenzyme Q10 exposure also exhibited a larger number of dopaminergic neurons, higher expression of neurogenetic and angiogenetic factors, and less inflammation, and the effects were more prominent than those of orally administered Coenzyme Q10, although the dose of intrastriatal Coenzyme Q10 was 17,000-times lower than that of orally-administered Coenzyme Q10. Therefore, continuous, intrastriatal delivery of Coenzyme Q10, especially when combined with implantable devices for convection-enhanced delivery or deep brain stimulation, can be an effective strategy to prevent neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Hyung Woo Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Min Park
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Ho Lee
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hye Ran Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
41
|
Tyr-Trp administration facilitates brain norepinephrine metabolism and ameliorates a short-term memory deficit in a mouse model of Alzheimer's disease. PLoS One 2020; 15:e0232233. [PMID: 32365077 PMCID: PMC7197849 DOI: 10.1371/journal.pone.0232233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
The physiological actions of orally ingested peptides on the brain remain poorly understood. This study examined the effects of 39 orally administered synthetic Tyr-containing dipeptides on the enhancement of brain norepinephrine metabolism in mice by comparing the concentration of 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG). Although Tyr-Tyr administration increased blood and cerebral cortex (Cx) Tyr concentrations the most, Tyr-Trp increased Cx MHPG concentration the most. The oral administration of Tyr-Trp ameliorated a short-term memory deficit of a mouse model of cognitive dysfunction induced by amyloid beta peptide 25–35. Gene expression profiling of mouse brain using a microarray indicated that Tyr-Trp administration led to a wide variety of changes in mRNA levels, including the upregulation of genes encoding molecules involved in catecholamine metabolism. A comparative metabolome analysis of the Cx of mice given Tyr-Trp or Tyr-Tyr demonstrated that Tyr-Trp administration yielded higher concentrations of Trp and kynurenine pathway metabolites than Tyr-Tyr administration, as well as higher L-dopa levels, which is the initial product of catecholamine metabolism. Catecholamines were not significantly increased in the Cx of the Tyr-Tyr group compared with the Tyr-Trp group, despite a marked increase in Tyr. Presumably, Tyr-Trp administration enhances catecholamine synthesis and metabolism via the upregulation of genes involved in Tyr and Trp metabolism as well as metabolites of Tyr and Trp. These findings strongly suggest that orally ingested Tyr-Trp modulates the brain metabolome involved in catecholamine metabolism and contributes to higher brain function.
Collapse
|
42
|
Han SJ, Kim M, D'Agati VD, Lee HT. Norepinephrine released by intestinal Paneth cells exacerbates ischemic AKI. Am J Physiol Renal Physiol 2019; 318:F260-F272. [PMID: 31813250 DOI: 10.1152/ajprenal.00471.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Small intestinal Paneth cells play a critical role in acute kidney injury (AKI) and remote organ dysfunction by synthesizing and releasing IL-17A. In addition, intestine-derived norepinephrine is a major mediator of hepatic injury and systemic inflammation in sepsis. We tested the hypothesis that small intestinal Paneth cells synthesize and release norepinephrine to exacerbate ischemic AKI. After ischemic AKI, we demonstrated larger increases in portal venous norepinephrine levels compared with plasma norepinephrine in mice, consistent with an intestinal source of norepinephrine release after renal ischemia and reperfusion. We demonstrated that murine small intestinal Paneth cells express tyrosine hydroxylase mRNA and protein, a critical rate-limiting enzyme for the synthesis of norepinephrine. We also demonstrated mRNA expression for tyrosine hydroxylase in human small intestinal Paneth cells. Moreover, freshly isolated small intestinal crypts expressed significantly higher norepinephrine levels after ischemic AKI compared with sham-operated mice. Suggesting a critical role of IL-17A in Paneth cell-mediated release of norepinephrine, recombinant IL-17A induced norepinephrine release in the small intestine of mice. Furthermore, mice deficient in Paneth cells (SOX9 villin Cre mice) have reduced plasma norepinephrine levels after ischemic AKI. Finally, supporting a critical role for norepinephrine in generating ischemic AKI, treatment with the selective α-adrenergic antagonists yohimbine and phentolamine protected against murine ischemic AKI with significantly reduced renal tubular necrosis, inflammation, and apoptosis and less hepatic dysfunction. Taken together, we identify Paneth cells as a critical source of norepinephrine release that may lead to intestinal and liver injury and systemic inflammation after AKI.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Vivette Denise D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| |
Collapse
|
43
|
Weinberg RP, Koledova VV, Subramaniam A, Schneider K, Artamonova A, Sambanthamurthi R, Hayes KC, Sinskey AJ, Rha C. Palm Fruit Bioactives augment expression of Tyrosine Hydroxylase in the Nile Grass Rat basal ganglia and alter the colonic microbiome. Sci Rep 2019; 9:18625. [PMID: 31819070 PMCID: PMC6901528 DOI: 10.1038/s41598-019-54461-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023] Open
Abstract
Tyrosine hydroxylase (TH) catalyzes the hydroxylation of L-tyrosine to L-DOPA. This is the rate-limiting step in the biosynthesis of the catecholamines - dopamine (DA), norepinephrine (NE), and epinephrine (EP). Catecholamines (CA) play a key role as neurotransmitters and hormones. Aberrant levels of CA are associated with multiple medical conditions, including Parkinson's disease. Palm Fruit Bioactives (PFB) significantly increased the levels of tyrosine hydroxylase in the brain of the Nile Grass rat (NGR), a novel and potentially significant finding, unique to PFB among known botanical sources. Increases were most pronounced in the basal ganglia, including the caudate-putamen, striatum and substantia nigra. The NGR represents an animal model of diet-induced Type 2 Diabetes Mellitus (T2DM), exhibiting hyperglycemia, hyperinsulinemia, and insulin resistance associated with hyperphagia and accelerated postweaning weight gain induced by a high-carbohydrate diet (hiCHO). The PFB-induced increase of TH in the basal ganglia of the NGR was documented by immuno-histochemical staining (IHC). This increase in TH occurred equally in both diabetes-susceptible and diabetes-resistant NGR fed a hiCHO. PFB also stimulated growth of the colon microbiota evidenced by an increase in cecal weight and altered microbiome. The metabolites of colon microbiota, e.g. short-chain fatty acids, may influence the brain and behavior significantly.
Collapse
Affiliation(s)
- Robert P Weinberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| | - Vera V Koledova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | | | - Kirsten Schneider
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Anastasia Artamonova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Ravigadevi Sambanthamurthi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - K C Hayes
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - ChoKyun Rha
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
44
|
Nagatsu T. Hypothesis: neural mechanism of psychotherapy for the treatment of Parkinson's disease: cognitive behavioral therapy (CBT), acceptance and commitment therapy (ACT), and Morita therapy? J Neural Transm (Vienna) 2019; 127:273-276. [PMID: 31807951 DOI: 10.1007/s00702-019-02111-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
Cognitive behavioral therapy (CBT) for depression and anxiety, established since the 1960s in the USA, and now in Europe, and all over the world has been found to be effective for treating depression in Parkinson's disease (PD). CBT is further developed to acceptance and commitment therapy (ACT) in Europe and the USA. The neural mechanism of CBT or ACT is still under investigation. In Japan, Morita therapy, a psychotherapy founded in 1919 by Masatake (Shoma) Morita, has been used for common mental problems such as anxiety and depression, but rarely for the psychological symptoms in PD. Morita Therapy is in sharp contrast to western CBT in teaching that undesired mental symptoms such as anxiety and depression are natural features of human emotion in health and disease rather than something to control or eliminate, but it is speculated to be similar to ACT in the approach to acceptance but not elimination of mental symptoms. I speculate that the neural basis might be similar in CBT, ACT, and Morita Therapy. In this commentary, a hypothesis is proposed that CBT, ACT, as well as Morita Therapy might be effective for the treatment of the psychological symptoms such as anxiety and depression in PD and in other mental and physical diseases, probably by similar neural mechanisms in the brain.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Center for Research Support and Promotion, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
45
|
Goshima Y, Masukawa D, Kasahara Y, Hashimoto T, Aladeokin AC. l-DOPA and Its Receptor GPR143: Implications for Pathogenesis and Therapy in Parkinson's Disease. Front Pharmacol 2019; 10:1119. [PMID: 31632270 PMCID: PMC6785630 DOI: 10.3389/fphar.2019.01119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/30/2019] [Indexed: 01/26/2023] Open
Abstract
l-3,4-Dihydroxyphenylalanine (l-DOPA) is the most effective therapeutic agent for Parkinson's disease (PD). l-DOPA is traditionally believed to be an inert amino acid that exerts actions and effectiveness in PD through its conversion to dopamine. In contrast to this generally accepted idea, l-DOPA is proposed to be a neurotransmitter. Recently, GPR143 (OA1), the gene product of ocular albinism 1 was identified as a receptor candidate for l-DOPA. GPR143 is widely expressed in the central and peripheral nervous system. GPR143 immunoreactivity was colocalized with phosphorylated α-synuclein in Lewy bodies in PD brains. GPR143 may contribute to the therapeutic effectiveness of l-DOPA and might be related to pathogenesis of PD.
Collapse
Affiliation(s)
- Yoshio Goshima
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuka Kasahara
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tatsuo Hashimoto
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Aderemi Caleb Aladeokin
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
46
|
Huang C, Ma J, Li BX, Sun Y. Wnt1 silencing enhances neurotoxicity induced by paraquat and maneb in SH-SY5Y cells. Exp Ther Med 2019; 18:3643-3649. [PMID: 31602242 DOI: 10.3892/etm.2019.7963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Wingless (Wnt) signaling regulates the proliferation and differentiation of midbrain dopamine (DA) neurons. Paraquat (PQ) and maneb (MB) are environmental pollutants that can be used to model Parkinson's disease (PD) in rodents. A previous study demonstrated that developmental exposure to PQ and MB affects the expression of Wnt1, Wnt5a, nuclear receptor-related factor 1 (NURR1) and tyrosine hydroxylase (TH). However, how Wnt signaling regulates these developmental factors in vitro is yet to be determined. To explore this, SH-SY5Y cells were exposed to PQ and MB. The results of the current study indicated that exposure to PQ and MB decreased Wnt1, β-catenin, NURR1 and TH levels and increased Wnt5a levels. Furthermore, Wnt1 silencing has the same effect as exposure to PQ and MB. Additionally, the neurotoxicity induced by PQ and MB is more severe in siWnt1-SH-SY5Y cells compared with normal SH-SY5Y cells. Therefore, Wnt1 may serve an important role in regulating developmental DA factors, and may be a candidate gene for PD diagnosis or gene therapy.
Collapse
Affiliation(s)
- Cui Huang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Jing Ma
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Bai-Xiang Li
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan Sun
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
47
|
Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1949-1967. [DOI: 10.1016/j.bbadis.2018.11.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
|
48
|
Moxibustion Exerts a Neuroprotective Effect through Antiferroptosis in Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2735492. [PMID: 31467572 PMCID: PMC6699283 DOI: 10.1155/2019/2735492] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/10/2019] [Accepted: 06/27/2019] [Indexed: 01/11/2023]
Abstract
The objective of this study was to explore the neuroprotective effect of moxibustion on rats with Parkinson's disease (PD) and its mechanism. A Parkinson's disease model was established in rats using a two-point stereotactic 6-hydroxydopamine injection in the right substantia nigra (SN) and ventral tegmental area. The rats received moxibustion at the Baihui (GV20) and Sishencong (EX-HN1) acupoints for 20 minutes, six times a week, for 6 weeks. The right SN tissue was histologically and immunohistochemically examined. Differentially expressed genes (DEGs) were identified through RNA sequencing. In addition, the levels of tyrosine hydroxylase (TH), glutathione peroxidase 4 (GPX4), and ferritin heavy chain 1 (FTH1) in SN were measured. In comparison to the model group, the moxibustion group showed a significantly greater TH immunoreactivity and a higher behavioural score. In particular, moxibustion led to an increase in the number and morphological stability of SN neural cells. The functional pathway analysis showed that DEGs are closely related to the ferroptosis pathway. GPX4 and FTH1 in the SN were significantly overexpressed in the moxibustion-treated rats with PD. Moxibustion can effectively reduce the death of SN neurons, decrease the occurrence of ferroptosis, and increase the TH activity to protect the neurons in rats with PD. The protective mechanism may be associated with suppression of the ferroptosis.
Collapse
|
49
|
Ziegler KA, Ahles A, Wille T, Kerler J, Ramanujam D, Engelhardt S. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovasc Res 2019; 114:291-299. [PMID: 29186414 PMCID: PMC5852629 DOI: 10.1093/cvr/cvx227] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/23/2017] [Indexed: 01/09/2023] Open
Abstract
Aims Cardiac inflammation has been suggested to be regulated by the sympathetic nervous system (SNS). However, due to the lack of methodology to surgically eliminate the myocardial SNS in mice, neuronal control of cardiac inflammation remains ill-defined. Here, we report a procedure for local cardiac sympathetic denervation in mice and tested its effect in a mouse model of heart failure post-myocardial infarction. Methods and results Upon preparation of the carotid bifurcation, the right and the left superior cervical ganglia were localized and their pre- and postganglionic branches dissected before removal of the ganglion. Ganglionectomy led to an almost entire loss of myocardial sympathetic innervation in the left ventricular anterior wall. When applied at the time of myocardial infarction (MI), cardiac sympathetic denervation did not affect acute myocardial damage and infarct size. In contrast, cardiac sympathetic denervation significantly attenuated chronic consequences of MI, including myocardial inflammation, myocyte hypertrophy, and overall cardiac dysfunction. Conclusion These data suggest a critical role for local sympathetic control of cardiac inflammation. Our model of myocardial sympathetic denervation in mice should prove useful to further dissect the molecular mechanisms underlying cardiac neural control.
Collapse
Affiliation(s)
- Karin A Ziegler
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany
| | - Andrea Ahles
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Biedersteiner Str. 29, Munich 80802, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, Munich 80937, Germany
| | - Julia Kerler
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Biedersteiner Str. 29, Munich 80802, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Biedersteiner Str. 29, Munich 80802, Germany
| |
Collapse
|
50
|
D'Andrea G, Pizzolato G, Gucciardi A, Stocchero M, Giordano G, Baraldi E, Leon A. Different Circulating Trace Amine Profiles in De Novo and Treated Parkinson's Disease Patients. Sci Rep 2019; 9:6151. [PMID: 30992490 PMCID: PMC6467876 DOI: 10.1038/s41598-019-42535-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/29/2019] [Indexed: 12/18/2022] Open
Abstract
Early diagnosis of Parkinson’s disease (PD) remains a challenge to date. New evidence highlights the potential clinical value of circulating trace amines (TAs) in early-stage PD and their involvement in disease progression. A new ultra performance chromatography mass spectrometry (UPLC-MS/MS) method was developed to quantify plasmatic TAs, and the catecholamines and indolamines pertaining to the same biochemical pathways. Three groups of subjects were recruited: 21 de novo, drug untreated, PD patients, 27 in treatment PD patients and 10 healthy subjects as controls. Multivariate and univariate data analyses were applied to reveal metabolic changes among the groups in attempt to discover new putative markers for early PD detection and disease progression. Different circulating levels of tyrosine (p = 0.002), tyramine (p < 0.001), synephrine (p = 0.015), norepinephrine (p = 0.012), metanephrine (p = 0.001), β-phenylethylamine (p = 0.001) and serotonin (p = 0.006) were found among the three groups. While tyramine behaves as a putative biomarker for early-stage PD (AUC = 0.90) tyramine, norepinephrine, and tyrosine appear to act as biomarkers of disease progression (AUC > 0.75). The findings of this pilot cross-sectional study suggest that biochemical anomalies of the aminergic and indolic neurotransmitters occur in PD patients. Compounds within the TAs family may constitute putative markers for early stage detection and progression of PD.
Collapse
Affiliation(s)
| | - Gilberto Pizzolato
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Antonina Gucciardi
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy. .,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy.
| | - Matteo Stocchero
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy
| | - Giuseppe Giordano
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy
| | - Eugenio Baraldi
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy
| | - Alberta Leon
- Research and Innovation (R&I Genetics) s.r.l., Padova, Italy
| |
Collapse
|