1
|
Dean B. IUPHAR Review on muscarinic M1 and M4 receptors as drug treatment targets relevant to the molecular pathology of schizophrenia. Pharmacol Res 2024; 210:107510. [PMID: 39566671 DOI: 10.1016/j.phrs.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Cobenfy, a co-formulation of xanomeline and trospium, is the first drug not acting on the dopaminergic system of the CNS approved for the treatment of schizophrenia by the FDA. Xanomeline is a muscarinic M1 and M4 receptor (CHRM1 and CHRM4) agonist whilst trospium is a peripherally active CHRM antagonist that reduces the unwanted peripheral side-effects of xanomeline. Relevant to this exciting development, this review details the human CNS cholinergic systems and how those systems are affected by the molecular pathology of schizophrenia in a way suggesting activating the CHRM1 and 4 would be beneficial in treating the disorder. The CNS distribution of CHRMs is presented along with findings using CHRM knockout mice and mice treated with drugs that activate the CHRM1 and / or M4, these data explain why these CHRMs could be involved in the genesis of the symptoms of schizophrenia. Next, the process leading to the formulation of Cobenfy and the preclinical data on xanomeline are reviewed showing why Cobenfy was expected to be useful in treating schizophrenia. The pipeline of drugs targeting CHRM1 and /or M4 receptors to treat schizophrenia are discussed. Finally, the molecular pathology of two sub-groups within schizophrenia, separated based on the presence or absence of a deficit of cortical CHRM1, are reviewed to show how such approaches could identify new drug targets. In conclusion, the history of the development of Cobenfy highlights how a growing understanding the pathophysiology of schizophrenia will suggest new treatment targets for the disorder and that pharmacologists can synthesise drugs to target these sites.
Collapse
Affiliation(s)
- Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Snelleksz M, Scarr E, Dean B. Lower levels of kainate receptors, but not AMPA or NMDA receptors, in Brodmann's area (BA) 9, but not BA 10, from a subgroup of people with schizophrenia who have a marked deficit in cortical muscarinic M1 receptors. Schizophr Res 2024; 274:129-136. [PMID: 39293250 DOI: 10.1016/j.schres.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
In a previous study on ionotropic glutamate receptors, we have shown that [3H]kainate, but not [3H]AMPA or [3H]NMDA, receptor binding was lower in Brodmann's area (BA) 9 from people with schizophrenia. Subsequently, we defined a subgroup within the syndrome of schizophrenia who are termed the Muscarinic Receptor Deficit subgroup of Schizophrenia (MRDS) as they have markedly lower levels of [3H]pirenzepine binding to the muscarinic M1 receptor. The previous glutamate receptor study did not contain enough people with MRDS and other forms of schizophrenia (non-MRDS) to study any subgroup-specific differences. Hence, in this study we first measured [3H]pirenzepine binding to the muscarinic M1 receptor to confirm the MRDS subgroup, then measured [3H]kainate, [3H]AMPA and [3H]NMDA receptor binding using autoradiography in BA 9 from people with MRDS, non-MRDS and controls. We also measured binding in BA 10 as our gene expression study indicated that BA 10 is disproportionally affected by the molecular pathology of schizophrenia. As expected, due to case-selection criteria, [3H]pirenzepine binding to the M1 receptor was lower in BA 9 and BA 10 from people with MRDS, although more profound in BA 10. [3H]kainate receptor binding was lower only in BA 9 from people with MRDS, while [3H]AMPA and [3H]NMDA receptor binding was not altered in either region. Muscarinic M1 receptors and kainate receptors are both located on glutamatergic pyramidal neurons so a perturbation in both receptors could indicate altered excitatory neurotransmission in BA 9 from people with MRDS.
Collapse
Affiliation(s)
- Megan Snelleksz
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey, Parkville, Victoria, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Snelleksz M, Dean B. Higher levels of AKT-interacting protein in the frontal pole from people with schizophrenia are limited to a sub-group who have a marked deficit in cortical muscarinic M1 receptors. Psychiatry Res 2024; 341:116156. [PMID: 39236366 DOI: 10.1016/j.psychres.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 09/07/2024]
Abstract
We are studying the molecular pathology of a sub-group within schizophrenia (∼ 25 %: termed Muscarinic Receptor Deficit subgroup of Schizophrenia (MRDS)) who can be separated because they have very low levels of cortical muscarinic M1 receptors (CHRM1). Based on our transcriptomic data from Brodmann's area ((BA) 9, 10 and 33 (controls, schizophrenia and mood disorders) and the cortex of the CHRM1-/- mouse (a molecular model of aberrant CHRM1 signaling), we predicted levels of AKT interacting protein (AKTIP), but not tubulin alpha 1b (TUBA1B) or AKT serine/threonine kinase 1 (AKT1) and pyruvate dehydrogenase kinase 1 (PDK1) (two AKTIP-functionally associated proteins), would be changed in MRDS. Hence, we used Western blotting to measure AKTIP (BA 10: controls, schizophrenia and mood disorders; BA 9: controls and schizophrenia) plus TUBA1B, AKT1 and PDK1 (BA 10: controls and schizophrenia) proteins. The only significant change with diagnosis was higher levels of AKTIP protein in BA 10 (Cohen's d = 0.73; p = 0.02) in schizophrenia compared to controls due to higher levels of AKTIP only in people with MRDS (Cohen's d = 0.80; p = 0.03). As AKTIP is involved in AKT1 signaling, our data suggests that signaling pathway is particularly disturbed in BA 10 in MRDS.
Collapse
Affiliation(s)
- Megan Snelleksz
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Dean B. Muscarinic M1 and M4 receptor agonists for schizophrenia: promising candidates for the therapeutic arsenal. Expert Opin Investig Drugs 2023; 32:1113-1121. [PMID: 37994870 DOI: 10.1080/13543784.2023.2288074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
INTRODUCTION Successful phase 3 trials of KarXT in people with schizophrenia herald a new era of treating the disorder with drugs that do not target the dopamine D2 receptor. The active component of KarXT is xanomeline, a muscarinic (CHRM) M1 and M4 agonist, making muscarinic receptors a viable target for treating schizophrenia. AREAS COVERED This review covers the process of taking drugs that activate the muscarinic M1 and M4 receptors from conceptualization to the clinic and details the mechanisms by which activating the CHRM1 and 4 can affect the broad spectrum of symptoms experienced by people with schizophrenia. EXPERT OPINION Schizophrenia is a syndrome which means drugs that activate muscarinic M1 and M4 receptors, as was the case for antipsychotic drugs acting on the dopamine D2 receptor, will not give optimal outcomes in everyone within the syndrome. Thus, it would be ideal to identify people who are responsive to drugs activating the CHRM1 and 4. Given knowledge of the actions of these receptors, it is possible treatment non-response could be restricted to sub-groups within the syndrome who have deficits in cortical CHRM1 or those with one of the cognitive endophenotypes that may be identifiable by changes in the blood transcriptome.
Collapse
Affiliation(s)
- Brian Dean
- The Synaptic Biology and Cognition Laboratory, The Florey, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Dean B, Haroutunian V, Scarr E. Lower levels of cortical [ 3H]pirenzepine binding to postmortem tissue defines a sub-group of older people with schizophrenia with less severe cognitive deficits. Schizophr Res 2023; 255:274-282. [PMID: 37079947 DOI: 10.1016/j.schres.2023.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/15/2023] [Accepted: 03/18/2023] [Indexed: 04/22/2023]
Abstract
Multiple lines of evidence argue for lower levels of cortical muscarinic M1 receptors (CHRM1) in people with schizophrenia which is possibly due to a sub-group within the disorder who have a marked loss of CHRM1 (muscarinic receptor deficit sub-group (MRDS)). In this study we sought to determine if the lower levels of CHRM1 was apparent in older people with schizophrenia and whether the loss of CHRM1 was associated with symptom severity by measuring levels of cortical [3H]pirenzepine binding to CHRM1 from 56 people with schizophrenia and 43 controls. Compared to controls (173 ± 6.3 fmol / mg protein), there were lower levels of cortical [3H]pirenzepine binding in the people with schizophrenia (mean ± SEM: 153 ± 6.0 fmol / mg protein; p = 0.02; Cohen's d = - 0.46). [3H]pirenzepine binding in the people with schizophrenia, but not controls, was not normally distributed and best fitted a two-population solution. The nadir of binding separating the two groups of people with schizophrenia was 121 fmol / mg protein and levels of [3H]pirenzepine binding below this value had a 90.7 % specificity for the disorder. Compared to controls, the score from the Clinical Dementia Rating Scale (CDR) did not differ significantly in MRDS but were significantly higher in the sub-group with normal radioligand binding. Positive and Negative Syndrome Scale scores did not differ between the two sub-groups with schizophrenia. Our current study replicates and earlier finding showing a MRDS within schizophrenia and, for the first time, suggest this sub-group have less severe cognitive deficits others with schizophrenia.
Collapse
Affiliation(s)
- Brian Dean
- The Synaptic Biology and Cognition Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, the University of Melbourne, Parkville, Victoria, Australia.
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Mental Illness Research, Education and Clinical Centers, JJ Peters VA Medical Center, Bronx, NY, USA
| | - Elizabeth Scarr
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Dean B, Bakker G, Ueda HR, Tobin AB, Brown A, Kanaan RAA. A growing understanding of the role of muscarinic receptors in the molecular pathology and treatment of schizophrenia. Front Cell Neurosci 2023; 17:1124333. [PMID: 36909280 PMCID: PMC9992992 DOI: 10.3389/fncel.2023.1124333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Pre-clinical models, postmortem and neuroimaging studies all support a role for muscarinic receptors in the molecular pathology of schizophrenia. From these data it was proposed that activation of the muscarinic M1 and/or M4 receptor would reduce the severity of the symptoms of schizophrenia. This hypothesis is now supported by results from two clinical trials which indicate that activating central muscarinic M1 and M4 receptors can reduce the severity of positive, negative and cognitive symptoms of the disorder. This review will provide an update on a growing body of evidence that argues the muscarinic M1 and M4 receptors have critical roles in CNS functions that are dysregulated by the pathophysiology of schizophrenia. This realization has been made possible, in part, by the growing ability to visualize and quantify muscarinic M1 and M4 receptors in the human CNS using molecular neuroimaging. We will discuss how these advances have provided evidence to support the notion that there is a sub-group of patients within the syndrome of schizophrenia that have a unique molecular pathology driven by a marked loss of muscarinic M1 receptors. This review is timely, as drugs targeting muscarinic receptors approach clinical use for the treatment of schizophrenia and here we outline the background biology that supported development of such drugs to treat the disorder.
Collapse
Affiliation(s)
- Brian Dean
- Synaptic Biology and Cognition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Andrew B Tobin
- Advanced Research Centre (ARC), School of Molecular Bioscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Richard A A Kanaan
- Department of Psychiatry, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
7
|
Sanfilippo C, Giuliano L, Castrogiovanni P, Imbesi R, Ulivieri M, Fazio F, Blennow K, Zetterberg H, Di Rosa M. Sex, Age, and Regional Differences in CHRM1 and CHRM3 Genes Expression Levels in the Human Brain Biopsies: Potential Targets for Alzheimer's Disease-related Sleep Disturbances. Curr Neuropharmacol 2023; 21:740-760. [PMID: 36475335 PMCID: PMC10207911 DOI: 10.2174/1570159x21666221207091209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/06/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholinergic hypofunction and sleep disturbance are hallmarks of Alzheimer's disease (AD), a progressive disorder leading to neuronal deterioration. Muscarinic acetylcholine receptors (M1-5 or mAChRs), expressed in hippocampus and cerebral cortex, play a pivotal role in the aberrant alterations of cognitive processing, memory, and learning, observed in AD. Recent evidence shows that two mAChRs, M1 and M3, encoded by CHRM1 and CHRM3 genes, respectively, are involved in sleep functions and, peculiarly, in rapid eye movement (REM) sleep. METHODS We used twenty microarray datasets extrapolated from post-mortem brain tissue of nondemented healthy controls (NDHC) and AD patients to examine the expression profile of CHRM1 and CHRM3 genes. Samples were from eight brain regions and stratified according to age and sex. RESULTS CHRM1 and CHRM3 expression levels were significantly reduced in AD compared with ageand sex-matched NDHC brains. A negative correlation with age emerged for both CHRM1 and CHRM3 in NDHC but not in AD brains. Notably, a marked positive correlation was also revealed between the neurogranin (NRGN) and both CHRM1 and CHRM3 genes. These associations were modulated by sex. Accordingly, in the temporal and occipital regions of NDHC subjects, males expressed higher levels of CHRM1 and CHRM3, respectively, than females. In AD patients, males expressed higher levels of CHRM1 and CHRM3 in the temporal and frontal regions, respectively, than females. CONCLUSION Thus, substantial differences, all strictly linked to the brain region analyzed, age, and sex, exist in CHRM1 and CHRM3 brain levels both in NDHC subjects and in AD patients.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Department G.F. Ingrassia, Section of Neurosciences, University of Catania, Catania, Italy
| | - Loretta Giuliano
- Department G.F. Ingrassia, Section of Neurosciences, University of Catania, Catania, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| | - Martina Ulivieri
- Department of Psychiatry, Health Science, University of California San Diego, San Diego La Jolla, CA, USA
| | - Francesco Fazio
- Department of Psychiatry, Health Science, University of California San Diego, San Diego La Jolla, CA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Italy
| |
Collapse
|
8
|
Li W, Wang Y, Lohith TG, Zeng Z, Tong L, Mazzola R, Riffel K, Miller P, Purcell M, Holahan M, Haley H, Gantert L, Hesk D, Ren S, Morrow J, Uslaner J, Struyk A, Wai JMC, Rudd MT, Tellers DM, McAvoy T, Bormans G, Koole M, Van Laere K, Serdons K, de Hoon J, Declercq R, De Lepeleire I, Pascual MB, Zanotti-Fregonara P, Yu M, Arbones V, Masdeu JC, Cheng A, Hussain A, Bueters T, Anderson MS, Hostetler ED, Basile AS. The PET tracer [ 11C]MK-6884 quantifies M4 muscarinic receptor in rhesus monkeys and patients with Alzheimer's disease. Sci Transl Med 2022; 14:eabg3684. [PMID: 35020407 DOI: 10.1126/scitranslmed.abg3684] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wenping Li
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Yuchuan Wang
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Zhizhen Zeng
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Ling Tong
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Kerry Riffel
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Mona Purcell
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Hyking Haley
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Liza Gantert
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - David Hesk
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Sumei Ren
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - John Morrow
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Arie Struyk
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | | | | | | | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, KU Leuven, 3001 Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, KU Leuven and University Hospital Leuven, 3001 Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, KU Leuven and University Hospital Leuven, 3001 Leuven, Belgium
| | - Kim Serdons
- Nuclear Medicine and Molecular Imaging, KU Leuven and University Hospital Leuven, 3001 Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, KU Leuven, 3001 Leuven, Belgium
| | - Ruben Declercq
- Translational Pharmacology Europe, MSD (Europe) Inc., 1200 Brussels, Belgium
| | - Inge De Lepeleire
- Translational Pharmacology Europe, MSD (Europe) Inc., 1200 Brussels, Belgium
| | - Maria B Pascual
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paolo Zanotti-Fregonara
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Meixiang Yu
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Victoria Arbones
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Joseph C Masdeu
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Amy Cheng
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | | | | | | | | |
Collapse
|
9
|
Muscarinic M1 and M4 receptors: Hypothesis driven drug development for schizophrenia. Psychiatry Res 2020; 288:112989. [PMID: 32315882 DOI: 10.1016/j.psychres.2020.112989] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/02/2023]
Abstract
The finding that the drug KarXT, a formulation of xanomeline and tropsium which targets muscarinic receptors, has given a positive result in reducing the positive and negative symptoms of schizophrenia in a phase II trial suggests targeting muscarinic receptors is a new approach to treating the disorder. This review will detail the synergistic interplay between studies to understand the role of muscarinic receptors in the aetiology of schizophrenia and drug development and how this has supported the hypothesis that activating the muscarinic M1 and M4 receptors is critical to the efficacy of KarXT, in schizophrenia. The discovery of an intermediate phenotype within schizophrenia which is characterised by the presence of a marked loss of cortical muscarinic M1 receptors will be reviewed. Highlighted will be progress in understanding the biochemistry of that intermediate phenotype and evidence to suggest that those with the intermediate phenotype may resist treatment with agonist to the orthosteric site on the muscarinic M1 and M4 receptor. Finally, the possibility of using drugs targeting the allosteric binding sites on muscarinic receptors to treat schizophrenia will be discussed. This timely review will therefore highlight how research can influence hypothesis driven drug discovery that should produce new treatments for schizophrenia.
Collapse
|