1
|
Benedicenti O, Måsøy Amundsen M, Mohammad SN, Vrålstad T, Strand DA, Weli SC, Patel S, Sindre H. A refinement to eRNA and eDNA-based detection methods for reliable and cost-efficient screening of pathogens in Atlantic salmon aquaculture. PLoS One 2024; 19:e0312337. [PMID: 39432531 PMCID: PMC11493300 DOI: 10.1371/journal.pone.0312337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Finfish aquaculture is one of the fastest-growing food production sectors in the world, and numerous infectious diseases are a constant challenge to the fish farming industry, causing decreased fish health and, consequently, economic losses. Specific and sensitive tools for pathogen detection are crucial for the surveillance of environmental samples to prevent the spread of fish pathogens in farms. Monitoring of waterborne pathogens through filtration of water and subsequent molecular detection of target-specific DNA or RNA sequence motifs is an animal-friendly method. This approach could reduce or even replace the sacrifice of fish for monitoring purposes in aquaculture and allow earlier implementation of disease control measures. Sampling methods might be a bottleneck, and there is a need for simple sampling methods that still ensure the best detection probability. In this study, we tested different filtration methods with spiked freshwater and seawater for a panel of fish pathogens to discern a suitable procedure that can be easily applied on-site by farm personnel without compromising detection probability. Specifically, we tested combinations of different filtration flow rates, lysis buffers, and filters for the detection of some of the pathogens relevant to the aquaculture industry. The results showed that a "sandwich" filtration method using two different filters and a flow rate of up to 4.0 L/min ensured good pathogen detection. The filters, consisting of a hydrophilic glass fibre filter with binder resin on the top and a hydrophilic mixed cellulose esters membrane at the bottom, achieved the best concentration and qPCR detection of both viral and bacterial fish pathogens. This up-and-coming tool allows the detection of very different fish pathogens during a single filtration step, and it can be combined with one single automated total nucleic acid extraction step for all the investigated pathogens, reducing both analysis costs and time.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sonal Patel
- Norwegian Veterinary Institute, Bergen, Norway
| | | |
Collapse
|
2
|
Roh H, Skaftnesmo KO, Kannimuthu D, Madhun A, Patel S, Kvamme BO, Morton HC, Grove S. Nanopore sequencing provides snapshots of the genetic variation within salmonid alphavirus-3 (SAV3) during an ongoing infection in Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Vet Res 2024; 55:106. [PMID: 39227887 PMCID: PMC11373506 DOI: 10.1186/s13567-024-01349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/24/2024] [Indexed: 09/05/2024] Open
Abstract
Frequent RNA virus mutations raise concerns about evolving virulent variants. The purpose of this study was to investigate genetic variation in salmonid alphavirus-3 (SAV3) over the course of an experimental infection in Atlantic salmon and brown trout. Atlantic salmon and brown trout parr were infected using a cohabitation challenge, and heart samples were collected for analysis of the SAV3 genome at 2-, 4- and 8-weeks post-challenge. PCR was used to amplify eight overlapping amplicons covering 98.8% of the SAV3 genome. The amplicons were subsequently sequenced using the Nanopore platform. Nanopore sequencing identified a multitude of single nucleotide variants (SNVs) and deletions. The variation was widespread across the SAV3 genome in samples from both species. Mostly, specific SNVs were observed in single fish at some sampling time points, but two relatively frequent (i.e., major) SNVs were observed in two out of four fish within the same experimental group. Two other, less frequent (i.e., minor) SNVs only showed an increase in frequency in brown trout. Nanopore reads were de novo clustered using a 99% sequence identity threshold. For each amplicon, a number of variant clusters were observed that were defined by relatively large deletions. Nonmetric multidimensional scaling analysis integrating the cluster data for eight amplicons indicated that late in infection, SAV3 genomes isolated from brown trout had greater variation than those from Atlantic salmon. The sequencing methods and bioinformatics pipeline presented in this study provide an approach to investigate the composition of genetic diversity during viral infections.
Collapse
Affiliation(s)
- HyeongJin Roh
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway.
| | - Kai Ove Skaftnesmo
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway
| | | | - Abdullah Madhun
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway
| | - Sonal Patel
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway
- Norwegian Veterinary Institute, Bergen, Norway
| | - Bjørn Olav Kvamme
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway
| | - H Craig Morton
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway
| | - Søren Grove
- Institute of Marine Research, Nordnes, PO Box 1870, 5817, Bergen, Norway
| |
Collapse
|
3
|
Aksnes I, Braaen S, Markussen T, Åkesson CP, Villoing S, Rimstad E. Genetically modified attenuated salmonid alphavirus: A potential strategy for immunization of Atlantic salmon. JOURNAL OF FISH DISEASES 2021; 44:923-937. [PMID: 33591590 DOI: 10.1111/jfd.13352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Pancreas disease (PD) is a serious challenge in European salmonid aquaculture caused by salmonid alphavirus (SAV). In this study, we report the effect of immunization of Atlantic salmon with three attenuated infectious SAV3 strains with targeted mutations in a glycosylation site of the envelope E2 protein and/or in a nuclear localization signal in the capsid protein. In a pilot experiment, it was shown that the mutated viral strains replicated in fish, transmitted to naïve cohabitants and that the transmission had not altered the sequences. In the main experiment, the fish were immunized with the strains and challenged with SAV3 eight weeks after immunization. Immunization resulted in infection both in injected fish and 2 weeks later in the cohabitant fish, followed by a persistent but declining load of the mutated virus variants in the hearts. The immunized fish developed clinical signs and pathology consistent with PD prior to challenge. However, fish injected with the virus mutated in both E2 and capsid showed little clinical signs and had higher average weight gain than the groups immunized with the single mutated variants. The SAV strain used for challenge was not detected in the immunized fish indicating that these fish were protected against superinfection with SAV during the 12 weeks of the experiment.
Collapse
Affiliation(s)
- Ida Aksnes
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Stine Braaen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Turhan Markussen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | - Espen Rimstad
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
4
|
Weli SC, Bernhardt LV, Qviller L, Myrmel M, Lillehaug A. Development and evaluation of a method for concentration and detection of salmonid alphavirus from seawater. J Virol Methods 2020; 287:113990. [PMID: 33035567 DOI: 10.1016/j.jviromet.2020.113990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/31/2022]
Abstract
Waterborne viral infections represent a major threat to fish health. For many viruses, understanding the interplay between pathogens, host and environment presents a major hurdle for transmission. Salmonid alphavirus (SAV) can infect and cause pancreas disease (PD) in farmed salmonids in seawater. During infection, SAV is excreted from infected fish to the seawater. We evaluated two types of filters and four different eluents, for concentration of SAV3. One L of seawater was spiked with SAV3, followed by filtration and virus elution from membrane filters. For the negatively charged MF hydrophilic membrane filter (MF-) combined with NucliSENS® lysis buffer the SAV3 recovery was 39.5 ± 1.8 % by RT-ddPCR and 25.9 ± 5.7 % by RT-qPCR. The recovery using the positively charged 1 MDS Zeta Plus® Virosorb® membrane filter (MD+), combined with NucliSENS® lysis buffer was 19.0 ± 0.1 % by RT-ddPCR and 13.3 ± 3.8 % by RT-qPCR. The limits of quantification (LOQ) and detection (LOD) were estimated to be 5.18 × 103 and 2.0 × 102 SAV3 copies/L of natural seawater, by RT-ddPCR. SAV3 recovery from small volumes of seawater, and the requirement for standard laboratory equipment, suggest the MF-filter combined with NucliSENS® lysis buffer would be a candidate for further validation in experimental trials.
Collapse
Affiliation(s)
- Simon Chioma Weli
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway.
| | | | - Lars Qviller
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway.
| | - Mette Myrmel
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Virology Unit, P.O. Box 8146 Dep., N-0033 Oslo, Norway.
| | - Atle Lillehaug
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway.
| |
Collapse
|
5
|
Gallagher MD, Karlsen M, Petterson E, Haugland Ø, Matejusova I, Macqueen DJ. Genome Sequencing of SAV3 Reveals Repeated Seeding Events of Viral Strains in Norwegian Aquaculture. Front Microbiol 2020; 11:740. [PMID: 32390982 PMCID: PMC7193772 DOI: 10.3389/fmicb.2020.00740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/30/2020] [Indexed: 01/14/2023] Open
Abstract
Understanding the dynamics of pathogen transfer in aquaculture systems is essential to manage and mitigate disease outbreaks. The goal of this study was to understand recent transmission dynamics of salmonid alphavirus (SAV) in Norway. SAV causes significant economic impacts on farmed salmonids in European aquaculture. SAV is classified into six subtypes, with Norway having ongoing epidemics of SAV subtypes 2 and 3. These two viral subtypes are present in largely distinct geographic regions of Norway, with SAV2 present in Trondelag, SAV3 in Rogaland, Sogn og Fjordane, and Hordaland, and Møre og Romsdal having outbreaks of both subtypes. To determine likely transmission routes of Norwegian SAV an established Nanopore amplicon sequencing approach was used in the current study. After confirming the accuracy of this approach for distinguishing subtype level co-infections of SAV2 and SAV3, a hypothetical possibility in regions of neighboring epidemics, twenty-four SAV3 genomes were sequenced to characterize the current genetic diversity of SAV3 in Norwegian aquaculture. Sequencing was performed on naturally infected heart tissues originating from a range of geographic locations sampled between 2016 and 2019. Phylogenetic analyses revealed that the currently active SAV3 strains sampled comprise several distinct lineages sharing an ancestor that existed ∼15 years ago (95% HPD, 12.51-17.7 years) and likely in Hordaland. At least five of these lineages have not shared a common ancestor for 7.85 years (95% HPD, 5.39-10.96 years) or more. Furthermore, the ancestor of the strains that were sampled outside of Hordaland (Sogn of Fjordane and Rogaland) existed less than 8 years ago, indicating a lack of long-term viral reservoirs in these counties. This evident lack of geographically distinct subclades is compatible with a source-sink transmission dynamic explaining the long-term movements of SAV around Norway. Such anthropogenic transport of the virus indicates that at least for sink counties, biosecurity strategies might be effective in mitigating the ongoing SAV epidemic. Finally, genomic analyses of SAV sequences were performed, offering novel insights into the prevalence of SAV genomes containing defective deletions. Overall, this study improves our understanding of the recent transmission dynamics and biology of the SAV epidemic affecting Norwegian aquaculture.
Collapse
Affiliation(s)
- Michael D. Gallagher
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Iveta Matejusova
- Marine Laboratory, Marine Scotland Science, Aberdeen, United Kingdom
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Gallagher MD, Matejusova I, Nguyen L, Ruane NM, Falk K, Macqueen DJ. Nanopore sequencing for rapid diagnostics of salmonid RNA viruses. Sci Rep 2018; 8:16307. [PMID: 30397226 PMCID: PMC6218516 DOI: 10.1038/s41598-018-34464-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Abstract
Analysis of pathogen genome variation is essential for informing disease management and control measures in farmed animals. For farmed fish, the standard approach is to use PCR and Sanger sequencing to study partial regions of pathogen genomes, with second and third-generation sequencing tools yet to be widely applied. Here we demonstrate rapid and accurate sequencing of two disease-causing viruses affecting global salmonid aquaculture, salmonid alphavirus (SAV) and infectious salmon anaemia virus (ISAV), using third-generation nanopore sequencing on the MinION platform (Oxford Nanopore Technologies). Our approach complements PCR from infected material with MinION sequencing to recover genomic information that matches near perfectly to Sanger-verified references. We use this method to present the first SAV subtype-6 genome, which branches as the sister to all other SAV lineages in a genome-wide phylogenetic reconstruction. MinION sequencing offers an effective strategy for fast, genome-wide analysis of fish viruses, with major potential applications for diagnostics and robust investigations into the origins and spread of disease outbreaks.
Collapse
Affiliation(s)
- Michael D Gallagher
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Iveta Matejusova
- Marine Scotland Science, Marine Laboratory, Aberdeen, AB11 9DB, United Kingdom
| | - Lien Nguyen
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
| | - Neil M Ruane
- Fish Health Unit, Marine Institute, Rinville Oranmore, Co, Galway, Ireland
| | - Knut Falk
- Norwegian Veterinary Institute, Ullevålsveien 68, 0454, Oslo, Norway
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, United Kingdom.
| |
Collapse
|
7
|
Ruane NM, Swords D, Morrissey T, Geary M, Hickey C, Collins EM, Geoghegan F, Swords F. Isolation of salmonid alphavirus subtype 6 from wild-caught ballan wrasse, Labrus bergylta (Ascanius). JOURNAL OF FISH DISEASES 2018; 41:1643-1651. [PMID: 30051469 DOI: 10.1111/jfd.12870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
The use of cleaner fish as a biological control for sea lice in Atlantic salmon aquaculture has increased in recent years. Wild-caught wrasse are commonly used as cleaner fish in Europe. In Ireland, samples of wrasse from each fishing area are screened for potential pathogens prior to their deployment into sea cages. Salmonid alphavirus was isolated from a pooled sample of ballan wrasse, showing no signs of disease, caught from the NW of Ireland. Partial sequencing of the E2 and nsP3 genes showed that it was closely related to the previously reported SAV subtype 6. This represents only the second isolation of this subtype and the first from a wild fish species, namely ballan wrasse.
Collapse
Affiliation(s)
- Neil M Ruane
- Fish Health Unit, Marine Institute, County Galway, Ireland
| | - David Swords
- Fish Health Unit, Marine Institute, County Galway, Ireland
| | | | - Michelle Geary
- Fish Health Unit, Marine Institute, County Galway, Ireland
| | - Cathy Hickey
- Fish Health Unit, Marine Institute, County Galway, Ireland
| | | | | | - Fiona Swords
- Fish Health Unit, Marine Institute, County Galway, Ireland
| |
Collapse
|
8
|
Gao S, Shi W, Wang Y, Guo M, Duan K, Song A, Lian G, Ren T, Li Y, Tang L, Sun L, Liu M. Establishment and evaluation of an indirect immunofluorescence assay for the detection of salmonid alphavirus. Lett Appl Microbiol 2018; 66:293-299. [DOI: 10.1111/lam.12834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 11/28/2022]
Affiliation(s)
- S. Gao
- College of Animal Science and Technology; Northeast Agricultural University; Harbin, Heilongjiang China
| | - W. Shi
- College of Animal Science and Technology; Northeast Agricultural University; Harbin, Heilongjiang China
| | - Y.T. Wang
- College of Animal Science and Technology; Northeast Agricultural University; Harbin, Heilongjiang China
| | - M.T. Guo
- College of Animal Science and Technology; Northeast Agricultural University; Harbin, Heilongjiang China
| | - K.X. Duan
- College of Animal Science and Technology; Northeast Agricultural University; Harbin, Heilongjiang China
| | - A.C. Song
- College of Animal Science and Technology; Northeast Agricultural University; Harbin, Heilongjiang China
| | - G.H. Lian
- College of Animal Science and Technology; Northeast Agricultural University; Harbin, Heilongjiang China
| | - T. Ren
- Beijing Entry-exit Inspection and Quarantine Bureau; Beijing China
| | - Y.J. Li
- Department of Preventive Veterinary Medicine; College of Veterinary Medicine; Northeast Agricultural University; Harbin Heilongjiang China
| | - L.J. Tang
- Department of Preventive Veterinary Medicine; College of Veterinary Medicine; Northeast Agricultural University; Harbin Heilongjiang China
| | - L. Sun
- College of Animal Science and Technology; Northeast Agricultural University; Harbin, Heilongjiang China
| | - M. Liu
- College of Animal Science and Technology; Northeast Agricultural University; Harbin, Heilongjiang China
| |
Collapse
|
9
|
Shi W, Song A, Gao S, Wang Y, Tang L, Xu Y, Ren T, Li Y, Liu M. Rapid and sensitive detection of salmonid alphavirus using TaqMan real-time PCR. Mol Cell Probes 2017; 34:13-20. [PMID: 28433811 DOI: 10.1016/j.mcp.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/29/2022]
Abstract
Salmonid alphavirus (SAV) infection has led to the spread of salmon pancreas disease (PD) and sleeping disease (SD) to salmonids in several countries in Europe, resulting in tremendous economic losses to the fish farming industry. Recently, with increases in the fish import trade, many countries in which SAV has been unreported, such as China, may be seriously threatened by these diseases. It is therefore necessary to develop efficient detection methods for the prevention and diagnosis of SAV infection. In this study, a rapid and sensitive TaqMan real-time PCR method was established and assessed for this purpose. A specificity assay showed no cross-reactions with other common RNA viruses. Regression analysis and standard curves calculated from the Ct values of 10-fold serial dilutions of the standard plasmid showed that the assay was highly reproducible over a wide range of RNA input concentrations. The real-time PCR assay was able to detect SAV at a concentration as low as 1.5 × 101 copies, indicating that it is 107 times more sensitive than the approved conventional RT-PCR method (detection limit, 1.5 × 107 copies) after use on the same samples. Assessment of infected fish samples showed that this assay has a higher sensitivity than the previously reported Q_nsP1 assay. Thus, this TaqMan real-time PCR assay provides a rapid, sensitive, and specific detection method for SAV, offering improved technical support for the clinical diagnosis and epidemiology of SAV.
Collapse
Affiliation(s)
- Wen Shi
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Aochen Song
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shuai Gao
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuting Wang
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lijie Tang
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yigang Xu
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Tong Ren
- Beijing Entry-exit Inspection and Quarantine Bureau, Beijing 100026, People's Republic of China
| | - Yijing Li
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Min Liu
- Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
10
|
Jansen MD, Bang Jensen B, McLoughlin MF, Rodger HD, Taksdal T, Sindre H, Graham DA, Lillehaug A. The epidemiology of pancreas disease in salmonid aquaculture: a summary of the current state of knowledge. JOURNAL OF FISH DISEASES 2017; 40:141-155. [PMID: 27136332 DOI: 10.1111/jfd.12478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 05/13/2023]
Abstract
Pancreas disease (PD) is a viral disease caused by Salmonid alphavirus (SAV) that affects farmed Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss (Walbaum)) in the seawater phase. Since its first description in Scotland in 1976, a large number of studies have been conducted relating to the disease itself and to factors contributing to agent spread and disease occurrence. This paper summarizes the currently available, scientific information on the epidemiology of PD and its associated mitigation and control measures. Available literature shows infected farmed salmonids to be the main reservoir of SAV. Transmission between seawater sites occurs mainly passively by water currents or actively through human activity coupled with inadequate biosecurity measures. All available information suggests that the current fallowing procedures are adequate to prevent agent survival within the environment through the fallowing period and thus that a repeated disease outbreak at the same site is due to a new agent introduction. There has been no scientific evaluation of currently used on-site biosecurity measures, and there is limited information on the impact of available mitigation measures and control strategies.
Collapse
Affiliation(s)
- M D Jansen
- Norwegian Veterinary Institute, Oslo, Norway
| | | | | | - H D Rodger
- Vet-Aqua International, Oranmore, Ireland
| | - T Taksdal
- Norwegian Veterinary Institute, Oslo, Norway
| | - H Sindre
- Norwegian Veterinary Institute, Oslo, Norway
| | - D A Graham
- Animal Health Ireland, Carrick on Shannon, Ireland
| | - A Lillehaug
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
11
|
Hjortaas MJ, Jensen BB, Taksdal T, Olsen AB, Lillehaug A, Trettenes E, Sindre H. Genetic characterization of salmonid alphavirus in Norway. JOURNAL OF FISH DISEASES 2016; 39:249-57. [PMID: 25683753 DOI: 10.1111/jfd.12353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 05/13/2023]
Abstract
Pancreas disease (PD), caused by salmonid alphavirus subtype 3 (SAV3), emerged in Norwegian aquaculture in the 1980s and is now endemic along the south-western coast. In 2011, the first cases of PD caused by marine salmonid alphavirus subtype 2 (SAV2) were reported. This subtype has spread rapidly among the fish farms outside the PD-endemic zone and is responsible for disease outbreaks at an increasing numbers of sites. To describe the geographical distribution of salmonid alphavirus (SAV), and to assess the time and site of introduction of marine SAV2 to Norway, an extensive genetic characterization including more than 200 SAV-positive samples from 157 Norwegian marine production sites collected from May 2007 to December 2012 was executed. The first samples positive for marine SAV2 originated from Romsdal, in June 2010. Sequence analysis of the E2 gene revealed that all marine SAV2 included in this study were nearly identical, suggesting a single introduction into Norwegian aquaculture. Further, this study provides evidence of a separate geographical distribution of two subtypes in Norway. SAV3 is present in south-western Norway, and marine SAV2 circulates in north-western and Mid-Norway, a geographical area which since 2010 constitutes the endemic zone for marine SAV2.
Collapse
Affiliation(s)
| | | | - T Taksdal
- Norwegian Veterinary Institute, Oslo, Norway
| | - A B Olsen
- Norwegian Veterinary Institute, Bergen, Norway
| | - A Lillehaug
- Norwegian Veterinary Institute, Oslo, Norway
| | - E Trettenes
- Norwegian Veterinary Institute, Oslo, Norway
| | - H Sindre
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
12
|
Taksdal T, Jensen BB, Böckerman I, McLoughlin MF, Hjortaas MJ, Ramstad A, Sindre H. Mortality and weight loss of Atlantic salmon, Salmon salar L., experimentally infected with salmonid alphavirus subtype 2 and subtype 3 isolates from Norway. JOURNAL OF FISH DISEASES 2015; 38:1047-61. [PMID: 25322679 DOI: 10.1111/jfd.12312] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 05/13/2023]
Abstract
Pancreas disease (PD) caused by salmonid alphavirus (SAV) has a significant negative economic impact in the salmonid fish farming industry in northern Europe. Until recently, only SAV subtype 3 was present in Norwegian fish farms. However, in 2011, a marine SAV 2 subtype was detected in a fish farm outside the PD-endemic zone. This subtype has spread rapidly among fish farms in mid-Norway. The PD mortality in several farms has been lower than expected, although high mortality has also been reported. In this situation, the industry and the authorities needed scientific-based information about the virulence of the marine SAV 2 strain in Norway to decide how to handle this new situation. Atlantic salmon post-smolts were experimentally infected with SAV 2 and SAV 3 strains from six different PD cases in Norway. SAV 3-infected fish showed higher mortality than SAV 2-infected fish. Among the SAV 3 isolates, two isolates gave higher mortality than the third one. At the end of the experiment, fish in all SAV-infected groups had significantly lower weight than the uninfected control fish. This is the first published paper on PD to document that waterborne infection produced significantly higher mortality than intraperitoneal injection.
Collapse
Affiliation(s)
- T Taksdal
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - I Böckerman
- Norwegian Veterinary Institute, Oslo, Norway
| | | | | | | | - H Sindre
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
13
|
Petterson E, Guo TC, Evensen Ø, Haugland Ø, Mikalsen AB. In vitro adaptation of SAV3 in cell culture correlates with reduced in vivo replication capacity and virulence to Atlantic salmon (Salmo salar L.) parr. J Gen Virol 2015; 96:3023-3034. [PMID: 26297344 DOI: 10.1099/jgv.0.000242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonid alphavirus (SAV) is the causative agent of pancreas disease affecting Atlantic salmon and rainbow trout and causes a major burden to the aquaculture industry. This study describes a Norwegian subtype SAV3 virus isolate (SAV3-H10) subjected to serial passages in Chinook salmon embryo cells (CHSE-214) followed by Asian Grouper skin cells (AGK). Two passages from CHSE and one after transfer to AGK cells were chosen for further investigation, based on variation in degree and development of cytopathic effect (CPE). After plaque purification, several in vitro studies were performed. Cell viability after infection, viral replication and ability to cause morphological changes in CHSE and AGK cells was studied for the three isolates. The AGK-transferred isolate was identified with the strongest abilities to reduce cell viability, replicate more and cause more CPE in cell culture when compared with the early and late CHSE-grown isolates. Subsequently, the isolates were tested in an experimental fish challenge, showing higher viral load and higher pathological score for the least cell-cultured isolate. Full-length sequencing of the viral genome of the three isolates revealed divergence in four amino acid positions and the AGK-grown isolate also had a 3 nt deletion in the 3'UTR. In conclusion, we show that cell culture of SAV3-H10 selects for strains inducing earlier CPE in vitro with increased viral replication. In vivo, the effect is reversed, with lower replication levels and lower pathology scores in target organs. This study outlines a path to identify potential virulence motifs of SAV3.
Collapse
Affiliation(s)
- Elin Petterson
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| | - Tz-Chun Guo
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| | - Øystein Evensen
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| | - Øyvind Haugland
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| | - Aase B Mikalsen
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| |
Collapse
|
14
|
The effect of dietary n-3/n-6 polyunsaturated fatty acid ratio on salmonid alphavirus subtype 1 (SAV-1) replication in tissues of experimentally infected rainbow trout (Oncorhynchus mykiss). Vet Microbiol 2015; 178:19-30. [DOI: 10.1016/j.vetmic.2015.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/01/2015] [Accepted: 04/20/2015] [Indexed: 01/05/2023]
|
15
|
Jansen MD, Jensen BB, Brun E. Clinical manifestations of pancreas disease outbreaks in Norwegian marine salmon farming - variations due to salmonid alphavirus subtype. JOURNAL OF FISH DISEASES 2015; 38:343-53. [PMID: 24661057 DOI: 10.1111/jfd.12238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 05/13/2023]
Abstract
Pancreas disease (PD) in Norwegian salmonid aquaculture has traditionally been caused by salmonid alphavirus (SAV) subtype 3. Following the isolation of a novel SAV subtype in 2010, marine SAV2, two separate endemic areas have developed. It has been debated whether disease outbreaks due to marine SAV2 result in milder clinical manifestations compared to outbreaks caused by SAV3. The aim of this study was to descriptively investigate site-level differences in the clinical manifestations of marine SAV2 and SAV3 at Norwegian seawater sites diagnosed with PD in 2012. The findings suggest that Norwegian PD outbreaks caused by marine SAV2 result in lower mortality and milder clinical signs compared to outbreaks caused by SAV3. For sites without reported PD-related mortality, there was no difference in the mortality levels between sites infected by marine SAV2 and SAV3. The results also indicate that there are no differences in grading quality at slaughter between the SAV subtypes.
Collapse
Affiliation(s)
- M D Jansen
- Section for Epidemiology, Norwegian Veterinary Institute, Oslo, Norway
| | | | | |
Collapse
|
16
|
Karlsen M, Andersen L, Blindheim SH, Rimstad E, Nylund A. A naturally occurring substitution in the E2 protein of Salmonid alphavirus subtype 3 changes viral fitness. Virus Res 2014; 196:79-86. [PMID: 25445347 DOI: 10.1016/j.virusres.2014.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/09/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
Phylogenetic analyses of the Salmonid alphavirus subtype 3 (SAV3) epizootic have suggested that a substitution from proline to serine in the receptor binding protein E2 position 206 has occurred after the introduction of virus from a wild reservoir to farmed salmonid fish in Norway. We modelled the 3D structure of P62, the uncleaved E3-E2 precursor, of SAVH20/03 based on its sequence homology to the Chikungunya virus (CHIKV), and studied in vitro and in vivo effects of the mutation using reverse genetics. E2(206) is located on the surface of the B-domain of E2, which is associated with receptor attachment in alphaviruses. Recombinant virus expressing the E2(206S) codon replicated slower and produced significantly less genomic copies than virus expressing the ancestral E2(206P) codon in vitro in Bluegill Fry (BF2) cells. The E2(206S) mutant was out-competed by the E2(206P) mutant after 5 passages in an in vitro competition assay, confirming that the substitution negatively affects the efficacy of virus multiplication in cell culture. Both mutants were highly infectious to Atlantic salmon (Salmo salar), produced similar viral RNA loads in gills, heart, kidney and brain, and induced similar histopathologic changes in these organs. The E2(206S) mutant produced a less persistent infection in salmon and was shed more rapidly to water than the E2(206P) mutant. Reduced generation time through more rapid shedding could therefore explain why a serine in this position became dominant in the viral population after SAV3 was introduced to farmed salmon from the wild reservoir.
Collapse
Affiliation(s)
- Marius Karlsen
- Department of Biology, University of Bergen, Thor Møhlens gt 55, 5020 Bergen, Norway.
| | - Linda Andersen
- Department of Biology, University of Bergen, Thor Møhlens gt 55, 5020 Bergen, Norway
| | - Steffen H Blindheim
- Department of Biology, University of Bergen, Thor Møhlens gt 55, 5020 Bergen, Norway
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. 8146 Dep, 0033 Oslo, Norway
| | - Are Nylund
- Department of Biology, University of Bergen, Thor Møhlens gt 55, 5020 Bergen, Norway
| |
Collapse
|
17
|
Schmidt-Posthaus H, Diserens N, Jankowska Hjortaas M, Knüsel R, Hirschi R, Taksdal T. First outbreak of sleeping disease in Switzerland: disease signs and virus characterization. DISEASES OF AQUATIC ORGANISMS 2014; 111:165-171. [PMID: 25266904 DOI: 10.3354/dao02766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sleeping disease is a contagious disease mainly of freshwater farmed rainbow trout, caused by salmonid alphavirus (SAV) Subtype 2. Here we describe the first case in Switzerland. Pathological changes ranged from acute pancreas necrosis to more chronic lesions with complete loss of exocrine pancreas and simultaneous degenerative, inflammatory and regenerative heart and muscle lesions. The partial sequencing of SAV E2 and nsp3 genes placed the Swiss SAV variant within the Subtype 2 clustering together with freshwater isolates from UK and continental Europe. Although mortality stayed low, growth rates were significantly reduced, making the disease economically relevant.
Collapse
Affiliation(s)
- Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Department of Infectious Disease and Pathobiology, University of Berne, Laenggassstrasse 122, PO Box 8466, 3001 Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Mikalsen AB, Nilsen P, Frøystad-Saugen M, Lindmo K, Eliassen TM, Rode M, Evensen Ø. Characterization of a novel calicivirus causing systemic infection in atlantic salmon (Salmo salar L.): proposal for a new genus of caliciviridae. PLoS One 2014; 9:e107132. [PMID: 25203050 PMCID: PMC4159302 DOI: 10.1371/journal.pone.0107132] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/11/2014] [Indexed: 12/30/2022] Open
Abstract
The Caliciviridae is a family of viruses infecting humans, a wide range of animals, birds and marine fish and mammals, resulting in a wide spectrum of diseases. We describe the identification and genetic characterization of a novel calicivirus replicating in Atlantic salmon. The virus has a high prevalence in farmed salmon and is found in fish suffering from several diseases and conditions and also in presumable healthy fish. A challenge and vaccination trial shows that the calicivirus replicates in Atlantic salmon and establishes a systemic infection, which can be reduced by vaccination with formalin-inactivated virus preparation. The virus, named Atlantic salmon calicivirus (ASCV), is found in two genetically distinct variants, a cell culture isolated and a variant sequenced directly from field material. The genomes are 7,4 kb and contain two open reading frames where typical conserved amino acid motifs and domains predict a gene order reminiscent of calicivirus genomes. Phylogenetic analysis performed on extracted capsid amino acid sequences segregated the two ASCV variants in a unique cluster sharing root with the branch of noroviruses infecting humans and the unassigned Tulane virus and St-Valérien like viruses, infecting rhesus monkey and pig, respectively, with relatively large distance to the marine calicivirus subgroup of vesiviruses. Based on the analyses presented, the ASCV is predicted to represent a new genus of Caliciviridae for which we propose the name Salovirus.
Collapse
Affiliation(s)
- Aase B. Mikalsen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, Dept. of Basic Sciences and Aquatic Medicine, Oslo, Norway
- * E-mail:
| | | | | | | | | | | | - Øystein Evensen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, Dept. of Basic Sciences and Aquatic Medicine, Oslo, Norway
| |
Collapse
|
19
|
Hikke MC, Verest M, Vlak JM, Pijlman GP. Salmonid alphavirus replication in mosquito cells: towards a novel vaccine production system. Microb Biotechnol 2014; 7:480-4. [PMID: 24418177 PMCID: PMC4229328 DOI: 10.1111/1751-7915.12100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 11/28/2022] Open
Abstract
Salmonid alphavirus (SAV) causes pancreas disease and sleeping disease in Atlantic salmon (Salmosalar) and rainbow trout (Oncorhynchus mykiss) and confers a major burden to the aquaculture industry. A commercial inactivated whole virus vaccine propagated in a salmon cell line at low temperature provides effective protection against SAV infections. Alphaviruses (family Togaviridae) are generally transmitted between vertebrate hosts via blood-sucking arthropod vectors, typically mosquitoes. SAV is unique in this respect because it can be transmitted directly from fish to fish and has no known invertebrate vector. Here, we show for the first time that SAV is able to complete a full infectious cycle within arthropod cells derived from the Asian tiger mosquito Aedes albopictus. Progeny virus is produced in C6/36 and U4.4. cells in a temperature-dependent manner (at 15°C but not at 18°C), can be serially passaged and remains infectious to salmonid Chinook salmon embryo cells. This suggests that SAV is not a vertebrate-restricted alphavirus after all and may have the potential to replicate in invertebrates. The current study also shows the ability of SAV to be propagated in mosquito cells, thereby possibly providing an alternative SAV production system for vaccine applications.
Collapse
Affiliation(s)
- Mia C Hikke
- Wageningen University, Laboratory of Virology, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
20
|
Garseth ÅH, Ekrem T, Biering E. Phylogenetic evidence of long distance dispersal and transmission of piscine reovirus (PRV) between farmed and wild Atlantic salmon. PLoS One 2013; 8:e82202. [PMID: 24349221 PMCID: PMC3859594 DOI: 10.1371/journal.pone.0082202] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/22/2013] [Indexed: 12/17/2022] Open
Abstract
The extent and effect of disease interaction and pathogen exchange between wild and farmed fish populations is an ongoing debate and an area of research that is difficult to explore. The objective of this study was to investigate pathogen transmission between farmed and wild Atlantic salmon (Salmo salar L.) populations in Norway by means of molecular epidemiology. Piscine reovirus (PRV) was selected as the model organism as it is widely distributed in both farmed and wild Atlantic salmon in Norway, and because infection not necessarily will lead to mortality through development of disease. A matrix comprised of PRV protein coding sequences S1, S2 and S4 from wild, hatchery-reared and farmed Atlantic salmon in addition to one sea-trout (Salmo trutta L.) was examined. Phylogenetic analyses based on maximum likelihood and Bayesian inference indicate long distance transport of PRV and exchange of virus between populations. The results are discussed in the context of Atlantic salmon ecology and the structure of the Norwegian salmon industry. We conclude that the lack of a geographical pattern in the phylogenetic trees is caused by extensive exchange of PRV. In addition, the detailed topography of the trees indicates long distance transportation of PRV. Through its size, structure and infection status, the Atlantic salmon farming industry has the capacity to play a central role in both long distance transportation and transmission of pathogens. Despite extensive migration, wild salmon probably play a minor role as they are fewer in numbers, appear at lower densities and are less likely to be infected. An open question is the relationship between the PRV sequences found in marine fish and those originating from salmon.
Collapse
Affiliation(s)
- Åse Helen Garseth
- Department of Health Surveillance, Norwegian Veterinary Institute, Trondheim, Norway
- Department of Natural History, Norwegian University of Science and Technology University Museum, Trondheim, Norway
- * E-mail:
| | - Torbjørn Ekrem
- Department of Natural History, Norwegian University of Science and Technology University Museum, Trondheim, Norway
| | - Eirik Biering
- Department of Health Surveillance, Norwegian Veterinary Institute, Trondheim, Norway
| |
Collapse
|
21
|
Karlsen M, Gjerset B, Hansen T, Rambaut A. Multiple introductions of salmonid alphavirus from a wild reservoir have caused independent and self-sustainable epizootics in aquaculture. J Gen Virol 2013; 95:52-59. [PMID: 24062534 DOI: 10.1099/vir.0.057455-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonid alphavirus (SAV) causes infections in farmed Atlantic salmon and rainbow trout in Europe. Genetic diversity exists among SAV strains from farmed fish and six subtypes have been proposed based on genetic distance. Here, we used six full-genome sequences and 71 partial sequences of the structural ORF to estimate the evolutionary rate of SAV. The rate, 2.13×10(-4) nt substitutions per site per year, was further used to date evolutionary events in a Bayesian phylogenetic framework. The comparison of these dates with known historical events suggested that all six subtypes diverged prior to the twentieth century, earlier than the first attempts to introduce and farm rainbow trout in Europe. The subtypes must therefore have existed in a wild reservoir, as yet unidentified. The strains of each subtype, with the exception of subtype 2, have a common ancestor that existed after the 1970s - the start of modern farming of Atlantic salmon. These ancestors are likely to represent the independent introductions to farmed fish populations from the wild reservoir. The subtypes have developed subsequently into self-sustainable epizootics. The most parsimonious phylogeographic reconstruction suggested that the location of the wild reservoir is in or around the North Sea. After the initial introductions to aquaculture, further transmission of SAV was likely related to the industry infrastructure. This was exemplified by the finding of genetically identical subtype 2 and 3 strains separated by large geographical distances, as well as genetically distinct co-circulating lineages within the same geographical area.
Collapse
Affiliation(s)
| | - Britt Gjerset
- Norwegian Veterinary Institute, Pb 750 Sentrum, 0106 Oslo, Norway
| | - Tove Hansen
- PHARMAQ AS, Harbitzalléen 2a, 0275 Oslo, Norway
| | | |
Collapse
|
22
|
Herath TK, Thompson KD, Adams A, Richards RH. Interferon-mediated host response in experimentally induced salmonid alphavirus 1 infection in Atlantic salmon (Salmo salar L.). Vet Immunol Immunopathol 2013; 155:9-20. [DOI: 10.1016/j.vetimm.2013.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/13/2013] [Accepted: 05/17/2013] [Indexed: 12/01/2022]
|
23
|
Petterson E, Stormoen M, Evensen Ø, Mikalsen AB, Haugland Ø. Natural infection of Atlantic salmon (Salmo salar L.) with salmonid alphavirus 3 generates numerous viral deletion mutants. J Gen Virol 2013; 94:1945-1954. [PMID: 23704276 DOI: 10.1099/vir.0.052563-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Salmon pancreas disease virus (SPDV) also referred to as salmonid alphavirus (SAV) is a virus causing pancreas disease in Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss). Although the virus causes an economically important disease, relatively few full-length genome sequences of SAV strains are currently available. Here, we report full-length genome sequences of nine SAV3 strains from sites farming Atlantic salmon geographically spread along the Norwegian coastline. The virus genomes were sequenced directly from infected heart tissue, to avoid culture selection bias. Sequence analysis confirmed a high level of sequence identity within SAV3 strains, with a mean nucleotide diversity of 0.11 %. Sequence divergence was highest in 6K and E2, while lowest in the capsid protein and the non-structural proteins (nsP4 and nsP2). This study reports for the first time that numerous defective viruses containing genome deletions are generated during natural infection with SAV. Deletions occurred in all virus strains and were not distributed randomly throughout the genome but instead tended to aggregate in certain areas. We suggest imprecise homologous recombination as an explanation for generation of defective viruses with genome deletions. The presence of such viruses, provides a possible explanation for the difficulties in isolating SAV in cell culture. Primary virus isolation was successfully achieved for only two of eight strains, despite extensive attempts using three different cell lines. Both SAV isolates were easily propagated further and concomitant viral deletion mutants present in clinically infected heart tissue were maintained following serial passage in CHH-1 cells.
Collapse
Affiliation(s)
- Elin Petterson
- Norwegian School of Veterinary Science, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., 0033 Oslo Norway
| | - Marit Stormoen
- Norwegian School of Veterinary Science, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., 0033 Oslo Norway
| | - Øystein Evensen
- Norwegian School of Veterinary Science, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., 0033 Oslo Norway
| | - Aase B Mikalsen
- Norwegian School of Veterinary Science, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., 0033 Oslo Norway
| | - Øyvind Haugland
- Norwegian School of Veterinary Science, Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., 0033 Oslo Norway
| |
Collapse
|
24
|
Matejusova I, Lester K, Li Z, Bravo J, Bland F, Collet B. Comparison of complete polyprotein sequences of two isolates of salmon alphavirus (SAV) type I and their behaviour in a salmonid cell line. Arch Virol 2013; 158:2143-6. [DOI: 10.1007/s00705-013-1689-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 02/25/2013] [Indexed: 11/24/2022]
|
25
|
Hjortaas MJ, Skjelstad HR, Taksdal T, Olsen AB, Johansen R, Bang-Jensen B, Ørpetveit I, Sindre H. The first detections of subtype 2-related salmonid alphavirus (SAV2) in Atlantic salmon, Salmo salar L., in Norway. JOURNAL OF FISH DISEASES 2013; 36:71-4. [PMID: 22943794 DOI: 10.1111/j.1365-2761.2012.01445.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/13/2012] [Indexed: 05/13/2023]
|
26
|
Graham DA, Fringuelli E, Rowley HM, Cockerill D, Cox DI, Turnbull T, Rodger H, Morris D, Mc Loughlin MF. Geographical distribution of salmonid alphavirus subtypes in marine farmed Atlantic salmon, Salmo salar L., in Scotland and Ireland. JOURNAL OF FISH DISEASES 2012; 35:755-765. [PMID: 22804865 DOI: 10.1111/j.1365-2761.2012.01401.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sequence data from salmonid alphavirus (SAV) strains obtained from farmed marine Atlantic salmon, Salmo salar L. , over a 20-year period between 1991 and 2011 was reviewed to examine the geographical distribution of the genetically defined SAV subtypes in twelve regions across Ireland and Scotland. Of 160 different Atlantic salmon SAV strains examined, 62 belonged to subtype 1, 28 to subtype 2, 34 to subtype 4, 35 to subtype 5 and 1 to subtype 6. SAV subtypes 1, 4 and 6 were found in Ireland, while subtypes 1, 2, 4 and 5 were found in Scotland. In the majority of regions, there was a clear clustering of subtypes, with SAV subtype 1 being the dominant subtype in Ireland overall, as well as in Argyll and Bute in Scotland. SAV subtype 2 predominated in the Shetland and Orkney Islands. The emergence in Atlantic salmon of subtype 2 strains typically associated with sleeping disease in rainbow trout in Argyll and Bute, strongly suggesting transmission of infection between these species, was noted for the first time. SAV subtype 4 was the most common subtype found in the southern Western Isles, while SAV subtype 5 predominated in the northern Western Isles and north-west mainland Scotland. No single strain was dominant on sites in the western Highlands, with a number of sites in this region in particular having more than one subtype detected in different submissions. The significance of these results in relation to aspects of the epidemiology of infection, including transmission, biosecurity and wildlife reservoirs are discussed and knowledge gaps identified.
Collapse
Affiliation(s)
- D A Graham
- Fish Diseases Unit, Agrifood and Biosciences Institute, Stormont, BT4 3SD, Northern Ireland, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kibenge FS, Godoy MG, Fast M, Workenhe S, Kibenge MJ. Countermeasures against viral diseases of farmed fish. Antiviral Res 2012; 95:257-81. [DOI: 10.1016/j.antiviral.2012.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/01/2012] [Accepted: 06/09/2012] [Indexed: 12/24/2022]
|
28
|
Plarre H, Nylund A, Karlsen M, Brevik Ø, Sæther PA, Vike S. Evolution of infectious salmon anaemia virus (ISA virus). Arch Virol 2012; 157:2309-26. [DOI: 10.1007/s00705-012-1438-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/29/2012] [Indexed: 12/31/2022]
|
29
|
Karlsen M, Tingbø T, Solbakk IT, Evensen Ø, Furevik A, Aas-Eng A. Efficacy and safety of an inactivated vaccine against Salmonid alphavirus (family Togaviridae). Vaccine 2012; 30:5688-94. [PMID: 22691434 DOI: 10.1016/j.vaccine.2012.05.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/04/2012] [Accepted: 05/24/2012] [Indexed: 01/15/2023]
Abstract
Pancreas disease (PD) in salmonid fish is caused by an infection with Salmonid alphavirus (SAV) and remains as one of the major health problems in the European fish farming industry. Sequence studies have revealed a genetic diversity among viral strains. A subtype of SAV (SAV3) is causing an epizootic in farmed salmonids in Norway. Here we evaluate efficacy and safety of an inactivated virus vaccine based on ALV405, a strain of SAV3 that was isolated from Norwegian salmon. The vaccine provided an average relative percent survival (RPS) of 98.5 in an intraperitoneal challenge model, and induced nearly total protection against PD in a cohabitant challenge model. It provided significant protection against SAV-induced mortality also in a field trial under industrial conditions. Local reactions seen as melanization and adhesions in the visceral cavity were less severe than those induced by two commercial vaccines. Finally, we demonstrated that the protection is not impaired when the ALV405 antigen is combined with other viral or bacterial antigens in a polyvalent vaccine. The results confirm that efficient and safe protection against SAV infection and development of PD is possible using an inactivated virus vaccine, both alone and as a component in a polyvalent vaccine.
Collapse
|
30
|
Karlsen M, Villoing S, Ottem KF, Rimstad E, Nylund A. Development of infectious cDNA clones of Salmonid alphavirus subtype 3. BMC Res Notes 2010; 3:241. [PMID: 20858233 PMCID: PMC2949663 DOI: 10.1186/1756-0500-3-241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/21/2010] [Indexed: 01/07/2023] Open
Abstract
Background Salmonid alphavirus (SAV) is a widespread pathogen in European aquaculture of salmonid fish. Distinct viral subtypes have been suggested based on sequence comparisons and some of these have different geographical distributions. In Norway, only SAV subtype 3 have so far been identified. Little is known about viral mechanisms important for pathogenesis and transmission. Tools for detailed exploration of SAV genomes are therefore needed. Results Infectious cDNA clones in which a genome of subtype 3 SAV is under the control of a CMV promoter were constructed. The clones were designed to express proteins that are putatively identical to those previously reported for the SAVH20/03 strain. A polyclonal antiserum was raised against a part of the E2 glycoprotein in order to detect expression of the subgenomic open reading frame (ORF) encoding structural viral proteins. Transfection of the cDNA clone revealed the expression of the E2 protein by IFAT, and in serial passages of the supernatant the presence of infectious recombinant virus was confirmed through RT-PCR, IFAT and the development of a cytopathic effect similar to that seen during infection with wild type SAV. Confirmation that the recovered virus originated from the infectious plasmid was done by sequence identification of an introduced genetic tag. The recombinant virus was infectious also when an additional ORF encoding an EGFP reporter gene under the control of a second subgenomic alphavirus promoter was added. Finally, we used the system to study the effect of selected point mutations on infectivity in Chinook salmon embryo cells. While introduced mutations in nsP2197, nsP3263 and nsP3323 severely reduced infectivity, a serine to proline mutation in E2206 appeared to enhance the virus titer production. Conclusion We have constructed infectious clones for SAV based on a subtype 3 genome. The clones may serve as a platform for further functional studies.
Collapse
Affiliation(s)
- Marius Karlsen
- Department of Biology, University of Bergen, Thor Møhlens gate 55, 5020 Bergen, Norway.
| | | | | | | | | |
Collapse
|
31
|
Jansen MD, Wasmuth MA, Olsen AB, Gjerset B, Modahl I, Breck O, Haldorsen RN, Hjelmeland R, Taksdal T. Pancreas disease (PD) in sea-reared Atlantic salmon, Salmo salar L., in Norway; a prospective, longitudinal study of disease development and agreement between diagnostic test results. JOURNAL OF FISH DISEASES 2010; 33:723-36. [PMID: 20609035 DOI: 10.1111/j.1365-2761.2010.01176.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A prospective longitudinal study was performed on three cages at each of three Norwegian Atlantic salmon seawater sites that experienced outbreaks of pancreas disease (PD). Once salmonid alphavirus (SAV) ribonucleic acid (RNA) was detected by real-time RT-PCR (Rt RT-PCR) at a site, it became detected in all studied cages and was persistently found until the end of the study period up to 19 months after first detection. SAV-specific antibodies were detected at all sites until the end of the study period and were also found at a high prevalence in broodfish at the time of stripping. No evidence of increased viral activity was detected in these broodfish. One site tested negative over several months prior to the first detection of SAV by Rt RT-PCR and SAV-specific antibody, which occurred 1 month prior to clinical manifestations of PD. Moribund fish or thin fish/runts that were sampled after the first PD diagnosis had almost twice the risk of testing positive by one or more diagnostic tests compared to that of randomly selected apparently healthy individuals. This paper describes the first detailed investigation of the disease development of PD at site and cage level in Norway, as well as an assessment of the performance and agreement of the commonly used diagnostic tests.
Collapse
Affiliation(s)
- M D Jansen
- Norwegian School of Veterinary Science, Centre for epidemiology and Biostatistics, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Andersen L, Hodneland K, Nylund A. No influence of oxygen levels on pathogenesis and virus shedding in Salmonid alphavirus (SAV)-challenged Atlantic salmon (Salmo salar L.). Virol J 2010; 7:198. [PMID: 20727205 PMCID: PMC2936311 DOI: 10.1186/1743-422x-7-198] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/21/2010] [Indexed: 12/03/2022] Open
Abstract
Background For more than three decades, diseases caused by salmonid alphaviruses (SAV) have become a major problem of increasing economic importance in the European fish-farming industry. However, experimental infection trials with SAV result in low or no mortality i.e very different from most field outbreaks of pancreas disease (PD). This probably reflects the difficulties in reproducing complex biotic and abiotic field conditions in the laboratory. In this study we looked at the relationship between SAV-infection in salmon and sub-lethal environmental hypoxia as a result of reduced flow-through in tank systems. Results The experiment demonstrated that constant reduced oxygen levels (60-65% oxygen saturation: 6.5-7.0 mg/L) did not significantly increase the severity or the progress of pancreas disease (PD). These conclusions are based upon assessments of a semi-quantitative histopathological lesion score system, morbidities/mortalities, and levels of SAV RNA in tissues and water (measured by 1 MDS electropositive virus filters and downstream real-time RT-PCR). Furthermore, we demonstrate that the fish population shed detectable levels of the virus into the surrounding water during viraemia; 4-13 days after i.p. infection, and prior to appearance of severe lesions in heart (21-35 dpi). After this period, viral RNA from SAV could not be detected in water samples although still present in tissues (gills and hearts) at lasting low levels. Lesions could be seen in exocrine pancreas at 7-21 days post infection, but no muscle lesions were seen. Conclusions In our study, experimentally induced hypoxia failed to explain the discrepancy between the severities reported from field outbreaks of SAV-disease and experimental infections. Reduction of oxygen levels to constant suboptimal levels had no effect on the severity of lesions caused by SAV-infection or the progress of the disease. Furthermore, we present a modified VIRADEL method which can be used to detect virus in water and to supplement experimental infection trials with information related to viral shedding. By using this method, we were able to demonstrate for the first time that shedding of SAV from the fish population into the surrounding water coincides with viraemia.
Collapse
Affiliation(s)
- Linda Andersen
- Department of Biology, University of Bergen, Pb 7800, N-5020 Bergen, Norway.
| | | | | |
Collapse
|
33
|
Jansen MD, Gjerset B, Modahl I, Bohlin J. Molecular epidemiology of salmonid alphavirus (SAV) subtype 3 in Norway. Virol J 2010; 7:188. [PMID: 20701761 PMCID: PMC2925375 DOI: 10.1186/1743-422x-7-188] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 08/11/2010] [Indexed: 11/10/2022] Open
Abstract
Background Pancreas disease (PD) is a viral fish disease which in recent years has significantly affected Norwegian salmonid aquaculture. In Norway, the aetiological agent salmonid alphavirus (SAV) has been found to be represented by the subtype 3 only. SAV subtype 3 has in previous analyses been found to show a lower genetic divergence than the subtypes found to cause PD in Ireland and Scotland. The aim of this study was to evaluate the nucleotide (nt) and amino acid divergence and the phylogenetic relationship of 33 recent SAV subtype 3 sequences. The samples from which the sequences were obtained originated from both PD endemic and non-endemic regions in an attempt to investigate agent origin/spread. Multiple samples throughout the seawater production phase from several salmonid populations were included to investigate genetic variation during an outbreak. The analyses were mainly based on partial sequences from the E2 gene. For some samples, additional partial 6 K and nsP3 gene sequences were available. Results The nucleotide divergence for all gene fragments ranged from total identity (0.0% divergence) to 0.45% (1103 nt fragment of E2), 1.11% (451 nt fragment of E2), 0.94% (6 K) and 0.28% (nsP3). This low nucleotide divergence corresponded well to previous reports on SAV 3 sequences; however the observed divergence for the short E2 fragment was higher than that previously reported. When compared to SAVH20/03 (AY604235), amino acid substitutions were detected in all assessed gene fragments however the in vivo significance of these on for example disease outbreak mortality could not be concluded on. The phylogenetic tree based on the 451 nt E2 fragment showed that the sequences divided into two clusters with low genetic divergence, representing only a single SAV subtype. Conclusions The analysed sequences represented two clusters of a single SAV subtype; however some of the observed sequence divergence was higher than that previously reported by other researchers. Larger scale, full length sequence analyses should be instigated to allow further phylogenetic and molecular epidemiology investigations of SAV subtype 3.
Collapse
Affiliation(s)
- Mona D Jansen
- Center for Epidemiology and Biostatistics, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | |
Collapse
|
34
|
The amino terminus of the salmonid alphavirus capsid protein determines subcellular localization and inhibits cellular proliferation. Arch Virol 2010; 155:1281-93. [DOI: 10.1007/s00705-010-0717-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 05/28/2010] [Indexed: 12/17/2022]
|
35
|
Jansen MD, Taksdal T, Wasmuth MA, Gjerset B, Brun E, Olsen AB, Breck O, Sandberg M. Salmonid alphavirus (SAV) and pancreas disease (PD) in Atlantic salmon, Salmo salar L., in freshwater and seawater sites in Norway from 2006 to 2008. JOURNAL OF FISH DISEASES 2010; 33:391-402. [PMID: 20158578 DOI: 10.1111/j.1365-2761.2009.01131.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A cohort study was initiated in the spring of 2006 to investigate epidemiological aspects and pathogenesis of salmonid alphavirus (SAV) subtype 3 infections and pancreas disease (PD). The aims were to assess involvement of the freshwater production phase, the extent and frequency of subclinical infections and to follow PD-affected populations throughout the entire seawater production cycle, as well as investigate possible risk factors for PD outbreaks. Fish groups from 46 different Atlantic salmon freshwater sites in six counties were sampled once prior to seawater transfer and followed onto their seawater sites. A total of 51 Atlantic salmon seawater sites were included, and fish groups were sampled three times during the seawater production phase. SAV subtype 3 was not identified by real-time RT-PCR from samples collected in the freshwater phase, nor were any SAV-neutralizing antibodies or histopathological changes consistent with PD. In the seawater phase, SAV was detected in samples from 23 of 36 (63.9%) studied sites located within the endemic region. No SAV subtype 3 was detected in samples from seawater sites located outside the endemic region. The cumulative incidence of PD during the production cycle amongst sites with SAV detected was 87% (20 of 23 sites). Average fish weight at time of PD diagnosis ranged from 461 to 5978 g, because of a wide variation in the timing of disease occurrence throughout the production cycle. Mortality levels following a PD diagnosis varied greatly between populations. The mean percentage mortality was 6.9% (+/-7.06) (range 0.7-26.9), while the mean duration of increased mortality following PD diagnosis was 2.8 months (+/-1.11) (range 1-6).
Collapse
Affiliation(s)
- M D Jansen
- Norwegian School of Veterinary Science, Centre for Epidemiology and Biostatistics, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Karlsen M, Villoing S, Rimstad E, Nylund A. Characterization of untranslated regions of the salmonid alphavirus 3 (SAV3) genome and construction of a SAV3 based replicon. Virol J 2009; 6:173. [PMID: 19860871 PMCID: PMC2772843 DOI: 10.1186/1743-422x-6-173] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 10/27/2009] [Indexed: 11/10/2022] Open
Abstract
Salmonid alphavirus (SAV) causes disease in farmed salmonid fish and is divided into different genetic subtypes (SAV1-6). Here we report the cloning and characterization of the 5'- and 3'- untranslated regions (UTR) of a SAV3 isolated from Atlantic salmon in Norway. The sequences of the UTRs are very similar to those of SAV1 and SAV2, but single nucleotide polymorphisms are present, also in the 3' - conserved sequence element (3'-CSE). Prediction of the RNA secondary structure suggested putative stem-loop structures in both the 5'- and 3'-ends, similar to those of alphaviruses from the terrestrial environment, indicating that the general genome replication initiation strategy for alphaviruses is also utilized by SAV. A DNA replicon vector, pmSAV3, based upon a pVAX1 backbone and the SAV3 genome was constructed, and the SAV3 non-structural proteins were used to express a reporter gene controlled by the SAV3 subgenomic promoter. Transfection of pmSAV3 into CHSE and BF2 cell lines resulted in expression of the reporter protein, confirming that the cloned SAV3 replication apparatus and UTRs are functional in fish cells.
Collapse
Affiliation(s)
- Marius Karlsen
- Department of Biology, University of Bergen, Thor Møhlens gate 55, 5020 Bergen, Norway.
| | | | | | | |
Collapse
|
37
|
Bratland A, Nylund A. Studies on the possibility of vertical transmission of Norwegian salmonid Alphavirus in production of Atlantic salmon in Norway. JOURNAL OF AQUATIC ANIMAL HEALTH 2009; 21:173-178. [PMID: 20043403 DOI: 10.1577/h08-038.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Disease associated with salmonid Alphavirus (SAV) infection is a significant problem for farm production of salmonids in Europe. The SAV subtype 3 (SAV3) is a Norwegian subtype present exclusively in production systems for Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss in western Norway. It has been suggested that SAV3 is transmitted through smolt transport from the main area for SAV disease in western Norway to as far as northern Norway. One explanation for this type of spread is that SAV is present at freshwater production sites for Atlantic salmon smolts. The present study confirms this, showing that SAV3 is present at smolt production sites in Norway. At two sites in northern Norway that had received eggs from broodfish companies in Hordaland County, western Norway, 2-4-g fry were positive for SAV3. Hence, it cannot be excluded that vertical transmission could have contributed to the presence of SAV3 in northern Norway. In the present study, we followed the normal production cycle for Atlantic salmon in a fish farming company in Hordaland County. Twelve of 353 broodfish in study 1 and 28 of 31 broodfish in study 2 were found to be carriers of SAV3. In the same two studies, SAV was also detected in eggs (1 of 220), eyed eggs (3 of 270), and fry (6 of 600). The SAV was not detected in parr, smolts, or postsmolts, but after a year at sea the fish developed SAV disease. Given the difficulties in tracing the virus through the production cycle until development of SAV disease in the marine farm, we cannot draw any firm conclusions about whether vertical transmission occurs in Norwegian salmon production, and we cannot exclude the possibility that the development of SAV after 1 year at sea was caused by horizontal transmission rather than vertical transmission.
Collapse
Affiliation(s)
- André Bratland
- Department of Biology, University of Bergen, Post Box 7800, N-5020 Bergen, Norway.
| | | |
Collapse
|
38
|
Risk factors for pancreas disease (PD) outbreaks in farmed Atlantic salmon and rainbow trout in Norway during 2003–2007. Prev Vet Med 2009; 90:127-36. [PMID: 19419787 DOI: 10.1016/j.prevetmed.2009.04.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 04/03/2009] [Accepted: 04/08/2009] [Indexed: 11/23/2022]
|
39
|
Abstract
Viruses are ubiquitous in the sea and appear to outnumber all other forms of marine life by at least an order of magnitude. Through selective infection, viruses influence nutrient cycling, community structure, and evolution in the ocean. Over the past 20 years we have learned a great deal about the diversity and ecology of the viruses that constitute the marine virioplankton, but until recently the emphasis has been on DNA viruses. Along with expanding knowledge about RNA viruses that infect important marine animals, recent isolations of RNA viruses that infect single-celled eukaryotes and molecular analyses of the RNA virioplankton have revealed that marine RNA viruses are novel, widespread, and genetically diverse. Discoveries in marine RNA virology are broadening our understanding of the biology, ecology, and evolution of viruses, and the epidemiology of viral diseases, but there is still much that we need to learn about the ecology and diversity of RNA viruses before we can fully appreciate their contributions to the dynamics of marine ecosystems. As a step toward making sense of how RNA viruses contribute to the extraordinary viral diversity in the sea, we summarize in this review what is currently known about RNA viruses that infect marine organisms.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada.
| | | | | | | |
Collapse
|
40
|
Graham DA, Wilson C, Jewhurst H, Rowley H. Cultural characteristics of salmonid alphaviruses--influence of cell line and temperature. JOURNAL OF FISH DISEASES 2008; 31:859-868. [PMID: 19238759 DOI: 10.1111/j.1365-2761.2008.00946.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Laboratory studies were carried out to investigate the cultural characteristics of salmonid alphaviruses (SAV) from Atlantic salmon (AS, Salmo salar) and rainbow trout (RT, Oncorhynchus mykiss), particularly in relation to cell line and temperature. In an initial study, SAV was isolated from 12 viraemic sera and passaged in Chinook salmon embryo (CHSE-214) cells at 15 degrees C. Geometric mean titres (GMT) after initial isolation were found to be significantly higher (P < 0.05) relative to those after two or four passages. Primary isolation of SAV was conducted from 12 viraemic sera (six AS and six RT) in seven different cell lines at 15 degrees C: CHSE-214, rainbow trout gonad (RTG-2), TO (derived from Atlantic salmon head kidney leucocytes), salmon head kidney (SHK-1), blue fin-2 (BF-2), fat head minnow (FHM) and Epithelioma papulosum cyprini (EPC). Overall, significant differences were found between cell lines in both the numbers of strains where growth was detected and in the GMT obtained. For both AS and RT strains, GMT values were significantly (P < 0.01) higher in both TO and BF-2 cells relative to the others, including CHSE-214 and RTG-2, the cell lines conventionally used for SAV. The effects of temperature of incubation (4, 10, 15 and 20 degrees C) on growth in TO, CHSE-214 and RTG-2 were investigated. In TO and RTG-2 growth was optimal at 15 degrees C, whereas in CHSE-214 results at 10 and 15 degrees C were more similar. Little or no growth was detected at 4 or 20 degrees C.
Collapse
Affiliation(s)
- D A Graham
- Veterinary Sciences Division, Agri-food and Biosciences Institute, Stormont, Belfast, UK.
| | | | | | | |
Collapse
|
41
|
Fringuelli E, Rowley HM, Wilson JC, Hunter R, Rodger H, Graham DA. Phylogenetic analyses and molecular epidemiology of European salmonid alphaviruses (SAV) based on partial E2 and nsP3 gene nucleotide sequences. JOURNAL OF FISH DISEASES 2008; 31:811-23. [PMID: 18681902 DOI: 10.1111/j.1365-2761.2008.00944.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Sequence data were generated for portions of the E2 and nsP3 genes of 48 salmonid alphaviruses from farmed Atlantic salmon (AS), Salmo salar L., and rainbow trout (RT), Oncorhynchus mykiss (Walbaum), in marine and freshwater environments, respectively, from the Republic of Ireland, Northern Ireland, England, Scotland, Norway, France, Italy and Spain between 1991 and 2007. Based on these sequences, and those of six previously published reference strains, phylogenetic trees were constructed using the parsimony method. Trees generated with both gene segments were similar. Clades corresponding to the three previously recognized subtypes were generated and in addition, two further new clades of viruses were identified. A single further strain (F96-1045) was found to be distinct from all of the other strains in the study. The percentage of nucleotide divergence within clades was generally low (0-4.8% for E2, 0-6.6% for nsP3). Interclade divergence tended to be higher (3.4-19.7% for E2, 6.5-28.1% for nsP3). Based on these results and using current SAV terminology, the two new clades and F96-1045 were termed SAV subtypes 4, 5 and 6, respectively. SAV4 contained AS strains from Ireland and Scotland, while SAV5 contained only Scottish AS strains. Recently identified SAV strains from RT in Italy and Spain were shown to belong to SAV2. In addition, marine AS strains belonging to SAV2 were identified for the first time. Analysis of the origin of several clusters of strains with identical E2 and nsP3 sequences strongly support horizontal transmission of virus between farms and aquaculture companies. Evidence in support of vertical transmission was not found.
Collapse
Affiliation(s)
- E Fringuelli
- Department of Veterinary Science, Queen's University of Belfast, Veterinary Sciences Division, Stormont, Belfast, UK
| | | | | | | | | | | |
Collapse
|
42
|
Graham DA, Rowley HM, Fringuelli E, Bovo G, Manfrin A, McLoughlin MF, Zarza C, Khalili M, Todd D. First laboratory confirmation of salmonid alphavirus infection in Italy and Spain. JOURNAL OF FISH DISEASES 2007; 30:569-72. [PMID: 17718711 DOI: 10.1111/j.1365-2761.2007.00826.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- D A Graham
- Veterinary Sciences Division (VSD), Agri-food and Biosciences Institute of Northern Ireland, Stormont, Belfast, Northern Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Graham DA, Staples C, Wilson CJ, Jewhurst H, Cherry K, Gordon A, Rowley HM. Biophysical properties of salmonid alphaviruses: influence of temperature and pH on virus survival. JOURNAL OF FISH DISEASES 2007; 30:533-43. [PMID: 17718708 DOI: 10.1111/j.1365-2761.2007.00811.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A series of laboratory studies were undertaken to investigate the survival of salmonid alphaviruses (SAV) under a range of conditions relevant to waste disposal, persistence and spread in the field, and to laboratory studies and testing. SAV was found to be rapidly inactivated in the presence of high levels of organic matter at 60 degrees C at pH 7.2 and at pH 4 and pH 12 at 4 degrees C, suggesting that composting, ensiling and alkaline hydrolysis would all be effective at inactivating virus in fish waste. Testing was conducted under sterile conditions at 4, 10, 15 and 20 degrees C in sea water, half-strength sea water and fresh (hard) water, both in the absence and the presence of added organic matter. Virus survival was shown to be inversely related to temperature, and to be reduced by the presence of organic matter. Calculated half lives (t(1/2)) under these conditions ranged from 61.0 to 1.5 days. Testing in non-sterile sea water resulted in reduced t(1/2) values. The half life of SAV in serum was also found to be inversely related to temperature, emphasizing the need for rapid shipment of samples at 4 degrees C to laboratories for virus isolation studies.
Collapse
Affiliation(s)
- D A Graham
- Veterinary Sciences Division (VSD), Agri-food and Biosciences Institute of Northern Ireland, Stormont, Belfast, UK.
| | | | | | | | | | | | | |
Collapse
|
44
|
Taksdal T, Olsen AB, Bjerkås I, Hjortaas MJ, Dannevig BH, Graham DA, McLoughlin MF. Pancreas disease in farmed Atlantic salmon, Salmo salar L., and rainbow trout, Oncorhynchus mykiss (Walbaum), in Norway. JOURNAL OF FISH DISEASES 2007; 30:545-58. [PMID: 17718709 DOI: 10.1111/j.1365-2761.2007.00845.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The present paper describes, for the first time, clinical signs and pathological findings of pancreas disease (PD) in farmed Atlantic salmon, Salmo salar L., and rainbow trout, Oncorhynchus mykiss (Walbaum), in sea water in Norway. Similarities and differences with reports of PD from Ireland and Scotland are discussed. Samples of 68 rainbow trout from disease outbreaks on 14 farms and from 155 Atlantic salmon from outbreaks on 20 farms collected from 1996 to 2004 were included in the present study. The histopathological findings of PD in Atlantic salmon and rainbow trout in sea water were similar. Acute PD, characterized by acute necrosis of exocrine pancreatic tissues, was detected in nine Atlantic salmon and three rainbow trout. Salmonid alphavirus (SAV) was identified in acute pancreatic necroses by immunohistochemistry. Most fish showed severe loss of exocrine pancreatic tissue combined with chronic myositis. Myocarditis was often but not consistently found. Kidneys from 40% and 64% of the rainbow trout and Atlantic salmon, respectively, had cells along the sinusoids that were packed with cytoplasmic eosinophilic granules. These cells resembled hypertrophied endothelial cells or elongated mast cell analogues. Histochemical staining properties and electron microscopy of these cells are presented. SAV was identified by RT-PCR and neutralizing antibodies against SAV were detected in blood samples.
Collapse
Affiliation(s)
- T Taksdal
- National Veterinary Institute, and Norwegian School of Veterinary Science, N-0033 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The first alphavirus to be isolated from fish was recorded in 1995 with the isolation of salmon pancreas disease virus from Atlantic salmon, Salmo salar L., in Ireland. Subsequently, the closely related sleeping disease virus was isolated from rainbow trout, Oncorhynchus mykiss (Walbaum), in France. More recently Norwegian salmonid alphavirus (SAV) has been isolated from marine phase production of Atlantic salmon and rainbow trout in Norway. These three viruses are closely related and are now considered to represent three subtypes of SAV, a new member of the genus Alphavirus within the family Togaviridae. SAVs are recognized as serious pathogens of farmed Atlantic salmon and rainbow trout in Europe. This paper aims to draw together both historical and current knowledge of the diseases caused by SAVs, the viruses, their diagnosis and control, and to discuss the differential diagnosis of similar pathologies seen in cardiomyopathy syndrome and heart and skeletal muscle inflammation of Atlantic salmon.
Collapse
Affiliation(s)
- M F McLoughlin
- Aquatic Veterinary Services, 35 Cherryvalley Park, Belfast, Northern Ireland, UK.
| | | |
Collapse
|
46
|
Andersen L, Bratland A, Hodneland K, Nylund A. Tissue tropism of salmonid alphaviruses (subtypes SAV1 and SAV3) in experimentally challenged Atlantic salmon (Salmo salar L.). Arch Virol 2007; 152:1871-83. [PMID: 17578649 DOI: 10.1007/s00705-007-1006-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 05/09/2007] [Indexed: 11/25/2022]
Abstract
Diagnosis of SAV infections has traditionally been based upon clinical observations together with a set of histopathological findings in exocrine pancreas, heart and skeletal muscle, but recently, real-time RT-PCR assays have been developed as a supplement for the detection of SAV. The aim of this study was to determine tissue tropism of SAV1 and SAV3 in Atlantic salmon Salmo salar L. in order to identify the most suitable tissues for real-time RT-PCR diagnostic assays. The results indicated that the pseudobranch and the heart (ventricle) are the most useful tissues for such assays, regardless of disease status. The pyloric caecae with associated pancreatic tissue is unsuitable for diagnosis using this method. The use of real-time RT-PCR enabled viral RNA detection at all stages of the disease, including in surviving fish six months after infection. Considering the short production cycle of farmed salmonids, this suggests that surviving Atlantic salmon may become life-long asymptomatic carriers of SAV after an infection.
Collapse
Affiliation(s)
- L Andersen
- Department of Biology, University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
47
|
Graham DA, Cherry K, Wilson CJ, Rowley HM. Susceptibility of salmonid alphavirus to a range of chemical disinfectants. JOURNAL OF FISH DISEASES 2007; 30:269-77. [PMID: 17501737 DOI: 10.1111/j.1365-2761.2007.00810.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A range of commercially available disinfectants were tested for efficacy against salmonid alphavirus under a range of different conditions including variations in concentration, temperature, contact time, water type and presence or absence of organic matter. Testing was based on the protocol defined in the draft European Standard prEN 14675, for which the effective standard is a 4 log(10) reduction in viral titre. All disinfectants were found to be effective under at least some of the conditions tested. However, the presence of organic matter in particular was shown to be detrimental in some cases, either through rendering some disinfectants ineffective, or by production of a visible inhomogeneity.
Collapse
Affiliation(s)
- D A Graham
- Veterinary Sciences Division, Agri-Food Biosciences Institute of Northern Ireland (AFBINI), Stormont, Belfast, UK.
| | | | | | | |
Collapse
|