1
|
Singh AN, Singh A, Nath G. Evaluation of bacteriophage cocktail on urinary tract infection caused by colistin-resistant Klebsiella pneumoniae in mice model. J Glob Antimicrob Resist 2024; 39:41-53. [PMID: 39159829 DOI: 10.1016/j.jgar.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
OBJECTIVE The colistin-resistant Klebsiella pneumoniae causes complicated urinary tract infections (UTIs). Of them, 73% of strains of K. pneumoniae formed moderate to strong biofilm. Multidrug-resistant (MDR)/Pandrug-resistant (PDR) bacteria causing UTIs are very challenging to conventional antibiotic therapy. However, bacteriophages may be a promising alternative as they easily disrupt the biofilm and act on receptors unrelated to antibiotic resistance mechanisms. This preclinical study evaluated the efficacy of a phage cocktail with different routes and dosages (in quantity and frequency) to eradicate the K. pneumoniae-associated UTI in the mice model. METHODS The three lytic phages with the broadest spectrum activity (ΦKpnBHU1, ΦKpnBHU2 and ΦKpnBHU3) were meticulously characterized using SEM and sequencing. The cocktails were administered to mice through urethral, rectal, subcutaneous and oral routes after establishing the UTI with 1 × 108 colony-forming unit/mouse (CFU/mouse) of K. pneumoniae (KpnBHU09) resistant to both the drugs carbapenem and colistin. The efficacy of different routes with varying dosages and frequency of administration was thoroughly optimized. RESULTS We observed that two doses of a phage cocktail containing 1 × 105 Plaque-Forming Unit (PFU/mouse) and a single dose of 1 × 109 PFU/mouse per urethra could eradicate KpnBHU09. Intriguingly, the non-invasive administration through oral and rectal routes required higher concentration and many dosages of phages to eliminate KpnBHU09 at any stage of acute UTI. The subcutaneous route was found unsatisfactory in curing the infection. CONCLUSION Bacteriophage cocktails administered through transurethral, oral and rectal routes may cure UTIs.
Collapse
Affiliation(s)
- Alakh Narayan Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Aprajita Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
2
|
Alipour-Khezri E, Skurnik M, Zarrini G. Pseudomonas aeruginosa Bacteriophages and Their Clinical Applications. Viruses 2024; 16:1051. [PMID: 39066214 PMCID: PMC11281547 DOI: 10.3390/v16071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance poses a serious risk to contemporary healthcare since it reduces the number of bacterial illnesses that may be treated with antibiotics, particularly for patients with long-term conditions like cystic fibrosis (CF). People with a genetic predisposition to CF often have recurrent bacterial infections in their lungs due to a buildup of sticky mucus, necessitating long-term antibiotic treatment. Pseudomonas aeruginosa infections are a major cause of CF lung illness, and P. aeruginosa airway isolates are frequently resistant to many antibiotics. Bacteriophages (also known as phages), viruses that infect bacteria, are a viable substitute for antimicrobials to treat P. aeruginosa infections in individuals with CF. Here, we reviewed the utilization of P. aeruginosa bacteriophages both in vivo and in vitro, as well as in the treatment of illnesses and diseases, and the outcomes of the latter.
Collapse
Affiliation(s)
- Elaheh Alipour-Khezri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, and Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
- Microbial Biotechnology Research Group, University of Tabriz, Tabriz 51368, Iran
| |
Collapse
|
3
|
Bozidis P, Markou E, Gouni A, Gartzonika K. Does Phage Therapy Need a Pan-Phage? Pathogens 2024; 13:522. [PMID: 38921819 PMCID: PMC11206709 DOI: 10.3390/pathogens13060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The emergence of multidrug-resistant bacteria is undoubtedly one of the most serious global health threats. One response to this threat that has been gaining momentum over the past decade is 'phage therapy'. According to this, lytic bacteriophages are used for the treatment of bacterial infections, either alone or in combination with antimicrobial agents. However, to ensure the efficacy and broad applicability of phage therapy, several challenges must be overcome. These challenges encompass the development of methods and strategies for the host range manipulation and bypass of the resistance mechanisms developed by pathogenic bacteria, as has been the case since the advent of antibiotics. As our knowledge and understanding of the interactions between phages and their hosts evolves, the key issue is to define the host range for each application. In this article, we discuss the factors that affect host range and how this determines the classification of phages into different categories of action. For each host range group, recent representative examples are provided, together with suggestions on how the different groups can be used to combat certain types of bacterial infections. The available methodologies for host range expansion, either through sequential adaptation to a new pathogen or through genetic engineering techniques, are also reviewed.
Collapse
Affiliation(s)
- Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Athanasia Gouni
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| |
Collapse
|
4
|
Nawaz A, Zafar S, Alessa AH, Khalid NA, Shahzadi M, Majid A, Badshah M, Shah AA, Khan S. Characterization of ES10 lytic bacteriophage isolated from hospital waste against multidrug-resistant uropathogenic E. coli. Front Microbiol 2024; 15:1320974. [PMID: 38525078 PMCID: PMC10957765 DOI: 10.3389/fmicb.2024.1320974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Escherichia coli is the major causative agent of urinary tract infections worldwide and the emergence of multi-drug resistant determinants among clinical isolates necessitates the development of novel therapeutic agents. Lytic bacteriophages efficiently kill specific bacteria and seems promising approach in controlling infections caused by multi-drug resistant pathogens. This study aimed the isolation and detailed characterization of lytic bacteriophage designated as ES10 capable of lysing multidrug-resistant uropathogenic E. coli. ES10 had icosahedral head and non-contractile tail and genome size was 48,315 base pairs long encoding 74 proteins. Antibiotics resistance, virulence and lysogenic cycle associated genes were not found in ES10 phage genome. Morphological and whole genome analysis of ES10 phage showed that ES10 is the member of Drexlerviridae. Latent time of ES10 was 30 min, burst size was 90, and optimal multiplicity of infection was 1. ES10 was stable in human blood and subsequently caused 99.34% reduction of host bacteria. Calcium chloride shortened the adsorption time and latency period of ES10 and significantly inhibited biofilm formation of host bacteria. ES10 caused 99.84% reduction of host bacteria from contaminated fomites. ES10 phage possesses potential to be utilized in standard phage therapy.
Collapse
Affiliation(s)
- Aneela Nawaz
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sabeena Zafar
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Nauman Ahmed Khalid
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muqaddas Shahzadi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Alina Majid
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
5
|
Kang D, Bagchi D, Chen IA. Pharmacokinetics and Biodistribution of Phages and their Current Applications in Antimicrobial Therapy. ADVANCED THERAPEUTICS 2024; 7:2300355. [PMID: 38933919 PMCID: PMC11198966 DOI: 10.1002/adtp.202300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 06/28/2024]
Abstract
Antimicrobial resistance remains a critical global health concern, necessitating the investigation of alternative therapeutic approaches. With the diminished efficacy of conventional small molecule drugs due to the emergence of highly resilient bacterial strains, there is growing interest in the potential for alternative therapeutic modalities. As naturally occurring viruses of bacteria, bacteriophage (or phage) are being re-envisioned as a platform to engineer properties that can be tailored to target specific bacterial strains and employ diverse antibacterial mechanisms. However, limited understanding of key pharmacological properties of phage is a major challenge to translating its use from preclinical to clinical settings. Here, we review modern advancements in phage-based antimicrobial therapy and discuss the in vivo pharmacokinetics and biodistribution of phage, addressing critical challenges in their application that must be overcome for successful clinical implementation.
Collapse
Affiliation(s)
- Dayeon Kang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| | - Damayanti Bagchi
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| | - Irene A. Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| |
Collapse
|
6
|
Oliveira A, Dias C, Oliveira R, Almeida C, Fuciños P, Sillankorva S, Oliveira H. Paving the way forward: Escherichia coli bacteriophages in a One Health approach. Crit Rev Microbiol 2024; 50:87-104. [PMID: 36608263 DOI: 10.1080/1040841x.2022.2161869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Escherichia coli is one of the most notorious pathogens for its ability to adapt, colonize, and proliferate in different habitats through a multitude of acquired virulence factors. Its presence affects the food-processing industry and causes food poisoning, being also a major economic burden for the food, agriculture, and health sectors. Bacteriophages are emerging as an appealing strategy to mitigate bacterial pathogens, including specific E. coli pathovars, without exerting a deleterious effect on humans and animals. This review globally analyzes the applied research on E. coli phages for veterinary, food, and human use. It starts by describing the pathogenic E. coli pathotypes and their relevance in human and animal context. The idea that phages can be used as a One Health approach to control and interrupt the transmission routes of pathogenic E. coli is sustained through an exhaustive revision of the recent literature. The emerging phage formulations, genetic engineering and encapsulation technologies are also discussed as a means of improving phage-based control strategies, with a particular focus on E. coli pathogens.
Collapse
Affiliation(s)
- Ana Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Carla Dias
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Ricardo Oliveira
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Pablo Fuciños
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga, Portugal
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
7
|
Samson R, Dharne M, Khairnar K. Bacteriophages: Status quo and emerging trends toward one health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168461. [PMID: 37967634 DOI: 10.1016/j.scitotenv.2023.168461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The alarming rise in antimicrobial resistance (AMR) among the drug-resistant pathogens has been attributed to the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sp., and Escherichia coli). Recently, these AMR microbes have become difficult to treat, as they have rendered the existing therapeutics ineffective. Thus, there is an urgent need for effective alternatives to lessen or eliminate the current infections and limit the spread of emerging diseases under the "One Health" framework. Bacteriophages (phages) are naturally occurring biological resources with extraordinary potential for biomedical, agriculture/food safety, environmental protection, and energy production. Specific unique properties of phages, such as their bactericidal activity, host specificity, potency, and biocompatibility, make them desirable candidates in therapeutics. The recent biotechnological advancement has broadened the repertoire of phage applications in nanoscience, material science, physical chemistry, and soft-matter research. Herein, we present a comprehensive review, coupling the substantial aspects of phages with their applicability status and emerging opportunities in several interdependent areas under one health concept. Consolidating the recent state-of-the-art studies that integrate human, animal, plant, and environment health, the following points have been highlighted: (i) The biomedical and pharmacological advantages of phages and their antimicrobial derivatives with particular emphasis on in-vivo and clinical studies. (ii) The remarkable potential of phages to be altered, improved, and applied for drug delivery, biosensors, biomedical imaging, tissue engineering, energy, and catalysis. (iii) Resurgence of phages in biocontrol of plant, food, and animal-borne pathogens. (iv) Commercialization of phage-based products, current challenges, and perspectives.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Krishna Khairnar
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
8
|
Majewska J, Miernikiewicz P, Szymczak A, Kaźmierczak Z, Goszczyński TM, Owczarek B, Rybicka I, Ciekot J, Dąbrowska K. Evolution of the T4 phage virion is driven by selection pressure from non-bacterial factors. Microbiol Spectr 2023; 11:e0011523. [PMID: 37724862 PMCID: PMC10580926 DOI: 10.1128/spectrum.00115-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
Bacteriophages colonize animal and human bodies, propagating on sensitive bacteria that are symbionts, commensals, or pathogens of animals and humans. T4-like phages are dependent on abundant symbionts such as Escherichia coli, commonly present in animal and human gastrointestinal (GI) tracts. Bacteriophage T4 is one of the most complex viruses, and its intricate structure, particularly the capsid head protecting the phage genome, likely contributes substantially to the overall phage fitness in diverse environments. We investigated how individual head proteins-gp24, Hoc, and Soc-affect T4 phage survival under pressure from non-bacterial factors. We constructed a panel of T4 phage variants defective in these structural proteins: T4∆Soc, T4∆24byp24, T4∆Hoc∆Soc, T4∆Hoc∆24byp24, T4∆Soc∆24byp24, and T4∆Hoc∆Soc∆24byp24 (byp = bypass). These variants were investigated for their sensitivity to selected environmental conditions relevant to the microenvironment of the GI tract, including pH, temperature, and digestive enzymes. The simple and "primitive" structure of the phage capsid (∆24byp24) was significantly less stable at low pH and more sensitive to inactivation by digestive enzymes, and the simultaneous lack of gp24 and Soc resulted in a notable decrease in phage activity at 37°C. Gp24 was also found to be highly resistant to thermal and chemical denaturation. Thus, gp24, which was acquired relatively late in evolution, seems to play a key role in T4 withstanding environmental conditions, including those related to the animal/human GI tract, and Soc is a molecular glue that enhances this protective effect. IMPORTANCE Bacteriophages are important components of animal and human microbiota, particularly in the gastrointestinal tract, where they dominate the viral community and contribute to shaping microbial balance. However, interactions with bacterial hosts are not the only element of the equation in phage survival-phages inhabiting the GI tract are constantly exposed to increased temperature, pH fluctuations, or digestive enzymes, which raises the question of whether and how the complex structure of phage capsids contributes to their persistence in the specific microenvironment of human/animal bodies. Here we address this phage-centric perspective, identifying the role of individual head proteins in T4 phage survival in GI tract conditions. The selection pressure driving the evolution of T4-like phages could have come from the external environment that affects phage virions with increased temperature and variable pH; it is possible that in the local microenvironment along the GI tract, the phage benefits from stability-protecting proteins.
Collapse
Affiliation(s)
- Joanna Majewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paulina Miernikiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aleksander Szymczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Research and Development Center, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Tomasz M. Goszczyński
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Barbara Owczarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Izabela Rybicka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jarosław Ciekot
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Krystyna Dąbrowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Research and Development Center, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| |
Collapse
|
9
|
Al-Anany AM, Hooey PB, Cook JD, Burrows LL, Martyniuk J, Hynes AP, German GJ. Phage Therapy in the Management of Urinary Tract Infections: A Comprehensive Systematic Review. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:112-127. [PMID: 37771568 PMCID: PMC10523411 DOI: 10.1089/phage.2023.0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Urinary tract infections (UTIs) are a problem worldwide, affecting almost half a billion people each year. Increasing antibiotic resistance and limited therapeutic options have led to the exploration of alternative therapies for UTIs, including bacteriophage (phage) therapy. This systematic review aims at evaluating the efficacy of phage therapy in treating UTIs. We employed a comprehensive search strategy for any language, any animal, and any publication date. A total of 55 in vivo and clinical studies were included. Of the studies, 22% were published in a non-English language, 32.7% were before the year 1996, and the rest were after 2005. The results of this review suggest that phage therapy for UTIs can be effective; more than 72% of the included articles reported microbiological and clinical improvements. On the other hand, only 5 randomized controlled trials have been completed, and case reports and case series information were frequently incomplete for analysis. Overall, this comprehensive systematic review identifies preliminary evidence supporting the potential of phage therapy as a safe and viable option for the treatment of UTIs.
Collapse
Affiliation(s)
- Amany M. Al-Anany
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Payton B. Hooey
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jonathan D. Cook
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Julia Martyniuk
- Gerstein Science Information Centre, University of Toronto, Toronto, Canada
| | - Alexander P. Hynes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Greg J. German
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Unity Health Toronto, St. Joseph's Health Centre Chronic Infection/Phage Therapy Clinic, Toronto, Canada
| |
Collapse
|
10
|
Bhargava K, Nath G, Dhameja N, Kumar R, Aseri GK, Jain N. Bacteriophage therapy for Escherichia coli-induced urinary tract infection in rats. Future Microbiol 2023; 18:323-334. [PMID: 37140267 DOI: 10.2217/fmb-2022-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Background: The present study evaluates the efficacy of bacteriophage therapy for urinary tract infection (UTI) in rats. Methods: UTI was established by inoculating Escherichia coli (100 μl) at a concentration of 1.5 × 108 CFU/ml per urethra via a cannula in different groups of rats. For treatment, phage cocktails (200 μl) were administered at varying concentrations of 1 × 108 PFU/ml, 1 × 107 PFU/ml and 1 × 106 PFU/ml. Results: The two doses of phage cocktail at the first two concentrations resulted in the cure of UTI. However, the lowest concentration of the phage cocktail warranted more doses to eradicate the causative bacteria. Conclusion: The quantity, frequency and safety of doses could be optimized in a rodent model using the urethral route.
Collapse
Affiliation(s)
- Kanika Bhargava
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, Rajasthan, India
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Neeraj Dhameja
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajesh Kumar
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Gajender K Aseri
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Neelam Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
11
|
Shahriar A, Rob Siddiquee MF, Ahmed H, Mahmud AR, Ahmed T, Mahmud MR, Acharjee M. Catheter-associated urinary tract infections: Etiological analysis, biofilm formation, antibiotic resistance, and a novel therapeutic era of phage. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.86-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Urinary tract infection (UTI) caused by uropathogens has put global public health at its utmost risk, especially in developing countries where people are unaware of personal hygiene and proper medication. In general, the infection frequently occurs in the urethra, bladder, and kidney, as reported by the physician. Moreover, many UTI patients whose acquired disorder from the hospital or health-care center has been addressed previously have been referred to as catheter-associated UTI (CAUTI). Meanwhile, the bacterial biofilm triggering UTI is another critical issue, mostly by catheter insertion. In most cases, the biofilm inhibits the action of antibiotics against the UTI-causing bacteria. Therefore, new therapeutic tools should be implemented to eliminate the widespread multidrug resistance (MDR) UTI-causing bacteria. Based on the facts, the present review emphasized the current status of CAUTI, its causative agent, clinical manifestation, and treatment complications. This review also delineated a model of phage therapy as a new therapeutic means against bacterial biofilm-originated UTI. The model illustrated the entire mechanism of destroying the extracellular plyometric substances of UTI-causing bacteria with several enzymatic actions produced by phage particles. This review will provide a complete outline of CAUTI for the general reader and create a positive vibe for the researchers to sort out alternative remedies against the CAUTI-causing MDR microbial agents.
Collapse
Affiliation(s)
- Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1208, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Tasnia Ahmed
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Md. Rayhan Mahmud
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
12
|
Zagaliotis P, Michalik-Provasek J, Gill JJ, Walsh TJ. Therapeutic Bacteriophages for Gram-Negative Bacterial Infections in Animals and Humans. Pathog Immun 2022; 7:1-45. [PMID: 36320594 PMCID: PMC9596135 DOI: 10.20411/pai.v7i2.516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
Drug-resistant Gram-negative bacterial pathogens are an increasingly serious health threat causing worldwide nosocomial infections with high morbidity and mortality. Of these, the most prevalent and severe are Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Salmonella typhimurium. The extended use of antibiotics has led to the emergence of multidrug resistance in these bacteria. Drug-inactivating enzymes produced by these bacteria, as well as other resistance mechanisms, render drugs ineffective and make treatment of such infections more difficult and complicated. This makes the development of novel antimicrobial agents an urgent necessity. Bacteriophages, which are bacteria-killing viruses first discovered in 1915, have been used as therapeutic antimicrobials in the past, but their use was abandoned due to the widespread availability of antibiotics in the 20th century. The emergence, however, of drug-resistant pathogens has re-affirmed the need for bacteriophages as therapeutic strategies. This review describes the use of bacteriophages as novel agents to combat this rapidly emerging public health crisis by comprehensively enumerating and discussing the innovative use of bacteriophages in both animal models and in patients infected by Gram-negative bacteria.
Collapse
Affiliation(s)
- Panagiotis Zagaliotis
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine New York, NY
- Department of Pharmacology and Therapeutics, School of Pharmacy, Aristotle University of Thessaloniki, Greece
| | | | - Jason J. Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas
| | - Thomas J. Walsh
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine New York, NY
- Departments of Pediatrics and Microbiology & Immunology, Weill Cornell Medicine New York, NY
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA
| |
Collapse
|
13
|
Urinary Tract Infections Caused by Uropathogenic Escherichia coli Strains—New Strategies for an Old Pathogen. Microorganisms 2022; 10:microorganisms10071425. [PMID: 35889146 PMCID: PMC9321218 DOI: 10.3390/microorganisms10071425] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common infections worldwide. Uropathogenic Escherichia coli (UPECs) are the main causative agent of UTIs. UPECs initially colonize the human host adhering to the bladder epithelium. Adhesion is followed by the bacterial invasion of urothelial epithelial cells where they can replicate to form compact aggregates of intracellular bacteria with biofilm-like properties. UPEC strains may persist within epithelial urothelial cells, thus acting as quiescent intracellular bacterial reservoirs (QIRs). It has been proposed that host cell invasion may facilitate both the establishment and persistence of UPECs within the human urinary tract. UPEC strains express a variety of virulence factors including fimbrial and afimbrial adhesins, invasins, iron-acquisition systems, and toxins, which cooperate to the establishment of long lasting infections. An increasing resistance rate relative to the antibiotics recommended by current guidelines for the treatment of UTIs and an increasing number of multidrug resistant UPEC isolates were observed. In order to ameliorate the cure rate and improve the outcomes of patients, appropriate therapy founded on new strategies, as alternative to antibiotics, needs to be explored. Here, we take a snapshot of the current knowledge of coordinated efforts to develop innovative anti-infective strategies to control the diffusion of UPECs.
Collapse
|
14
|
Isolation, Characterization, and Genomic Analysis of Three Novel E. coli Bacteriophages That Effectively Infect E. coli O18. Microorganisms 2022; 10:microorganisms10030589. [PMID: 35336164 PMCID: PMC8954371 DOI: 10.3390/microorganisms10030589] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Escherichia coli (E. coli) is one of the most common pathogenic bacteria worldwide. Avian pathogenic E. coli (APEC) causes severe systemic disease in poultry (Colibacillosis), and accordingly, has an extreme risk to the poultry industry and public health worldwide. Due to the increased rate of multi-drug resistance among these bacteria, it is necessary to find an alternative therapy to antibiotics to treat such infections. Bacteriophages are considered one of the best solutions. This study aimed to isolate, characterize, and evaluate the potential use of isolated bacteriophages to control E. coli infections in poultry. Three novel phages against E. coli O18 were isolated from sewage water and characterized in vitro. The genome size of the three phages was estimated to be 44,776 bp, and the electron microscopic analysis showed that they belonged to the Siphoviridae family, in the order Caudovirales. Phages showed good tolerance to a broad range of pH and temperature. The complete genomes of three phages were sequenced and deposited into the GenBank database. The closely related published genomes of Escherichia phages were identified using BLASTn alignment and phylogenetic trees. The prediction of the open reading frames (ORFs) identified protein-coding genes that are responsible for functions that have been assigned such as cell lysis proteins, DNA packaging proteins, structural proteins, and DNA replication/transcription/repair proteins.
Collapse
|
15
|
Singh A, Padmesh S, Dwivedi M, Kostova I. How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections. Infect Drug Resist 2022; 15:503-532. [PMID: 35210792 PMCID: PMC8860455 DOI: 10.2147/idr.s348700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bacteria survive on any surface through the generation of biofilms that provide a protective environment to grow as well as making them drug resistant. Extracellular polymeric matrix is a crucial component in biofilm formation. The presence of biofilms consisting of common opportunistic and nosocomial, drug-resistant pathogens has been reported on medical devices like catheters and prosthetics, leading to many complications. Several approaches are under investigation to combat drug-resistant bacteria. Deployment of bacteriophages is one of the promising approaches to invade biofilm that may expose bacteria to the conditions adverse for their growth. Penetration into these biofilms and their destruction by bacteriophages is brought about due to their small size and ability of their progeny to diffuse through the bacterial cell wall. The other mechanisms employed by phages to infect biofilms may include their relocation through water channels to embedded host cells, replication at local sites followed by infection to the neighboring cells and production of depolymerizing enzymes to decompose viscous biofilm matrix, etc. Various research groups are investigating intricacies involved in phage therapy to mitigate the bacterial infection and biofilm formation. Thus, bacteriophages represent a good control over different biofilms and further understanding of phage-biofilm interaction at molecular level may overcome the clinical challenges in phage therapy. The present review summarizes the comprehensive details on dynamic interaction of phages with bacterial biofilms and the role of phage-derived enzymes - endolysin and depolymerases in extenuating biofilms of clinical and medical concern. The methodology employed was an extensive literature search, using several keywords in important scientific databases, such as Scopus, Web of Science, PubMed, ScienceDirect, etc. The keywords were also used with Boolean operator "And". More than 250 relevant and recent articles were selected and reviewed to discuss the evidence-based data on the application of phage therapy with recent updates, and related potential challenges.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, 1000, Bulgaria
| |
Collapse
|
16
|
Li P, Zhang Y, Yan F, Zhou X. Characteristics of a Bacteriophage, vB_Kox_ZX8, Isolated From Clinical Klebsiella oxytoca and Its Therapeutic Effect on Mice Bacteremia. Front Microbiol 2021; 12:763136. [PMID: 34925270 PMCID: PMC8678519 DOI: 10.3389/fmicb.2021.763136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Klebsiella oxytoca is an important nosocomial and community-acquired opportunistic pathogenic Klebsiella and has become the second most prevalent strain in the clinic after K. pneumoniae. However, there have been few reports of bacteriophages used for treating K. oxytoca. In this study, a novel bacteriophage, vB_Kox_ZX8, which specifically infects K. oxytoca AD3, was isolated for the first time from human fecal samples. The biological characteristics of vB_Kox_ZX8 showed an incubation period of 10 min, a burst size of 74 PFU/cell, and a stable pH range of 3-11. Genomic bioinformatics studies of vB_Kox_ZX8 showed that it belongs to the genus Przondovirus, subfamily Studiervirinae, family Autographiviridae. The genome of vB_Kox_ZX8 is 39,398 bp in length and contains 46 putative open reading frames encoding functional proteins, such as DNA degradation, packaging, structural, lysin-holin, and hypothetical proteins. We further investigated the efficacy of vB_Kox_ZX8 phage in the treatment of mice with bacteremia caused by K. oxytoca infection. The results showed that vB_Kox_ZX8 (5 × 109 PFU/mouse) injected intraperitoneally alone was metabolized rapidly in BALB/c mice, and no significant side effects were observed in the control and treatment groups. Importantly, intraperitoneal injection with a single dose of phage vB_Kox_ZX8 (5 × 107 PFU/mouse) for 1 h post-infection saved 100% of BALB/c mice from bacteremia induced by intraperitoneal challenge with a minimum lethal dose of K. oxytoca AD3. However, all negative control mice injected with PBS alone died. Owing to its good safety, narrow host infectivity, high lysis efficiency in vitro, and good in vivo therapeutic effect, phage vB_Kox_ZX8 has the potential to be an excellent antibacterial agent for clinical K. oxytoca-caused infections.
Collapse
Affiliation(s)
- Ping Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Loose M, Sáez Moreno D, Mutti M, Hitzenhammer E, Visram Z, Dippel D, Schertler S, Tišáková LP, Wittmann J, Corsini L, Wagenlehner F. Natural Bred ε 2-Phages Have an Improved Host Range and Virulence against Uropathogenic Escherichia coli over Their Ancestor Phages. Antibiotics (Basel) 2021; 10:1337. [PMID: 34827275 PMCID: PMC8614997 DOI: 10.3390/antibiotics10111337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022] Open
Abstract
Alternative treatments for Escherichia coli infections are urgently needed, and phage therapy is a promising option where antibiotics fail, especially for urinary tract infections (UTI). We used wastewater-isolated phages to test their lytic activity against a panel of 47 E. coli strains reflecting the diversity of strains found in UTI, including sequence type 131, 73 and 69. The plaquing host range (PHR) was between 13 and 63%. In contrast, the kinetic host range (KHR), describing the percentage of strains for which growth in suspension was suppressed for 24 h, was between 0% and 19%, substantially lower than the PHR. To improve the phage host range and their efficacy, we bred the phages by mixing and propagating cocktails on a subset of E. coli strains. The bred phages, which we termed evolution-squared ε2-phages, of a mixture of Myoviridae have KHRs up to 23% broader compared to their ancestors. Furthermore, using constant phage concentrations, Myoviridae ε2-phages suppressed the growth of higher bacterial inocula than their ancestors did. Thus, the ε2-phages were more virulent compared to their ancestors. Analysis of the genetic sequences of the ε2-phages with the broadest host range reveals that they are mosaic intercrossings of 2-3 ancestor phages. The recombination sites are distributed over the whole length of the genome. All ε2-phages are devoid of genes conferring lysogeny, antibiotic resistance, or virulence. Overall, this study shows that ε2-phages are remarkably more suitable than the wild-type phages for phage therapy.
Collapse
Affiliation(s)
- Maria Loose
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig University Giessen, 35392 Giessen, Germany; (M.L.); (D.D.)
| | - David Sáez Moreno
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - Michele Mutti
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - Eva Hitzenhammer
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - Zehra Visram
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - David Dippel
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig University Giessen, 35392 Giessen, Germany; (M.L.); (D.D.)
| | - Susanne Schertler
- DSMZ—German Collection of Microorganism and Cell Cultures GmbH, Leibniz Institute, 38124 Braunschweig, Germany; (S.S.); (J.W.)
| | - Lenka Podpera Tišáková
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
- DSMZ—German Collection of Microorganism and Cell Cultures GmbH, Leibniz Institute, 38124 Braunschweig, Germany; (S.S.); (J.W.)
| | - Johannes Wittmann
- DSMZ—German Collection of Microorganism and Cell Cultures GmbH, Leibniz Institute, 38124 Braunschweig, Germany; (S.S.); (J.W.)
| | - Lorenzo Corsini
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - Florian Wagenlehner
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig University Giessen, 35392 Giessen, Germany; (M.L.); (D.D.)
| |
Collapse
|
18
|
Attrill EL, Claydon R, Łapińska U, Recker M, Meaden S, Brown AT, Westra ER, Harding SV, Pagliara S. Individual bacteria in structured environments rely on phenotypic resistance to phage. PLoS Biol 2021; 19:e3001406. [PMID: 34637438 PMCID: PMC8509860 DOI: 10.1371/journal.pbio.3001406] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages represent an avenue to overcome the current antibiotic resistance crisis, but evolution of genetic resistance to phages remains a concern. In vitro, bacteria evolve genetic resistance, preventing phage adsorption or degrading phage DNA. In natural environments, evolved resistance is lower possibly because the spatial heterogeneity within biofilms, microcolonies, or wall populations favours phenotypic survival to lytic phages. However, it is also possible that the persistence of genetically sensitive bacteria is due to less efficient phage amplification in natural environments, the existence of refuges where bacteria can hide, and a reduced spread of resistant genotypes. Here, we monitor the interactions between individual planktonic bacteria in isolation in ephemeral refuges and bacteriophage by tracking the survival of individual cells. We find that in these transient spatial refuges, phenotypic resistance due to reduced expression of the phage receptor is a key determinant of bacterial survival. This survival strategy is in contrast with the emergence of genetic resistance in the absence of ephemeral refuges in well-mixed environments. Predictions generated via a mathematical modelling framework to track bacterial response to phages reveal that the presence of spatial refuges leads to fundamentally different population dynamics that should be considered in order to predict and manipulate the evolutionary and ecological dynamics of bacteria–phage interactions in naturally structured environments. Bacteriophages represent a promising avenue to overcome the current antibiotic resistance crisis, but evolution of phage resistance remains a concern. This study shows that in the presence of spatial refuges, genetic resistance to phage is less of a problem than commonly assumed, but the persistence of genetically susceptible bacteria suggests that eradicating bacterial pathogens from structured environments may require combined phage-antibiotic therapies.
Collapse
Affiliation(s)
- Erin L. Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rory Claydon
- SUPA, School of Physics and Astronomy, The University of Edinburgh, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Sean Meaden
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, United Kingdom
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Aidan T. Brown
- SUPA, School of Physics and Astronomy, The University of Edinburgh, United Kingdom
| | - Edze R. Westra
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, United Kingdom
| | - Sarah V. Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Fathima B, Archer AC. Bacteriophage therapy: Recent developments and applications of a renaissant weapon. Res Microbiol 2021; 172:103863. [PMID: 34293451 DOI: 10.1016/j.resmic.2021.103863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Antimicrobial resistance is a global health problem and one of the leading concerns in healthcare sector. Bacteriophages are antibacterial agents ubiquitous in nature. With increase in antibiotic resistance, use of bacteriophages as therapeutics has become resurgent in recent times. This review focuses on the recent developments in phage therapy and its applications with respect to human infections, animal, food and environment. Moreover, use of phage proteins, bioengineered bacteriophages, and phage derived vaccines is also highlighted. Additionally, the limitations and challenges with regard to implementation of phage therapy, host safety and immune responses are also reviewed in this article.
Collapse
Affiliation(s)
- Bibi Fathima
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, Karnataka, 570015, India
| | - Ann Catherine Archer
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
20
|
Liu D, Van Belleghem JD, de Vries CR, Burgener E, Chen Q, Manasherob R, Aronson JR, Amanatullah DF, Tamma PD, Suh GA. The Safety and Toxicity of Phage Therapy: A Review of Animal and Clinical Studies. Viruses 2021; 13:1268. [PMID: 34209836 PMCID: PMC8310247 DOI: 10.3390/v13071268] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing rates of infection by antibiotic resistant bacteria have led to a resurgence of interest in bacteriophage (phage) therapy. Several phage therapy studies in animals and humans have been completed over the last two decades. We conducted a systematic review of safety and toxicity data associated with phage therapy in both animals and humans reported in English language publications from 2008-2021. Overall, 69 publications met our eligibility criteria including 20 animal studies, 35 clinical case reports or case series, and 14 clinical trials. After summarizing safety and toxicity data from these publications, we discuss potential approaches to optimize safety and toxicity monitoring with the therapeutic use of phage moving forward. In our systematic review of the literature, we found some adverse events associated with phage therapy, but serious events were extremely rare. Comprehensive and standardized reporting of potential toxicities associated with phage therapy has generally been lacking in the published literature. Structured safety and tolerability endpoints are necessary when phages are administered as anti-infective therapeutics.
Collapse
Affiliation(s)
- Dan Liu
- Department of Burn, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Jonas D. Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Christiaan R. de Vries
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Elizabeth Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA;
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Robert Manasherob
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.M.); (D.F.A.)
| | - Jenny R. Aronson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Derek F. Amanatullah
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.M.); (D.F.A.)
| | - Pranita D. Tamma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Gina A. Suh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Bacteriophage cocktail and phage antibiotic synergism as promising alternatives to conventional antibiotics for the control of multi-drug-resistant uropathogenic Escherichia coli. Virus Res 2021; 302:198496. [PMID: 34182014 DOI: 10.1016/j.virusres.2021.198496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 11/21/2022]
Abstract
Infections related to antibiotic resistant bacteria are accelerating on a global scale, and hence to encounter this problem in case of urinary tract infections; bacteriophages were isolated for biocontrol of multi-drug resistant (MDR) uropathogenic Escherichia coli (UPECs) isolates. Four lytic phages were purified, characterized, and evaluated for their effectiveness in the form of cocktail and in synergy with antibiotics. Morphological features and other life cycle specifications of phages revealed that two phages Escherichia phage FS11 and Escherichia phage FS17 belonged to Myoviridae and the other two phages Escherichia phage PS8 and Escherichia phage PS6 belonged to Siphoviridae family of order Caudovirales. One step growth curve analysis demonstrated that phage FS11 and phage FS17 had latent time of 24 min and 26 min, and a burst size of ~121 and 98 phage particles/ cell respectively; while for phage PS8 and phage PS6, the latent time was 42 min and 35 min, and the burst size was 87 and 78 particles/ cell, respectively; depicting the lytic nature of phages. The use of all four phages together in the form of a cocktail resulted into a considerable enhancement in the lytic ability; the phage cocktail lysed 86.7% of the clinical isolates, compared to lysis in the range of 50%-66% by individual phages. Studies on in vitro evaluation of phage-antibiotic combinations revealed synergism between antibiotics and the phage cocktail (phage PS6 and phage FS17), wherein the phage cocktail was observed to efficiently inhibit the strains in the presence of sub-lethal doses of antibiotics. The study thus concludes that the use of multiple phages and phage-antibiotic combinations could prove beneficial in the era of rapidly increasing drug-resistant strains.
Collapse
|
22
|
Chegini Z, Khoshbayan A, Vesal S, Moradabadi A, Hashemi A, Shariati A. Bacteriophage therapy for inhibition of multi drug-resistant uropathogenic bacteria: a narrative review. Ann Clin Microbiol Antimicrob 2021; 20:30. [PMID: 33902597 PMCID: PMC8077874 DOI: 10.1186/s12941-021-00433-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
Multi-Drug Resistant (MDR) uropathogenic bacteria have increased in number in recent years and the development of new treatment options for the corresponding infections has become a major challenge in the field of medicine. In this respect, recent studies have proposed bacteriophage (phage) therapy as a potential alternative against MDR Urinary Tract Infections (UTI) because the resistance mechanism of phages differs from that of antibiotics and few side effects have been reported for them. Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis are the most common uropathogenic bacteria against which phage therapy has been used. Phages, in addition to lysing bacterial pathogens, can prevent the formation of biofilms. Besides, by inducing or producing polysaccharide depolymerase, phages can easily penetrate into deeper layers of the biofilm and degrade it. Notably, phage therapy has shown good results in inhibiting multiple-species biofilm and this may be an efficient weapon against catheter-associated UTI. However, the narrow range of hosts limits the use of phage therapy. Therefore, the use of phage cocktail and combination therapy can form a highly attractive strategy. However, despite the positive use of these treatments, various studies have reported phage-resistant strains, indicating that phage–host interactions are more complicated and need further research. Furthermore, these investigations are limited and further clinical trials are required to make this treatment widely available for human use. This review highlights phage therapy in the context of treating UTIs and the specific considerations for this application.
Collapse
Affiliation(s)
- Zahra Chegini
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Vesal
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Alireza Moradabadi
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Li C, Wang Z, Zhao J, Wang L, Xie G, Huang J, Zhang Y. A Novel Vibriophage vB_VcaS_HC Containing Lysogeny-Related Gene Has Strong Lytic Ability against Pathogenic Bacteria. Virol Sin 2021; 36:281-290. [PMID: 32767211 PMCID: PMC8087747 DOI: 10.1007/s12250-020-00271-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
To avoid the negative effects of antibiotics, using phage to prevent animal disease becomes a promising method in aquaculture. Here, a lytic phage provisionally named vB_VcaS_HC that can infect the pathogen (i.e., Vibrio campbellii 18) of prawn was isolated. The phage has an isometric head and a non-contractile tail. During phage infection, the induced host mortality in 5.5 h reached ca. 96%, with a latent period of 1.5 h and a burst size of 172 PFU/cell. It has an 81,566 bp circular dsDNA genome containing 121 open reading frames (ORFs), and ca. 71% of the ORFs are functionally unknown. Comparative genomic and phylogenetic analysis revealed that it is a novel phage belonging to Delepquintavirus, Siphoviridae, Caudovirales. In the phage genome, besides the ordinary genes related to structure assembly and DNA metabolism, there are 10 auxiliary metabolic genes. For the first time, the pyruvate phosphate dikinase (PPDK) gene was found in phages whose product is a key rate-limiting enzyme involving Embden-Meyerhof-Parnas (EMP) reaction. Interestingly, although the phage has a strong bactericidal activity and contains a potential lysogeny related gene, i.e., the recombinase (RecA) gene, we did not find the phage turned into a lysogenic state. Meanwhile, the phage genome does not contain any bacterial virulence gene or antimicrobial resistance gene. This study represents the first comprehensive characterization of a lytic V. campbellii phage and indicates that it is a promising candidate for the treatment of V. campbellii infections.
Collapse
Affiliation(s)
- Chengcheng Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengmeng Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiulong Zhao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guosi Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Bagińska N, Cieślik M, Górski A, Jończyk-Matysiak E. The Role of Antibiotic Resistant A. baumannii in the Pathogenesis of Urinary Tract Infection and the Potential of Its Treatment with the Use of Bacteriophage Therapy. Antibiotics (Basel) 2021; 10:281. [PMID: 33803438 PMCID: PMC8001842 DOI: 10.3390/antibiotics10030281] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
Acinetobacter baumannii are bacteria that belong to the critical priority group due to their carbapenems and third generation cephalosporins resistance, which are last-chance antibiotics. The growing multi-drug resistance and the ability of these bacteria to form biofilms makes it difficult to treat infections caused by this species, which often affects people with immunodeficiency or intensive care unit patients. In addition, most of the infections are associated with catheterization of patients. These bacteria are causative agents, inter alia, of urinary tract infections (UTI) which can cause serious medical and social problems, because of treatment difficulties as well as the possibility of recurrence and thus severely decrease patients' quality of life. Therefore, a promising alternative to standard antibiotic therapy can be bacteriophage therapy, which will generate lower costs and will be safer for the treated patients and has real potential to be much more effective. The aim of the review is to outline the important role of drug-resistant A. baumannii in the pathogenesis of UTI and highlight the potential for fighting these infections with bacteriophage therapy. Further studies on the use of bacteriophages in the treatment of UTIs in animal models may lead to the use of bacteriophage therapy in human urinary tract infections caused by A. baumannii in the future.
Collapse
Affiliation(s)
- Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (N.B.); (M.C.); (A.G.)
| | - Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (N.B.); (M.C.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (N.B.); (M.C.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (N.B.); (M.C.); (A.G.)
| |
Collapse
|
25
|
Abstract
Supplemental Digital Content is available in the text. Objective: Bacterial infections caused by antibiotic-resistant pathogens are a major problem for patients requiring critical care. An approach to combat resistance is the use of bacterial viruses known as “phage therapy.” This review provides a brief “clinicians guide” to phage biology and discusses recent applications in the context of common infections encountered in ICUs. Data Sources: Research articles were sourced from PubMed using search term combinations of “bacteriophages” or “phage therapy” with either “lung,” “pneumonia,” “bloodstream,” “abdominal,” “urinary tract,” or “burn wound.” Study Selection: Preclinical trials using animal models, case studies detailing compassionate use of phage therapy in humans, and randomized controlled trials were included. Data Extraction: We systematically extracted: 1) the infection setting, 2) the causative bacterial pathogen and its antibiotic resistance profile, 3) the nature of the phage therapeutic and how it was administered, 4) outcomes of the therapy, and 5) adverse events. Data Synthesis: Phage therapy for the treatment of experimental infections in animal models and in cases of compassionate use in humans has been associated with largely positive outcomes. These findings, however, have failed to translate into positive patient outcomes in the limited number of randomized controlled trails that have been performed to date. Conclusions: Widespread clinical implementation of phage therapy depends on success in randomized controlled trials. Additional translational and reverse translational studies aimed at overcoming phage resistance, exploiting phage-antibiotic synergies, and optimizing phage administration will likely improve the design and outcome of future trials.
Collapse
|
26
|
Federici S, Nobs SP, Elinav E. Phages and their potential to modulate the microbiome and immunity. Cell Mol Immunol 2020; 18:889-904. [PMID: 32901128 DOI: 10.1038/s41423-020-00532-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages (hence termed phages) are viruses that target bacteria and have long been considered as potential future treatments against antibiotic-resistant bacterial infection. However, the molecular nature of phage interactions with bacteria and the human host has remained elusive for decades, limiting their therapeutic application. While many phages and their functional repertoires remain unknown, the advent of next-generation sequencing has increasingly enabled researchers to decode new lytic and lysogenic mechanisms by which they attack and destroy bacteria. Furthermore, the last decade has witnessed a renewed interest in the utilization of phages as therapeutic vectors and as a means of targeting pathogenic or commensal bacteria or inducing immunomodulation. Importantly, the narrow host range, immense antibacterial repertoire, and ease of manipulating phages may potentially allow for their use as targeted modulators of pathogenic, commensal and pathobiont members of the microbiome, thereby impacting mammalian physiology and immunity along mucosal surfaces in health and in microbiome-associated diseases. In this review, we aim to highlight recent advances in phage biology and how a mechanistic understanding of phage-bacteria-host interactions may facilitate the development of novel phage-based therapeutics. We provide an overview of the challenges of the therapeutic use of phages and how these could be addressed for future use of phages as specific modulators of the human microbiome in a variety of infectious and noncommunicable human diseases.
Collapse
Affiliation(s)
- Sara Federici
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samuel P Nobs
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel. .,Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
27
|
Bacteriophages and Lysins as Possible Alternatives to Treat Antibiotic-Resistant Urinary Tract Infections. Antibiotics (Basel) 2020; 9:antibiotics9080466. [PMID: 32751681 PMCID: PMC7460213 DOI: 10.3390/antibiotics9080466] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023] Open
Abstract
Urinary tract infections represent a major public health problem as the rapid emergence of antibiotic-resistant strains among uropathogens is causing the failure of many current treatments. The use of bacteriophages (phages) and their derivatives to combat infectious diseases is an old approach that has been forgotten by the West for a long time, mostly due to the discovery and great success of antibiotics. In the present so-called “post-antibiotic era”, many researchers are turning their attention to the re-discovered phage therapy, as an effective alternative to antibiotics. Phage therapy includes the use of natural or engineered phages, as well as their purified lytic enzymes to destroy pathogenic strains. Many in vitro and in vivo studies have been conducted, and these have proved the great potential for this therapy against uropathogenic bacteria. Nevertheless, to date, the lack of appropriate clinical trials has hindered its widespread clinic application.
Collapse
|
28
|
Zalewska-Piątek B, Piątek R. Phage Therapy as a Novel Strategy in the Treatment of Urinary Tract Infections Caused by E. Coli. Antibiotics (Basel) 2020; 9:antibiotics9060304. [PMID: 32517088 PMCID: PMC7344395 DOI: 10.3390/antibiotics9060304] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are regarded as one of the most common bacterial infections affecting millions of people, in all age groups, annually in the world. The major causative agent of complicated and uncomplicated UTIs are uropathogenic E. coli strains (UPECs). Huge problems with infections of this type are their chronicity and periodic recurrences. Other disadvantages that are associated with UTIs are accompanying complications and high costs of health care, systematically increasing resistance of uropathogens to routinely used antibiotics, as well as biofilm formation by them. This creates the need to develop new approaches for the prevention and treatment of UTIs, among which phage therapy has a dominant potential to eliminate uropathogens within urinary tract. Due to the growing interest in such therapy in the last decade, the bacteriophages (natural, genetically modified, engineered, or combined with antibiotics or disinfectants) represent an innovative antimicrobial alternative and a strategy for managing the resistance of uropathogenic microorganisms and controlling UTIs.
Collapse
|
29
|
Liu J, Gao S, Dong Y, Lu C, Liu Y. Isolation and characterization of bacteriophages against virulent Aeromonas hydrophila. BMC Microbiol 2020; 20:141. [PMID: 32487015 PMCID: PMC7268745 DOI: 10.1186/s12866-020-01811-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background Aeromonas hydrophila is an important water-borne pathogen that leads to a great economic loss in aquaculture. Along with the abuse of antibiotics, drug-resistant strains rise rapidly. In addition, the biofilms formed by this bacterium limited the antibacterial effect of antibiotics. Bacteriophages have been attracting increasing attention as a potential alternative to antibiotics against bacterial infections. Results Five phages against pathogenic A. hydrophila, named N21, W3, G65, Y71 and Y81, were isolated. Morphological analysis by transmission electron microscopy revealed that phages N21, W3 and G65 belong to the family Myoviridae, while Y71 and Y81 belong to the Podoviridae. These phages were found to have broad host spectra, short latent periods and normal burst sizes. They were sensitive to high temperature but had a wide adaptability to the pH. In addition, the phages G65 and Y81 showed considerable bacterial killing effect and potential in preventing formation of A. hydrophila biofilm; and the phages G65, W3 and N21 were able to scavenge mature biofilm effectively. Phage treatments applied to the pathogenic A. hydrophila in mice model resulted in a significantly decreased bacterial loads in tissues. Conclusions Five A. hydrophila phages were isolated with broad host ranges, low latent periods, and wide pH and thermal tolerance. And the phages exhibited varying abilities in controlling A. hydrophila infection. This work presents promising data supporting the future use of phage therapy.
Collapse
Affiliation(s)
- Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Gao
- Sucheng District Animal Husbandry and Veterinary Station, Suqian, 223800, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
30
|
Xiong S, Liu X, Deng W, Zhou Z, Li Y, Tu Y, Chen L, Wang G, Fu B. Pharmacological Interventions for Bacterial Prostatitis. Front Pharmacol 2020; 11:504. [PMID: 32425775 PMCID: PMC7203426 DOI: 10.3389/fphar.2020.00504] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Prostatitis is a common urinary tract condition but bring innumerable trouble to clinicians in treatment, as well as great financial burden to patients and the society. Bacterial prostatitis (acute bacterial prostatitis plus chronic bacterial prostatitis) accounting for approximately 20% among all prostatitis have made the urological clinics complain about the genital and urinary systems all over the world. The international challenges of antibacterial treatment (emergence of multidrug-resistant bacteria, extended-spectrum beta-lactamase-producing bacteria, bacterial biofilms production and the shift in bacterial etiology) and the transformation of therapeutic strategy for classic therapy have attracted worldwide attention. To the best of our knowledge currently, there is not a single comprehensive review, which can completely elaborate these important topics and the corresponding treatment strategy in an effective way. This review summarizes the general treatment choices for bacterial prostatitis also provides the alternative pharmacological therapies for those patients resistant or intolerant to general treatment.
Collapse
Affiliation(s)
- Situ Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Zhengtao Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Yulei Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Yechao Tu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
31
|
Petrovic Fabijan A, Khalid A, Maddocks S, Ho J, Gilbey T, Sandaradura I, Lin RCY, Ben Zakour N, Venturini C, Bowring B, Iredell JR. Phage therapy for severe bacterial infections: a narrative review. Med J Aust 2020; 212:279-285. [PMID: 31587298 PMCID: PMC9545287 DOI: 10.5694/mja2.50355] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteriophage (phage) therapy is re-emerging a century after it began. Activity against antibiotic-resistant pathogens and a lack of serious side effects make phage therapy an attractive treatment option in refractory bacterial infections. Phages are highly specific for their bacterial targets, but the relationship between in vitro activity and in vivo efficacy remains to be rigorously evaluated. Pharmacokinetic and pharmacodynamic principles of phage therapy are generally based on the classic predator-prey relationship, but numerous other factors contribute to phage clearance and optimal dosing strategies remain unclear. Combinations of fully characterised, exclusively lytic phages prepared under good manufacturing practice are limited in their availability. Safety has been demonstrated but randomised controlled trials are needed to evaluate efficacy.
Collapse
Affiliation(s)
- Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
| | - Ali Khalid
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
- University of SydneySydneyNSW
| | - Susan Maddocks
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- University of SydneySydneyNSW
- Westmead HospitalSydneyNSW
| | - Josephine Ho
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
- Westmead HospitalSydneyNSW
| | | | - Indy Sandaradura
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- University of SydneySydneyNSW
| | - Ruby CY Lin
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
- University of SydneySydneyNSW
| | - Nouri Ben Zakour
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
- University of SydneySydneyNSW
| | - Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
- University of SydneySydneyNSW
| | - Bethany Bowring
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
- Westmead Institute for Medical ResearchSydneyNSW
| | - Jonathan R Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead HospitalSydneyNSW
| |
Collapse
|
32
|
Melo LDR, Oliveira H, Pires DP, Dabrowska K, Azeredo J. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol 2020; 46:78-99. [DOI: 10.1080/1040841x.2020.1729695] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Luís D. R. Melo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hugo Oliveira
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Diana P. Pires
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Krystyna Dabrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joana Azeredo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
33
|
Caflisch KM, Suh GA, Patel R. Biological challenges of phage therapy and proposed solutions: a literature review. Expert Rev Anti Infect Ther 2019; 17:1011-1041. [PMID: 31735090 DOI: 10.1080/14787210.2019.1694905] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: In light of the emergence of antibiotic-resistant bacteria, phage (bacteriophage) therapy has been recognized as a potential alternative or addition to antibiotics in Western medicine for use in humans.Areas covered: This review assessed the scientific literature on phage therapy published between 1 January 2007 and 21 October 2019, with a focus on the successes and challenges of this prospective therapeutic.Expert opinion: Efficacy has been shown in animal models and experimental findings suggest promise for the safety of human phagotherapy. Significant challenges remain to be addressed prior to the standardization of phage therapy in the West, including the development of phage-resistant bacteria; the pharmacokinetic complexities of phage; and any potential human immune response incited by phagotherapy.
Collapse
Affiliation(s)
- Katherine M Caflisch
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gina A Suh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Dąbrowska K, Abedon ST. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol Mol Biol Rev 2019; 83:e00012-19. [PMID: 31666296 PMCID: PMC6822990 DOI: 10.1128/mmbr.00012-19] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use.
Collapse
Affiliation(s)
- Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
| |
Collapse
|
35
|
Managing urinary tract infections through phage therapy: a novel approach. Folia Microbiol (Praha) 2019; 65:217-231. [PMID: 31494814 DOI: 10.1007/s12223-019-00750-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
Upsurge in the instances of antibiotic-resistant uropathogenic Escherichia .coli (UPECs) strains has repositioned the attention of researchers towards a century old antimicrobial approach popularly known as phage therapy. Rise of extended spectrum beta lactamase (ESBL) and biofilm producing strains has added another step of hurdle in treatment of uropathogens with conventional antibiotics, thus providing a further impetus for search for exploring new therapeutic measures. In this direction, bacteriophages, commonly called phages, are recently being considered as potential alternatives for treatment of UPECs. Phages are the tiniest form of viruses which are ubiquitous in nature and highly specific for their host. This review discusses the possible ways of using natural phages, genetically engineered phages, and phage lytic enzymes (PLEs) as an alternative antimicrobial treatment for urinary tract infections. The review also sheds light on the synergistic use of conventional antibiotics with phages or PLEs for treatment of uropathogens. These methods of using phages and their derivatives, alone or in combination with antibiotics, have proved fruitful so far in in vitro studies. However, in vivo studies are required to make them accessible for human use. The present review is a concerted effort towards putting together all the information available on the subject.
Collapse
|
36
|
Blanco C, Chen IA. Phage therapy administered noninvasively could be effective in thin tubes subject to episodic flow despite washout: a simulation study. Phys Biol 2019; 16:054001. [PMID: 31266001 PMCID: PMC6771420 DOI: 10.1088/1478-3975/ab2ea0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacteriophages (phages) have been proposed as candidates for the treatment of bacterial infections in light of emerging antibiotic-resistant microorganisms. Bacterial growth within thin tubes is a particular concern, such as in urinary tract infections and colonization of catheters. However, it is not clear whether phage administration to the urinary tract or in catheters could be effective in the context of flow to the outside (i.e. voiding or saline flush). Here, we adapt a previous model of phage infection to a thin tube geometry mimicking the spatial organization of the urinary tract, including bacterial motility and episodic flow during which phages are washed out of the system. We show that density-dependent dynamics permit propagation of the phage infection and that washout has little effect on the timing of bacterial clearance. In addition, instillation of phage at the bottom ~0.1 mm of the tract is effective in our computational model, suggesting that therapeutic phage introduced non-invasively could be efficacious in such situations.
Collapse
Affiliation(s)
- Celia Blanco
- Department of Chemistry and Biochemistry 9510, University of California, Santa Barbara, CA 93106, United States of America
| | | |
Collapse
|
37
|
Dąbrowska K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med Res Rev 2019; 39:2000-2025. [PMID: 30887551 PMCID: PMC6767042 DOI: 10.1002/med.21572] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/23/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022]
Abstract
Bacteriophages are not forgotten viruses anymore: scientists and practitioners seek to understand phage pharmacokinetics in animals and humans, investigating bacteriophages as therapeutics, nanocarriers or microbiome components. This review provides a comprehensive overview of factors that determine phage circulation, penetration, and clearance, and that in consequence determine phage applicability for medicine. It makes use of experimental data collected by the phage community so far (PubMed 1924‐2016, including non‐English reports), combining elements of critical and systematic review. This study covers phage ability to enter a system by various routes of administration, how (and if) the phage may access various tissues and organs, and finally what mechanisms determine the courses of phage clearance. The systematic review method was applied to analyze (i) phage survival in the gut (gut transit) and (ii) phage ability to enter the mammalian system by many administration routes. Aspects that have not yet been covered by a sufficient number of reports for mathematical analysis, as well as mechanisms underlying trends, are discussed in the form of a critical review. In spite of the extraordinary diversity of bacteriophages and possible phage applications, the analysis revealed that phage morphology, phage specificity, phage dose, presence of sensitive bacteria or the characteristics of treated individuals (age, taxonomy) may affect phage bioavailability in animals and humans. However, once phages successfully enter the body, they reach most organs, including the central nervous system. Bacteriophages are cleared mainly by the immune system: innate immunity removes phages even when no specific response to bacteriophages has yet developed.
Collapse
Affiliation(s)
- Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Research and Development Center, Regional Specialized Hospital, Wrocław, Poland
| |
Collapse
|
38
|
Identification of novel bacteriophage vB_EcoP-EG1 with lytic activity against planktonic and biofilm forms of uropathogenic Escherichia coli. Appl Microbiol Biotechnol 2018; 103:315-326. [PMID: 30397766 DOI: 10.1007/s00253-018-9471-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022]
Abstract
Urinary tract infections are one of the most common infectious diseases worldwide. Uropathogenic Escherichia coli (UPEC) is a major cause of unary tract infection. Due to increasing prevalence of multidrug resistance, alternative methods to eradicate the UPECs are urgently needed. In this respect, phage therapy has been demonstrated to be a good candidate. Here, we described a novel bacteriophage named vB_EcoP-EG1, which can infect several strains of UPEC. Phage morphology and genome sequencing analysis show that vB_EcoP-EG1 belongs to the T7-like Podoviridae. vB_EcoP-EG1 possesses a genome (39,919 bp) containing 51 predicted genes and 149 bp terminal repeats. vB_EcoP-EG1 genome does not encode toxic proteins or proteins related to lysogeny. And no known virulent proteins were found in purified phage particles by mass spectrometry. vB_EcoP-EG1 appeared to be relatively specific and sensitive to clinical UPEC strains, which could infect 10 out of 21 clinical multidrug-resistant UPEC strains. In addition, vB_EcoP-EG1 suspension can eliminate biofilm formed by E. coli MG1655 and multidrug-resistant UPEC strain 390G7. Therefore, we concluded that vB_EcoP-EG1 has desirable characteristics for potential therapy, which may serve as an alternative to antibiotic therapy against urinary tract infections caused by multidrug-resistant UPEC.
Collapse
|
39
|
Kokkari C, Sarropoulou E, Bastias R, Mandalakis M, Katharios P. Isolation and characterization of a novel bacteriophage infecting Vibrio alginolyticus. Arch Microbiol 2018; 200:707-718. [DOI: 10.1007/s00203-018-1480-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 01/21/2023]
|
40
|
Abedon ST. Phage therapy: eco-physiological pharmacology. SCIENTIFICA 2014; 2014:581639. [PMID: 25031881 PMCID: PMC4054669 DOI: 10.1155/2014/581639] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/10/2014] [Indexed: 06/03/2023]
Abstract
Bacterial virus use as antibacterial agents, in the guise of what is commonly known as phage therapy, is an inherently physiological, ecological, and also pharmacological process. Physiologically we can consider metabolic properties of phage infections of bacteria and variation in those properties as a function of preexisting bacterial states. In addition, there are patient responses to pathogenesis, patient responses to phage infections of pathogens, and also patient responses to phage virions alone. Ecologically, we can consider phage propagation, densities, distribution (within bodies), impact on body-associated microbiota (as ecological communities), and modification of the functioning of body "ecosystems" more generally. These ecological and physiological components in many ways represent different perspectives on otherwise equivalent phenomena. Comparable to drugs, one also can view phages during phage therapy in pharmacological terms. The relatively unique status of phages within the context of phage therapy as essentially replicating antimicrobials can therefore result in a confluence of perspectives, many of which can be useful towards gaining a better mechanistic appreciation of phage therapy, as I consider here. Pharmacology more generally may be viewed as a discipline that lies at an interface between organism-associated phenomena, as considered by physiology, and environmental interactions as considered by ecology.
Collapse
Affiliation(s)
- Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA
| |
Collapse
|
41
|
Bacteriophages and Their Derivatives as Biotherapeutic Agents in Disease Prevention and Treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/382539] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The application of bacteriophages for the elimination of pathogenic bacteria has received significantly increased attention world-wide in the past decade. This is borne out by the increasing prevalence of bacteriophage-specific conferences highlighting significant and diverse advances in the exploitation of bacteriophages. While bacteriophage therapy has been associated with the Former Soviet Union historically, since the 1990s, it has been widely and enthusiastically adopted as a research topic in Western countries. This has been justified by the increasing prevalence of antibiotic resistance in many prominent human pathogenic bacteria. Discussion of the therapeutic aspects of bacteriophages in this review will include the uses of whole phages as antibacterials and will also describe studies on the applications of purified phage-derived peptidoglycan hydrolases, which do not have the constraint of limited bacterial host-range often observed with whole phages.
Collapse
|
42
|
Tóthová L, Bábíčková J, Celec P. Phage survival: The biodegradability of M13 phage display libraryin vitro. Biotechnol Appl Biochem 2012; 59:490-4. [DOI: 10.1002/bab.1050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/04/2012] [Indexed: 01/02/2023]
Affiliation(s)
- L'ubomíra Tóthová
- Institute of Molecular Biomedicine; Comenius University; Bratislava; Slovakia
| | - Janka Bábíčková
- Institute of Molecular Biomedicine; Comenius University; Bratislava; Slovakia
| | | |
Collapse
|
43
|
Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother 2012; 56:3568-75. [PMID: 22491690 DOI: 10.1128/aac.06330-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We evaluated phage therapy in experimental infections due to S242, a fatal neonatal meningitis Escherichia coli strain belonging to the worldwide-distributed O25b:H4-ST131 clone that produces extended-spectrum beta-lactamase CTX-M-15. A lytic phage, EC200(PP), active against S242, was isolated from environmental water. After determining in vitro and ex vivo stabilities and pharmacokinetic properties of EC200(PP) in rat pups, we assessed the therapeutic efficacy of a single dose of 10(8) PFU using models of sepsis and meningitis in which fatality was 100%. EC200(PP) was partially neutralized by human serum. In contrast to the high concentration of phage in the spleen and the kidney, low titers in urine and the central nervous system were observed. Nevertheless, in the sepsis model, EC200(PP) administered 7 h or 24 h postinfection resulted in 100% and 50% pup survival, respectively. In the meningitis model, EC200(PP) administered 1 h or 7 h postinfection rescued 100% of the animals. The most delayed treatments were associated with the selection of phage-resistant S242 mutants. However, a representative mutant was highly sensitive to killing serum activity and avirulent in an animal model. EC200(PP) is a potential therapeutic agent for sepsis and meningitis caused by the widespread E. coli O25:H4-ST131 multidrug-resistant clone.
Collapse
|
44
|
Chibeu A, Lingohr EJ, Masson L, Manges A, Harel J, Ackermann HW, Kropinski AM, Boerlin P. Bacteriophages with the ability to degrade uropathogenic Escherichia coli biofilms. Viruses 2012; 4:471-87. [PMID: 22590682 PMCID: PMC3347319 DOI: 10.3390/v4040471] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/20/2012] [Accepted: 03/23/2012] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli-associated urinary tract infections (UTIs) are among the most common bacterial infections in humans. UTIs are usually managed with antibiotic therapy, but over the years, antibiotic-resistant strains of uropathogenic E. coli (UPEC) have emerged. The formation of biofilms further complicates the treatment of these infections by making them resistant to killing by the host immune system as well as by antibiotics. This has encouraged research into therapy using bacteriophages (phages) as a supplement or substitute for antibiotics. In this study we characterized 253 UPEC in terms of their biofilm-forming capabilities, serotype, and antimicrobial resistance. Three phages were then isolated (vB_EcoP_ACG-C91, vB_EcoM_ACG-C40 and vB_EcoS_ACG-M12) which were able to lyse 80.5% of a subset (42) of the UPEC strains able to form biofilms. Correlation was established between phage sensitivity and specific serotypes of the UPEC strains. The phages' genome sequences were determined and resulted in classification of vB_EcoP_ACG-C91 as a SP6likevirus, vB_EcoM_ACG-C40 as a T4likevirus and vB_EcoS_ACG-M12 as T1likevirus. We assessed the ability of the three phages to eradicate the established biofilm of one of the UPEC strains used in the study. All phages significantly reduced the biofilm within 2-12 h of incubation.
Collapse
Affiliation(s)
- Andrew Chibeu
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, ON, N1G 3W4, Canada;
| | - Erika J. Lingohr
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, ON, N1G 3W4, Canada;
| | - Luke Masson
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montréal, QC, H4P 2R2, Canada;
- Département de microbiologie et immunologie, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Amee Manges
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 avenue des Pins Ouest, Montréal, QC, H3A 1A2, Canada;
| | - Josée Harel
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP) and Centre de Recherche en infectiologie porcine (CRIP), Université de Montréal, Faculté de médecine vétérinaire, Saint-Hyacinthe, QC, J2S 7C6, Canada;
| | - Hans-W. Ackermann
- Felix d’Herelle Reference Center for Bacterial Viruses, Department of Microbiology, Immunology and Infectionlogy, Faculty of Medicine, Laval University, QC, G1K 4C6, Canada;
| | - Andrew M. Kropinski
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, ON, N1G 3W4, Canada;
- Department of Molecular and Cellular Biology, University of Guelph, ON, N1G 2W1, Canada
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, ON, N1G 2W1, Canada;
| |
Collapse
|
45
|
Abstract
Phage therapy is the clinical or veterinary application of bacterial viruses (bacteriophages) as antibacterial "drugs." More generally, phages can be used as biocontrol agents against plant as well as foodborne pathogens. In this chapter, we consider the therapeutic use of phage cocktails, which is the combining of two or more phage types to produce more pharmacologically diverse formulations. The primary motivation for the use of cocktails is their broader spectra of activity in comparison to individual phage isolates: they can impact either more bacterial types or achieve effectiveness under a greater diversity of conditions. The combining of phages can also facilitate better targeting of multiple strains making up individual bacterial species or covering multiple species that might be responsible for similar disease states, in general providing, relative to individual phage isolates, a greater potential for presumptive or empirical treatment. Contrasting the use of phage banks, or even phage isolation against specific etiologies that have been obtained directly from patients under treatment, here we consider the utility as well as potential shortcomings associated with the use of phage cocktails as therapeutic antibacterial agents.
Collapse
Affiliation(s)
- Benjamin K Chan
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
46
|
Tóthová L, Celec P, Bábíčková J, Gajdošová J, Al-Alami H, Kamodyova N, Drahovská H, Liptáková A, Turňa J, Hodosy J. Phage therapy of Cronobacter-induced urinary tract infection in mice. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2011; 17:BR173-8. [PMID: 21709627 DOI: 10.12659/msm.>16271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cronobacter spp. is an opportunistic pathogen causing rare but dangerous cases of meningitis, sepsis and urinary tract infection. Phage therapy overcomes antibiotic resistance and represents an alternative approach to standard antimicrobial treatment. There are no published studies on the use of phages against Cronobacter spp. in vivo. The aim of our study was to prove the effects of isolated Cronobacter-specific phages on renal colonization in a model of urinary tract infection in mice. MATERIAL/METHODS Urinary tract infection was induced by transurethral application of Cronobacter turicensis (1011 CFU/ml). Simultaneously, isolated Cronobacter-specific phages were administered intraperitoneally (1011 PFU/ml). After 24 hours, kidneys and bladder were collected and used for cultivation and analysis of gene expression and oxidative stress markers. RESULTS Phage therapy reduced the number of Cronobacter colonies in the kidney by 70%. Higher levels of malondialdehyde were reduced by phage therapy without affecting the antioxidant status. The expression of pro-inflammatory cytokines tumor necrosis factor-alpha and monocyte chemoattractant protein-1 increased by the infection and was attenuated by phage therapy. CONCLUSIONS Phage therapy proved effective in the prevention of ascending renal infection in a murine model of urinary tract infection. Long-term effects and safety of the treatment are currently unknown. Further studies should test phage therapy in other Cronobacter infection models.
Collapse
Affiliation(s)
- Lubomíra Tóthová
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fighting bacterial infections—Future treatment options. Drug Resist Updat 2011; 14:125-39. [DOI: 10.1016/j.drup.2011.02.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 12/13/2022]
|
48
|
Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. BACTERIOPHAGE 2011; 1:66-85. [PMID: 22334863 PMCID: PMC3278644 DOI: 10.4161/bact.1.2.15845] [Citation(s) in RCA: 573] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022]
Abstract
Phages as bactericidal agents have been employed for 90 years as a means of treating bacterial infections in humans as well as other species, a process known as phage therapy. In this review we explore both the early historical and more modern use of phages to treat human infections. We discuss in particular the little-reviewed French early work, along with the Polish, US, Georgian and Russian historical experiences. We also cover other, more modern examples of phage therapy of humans as differentiated in terms of disease. In addition, we provide discussions of phage safety, other aspects of phage therapy pharmacology, and the idea of phage use as probiotics.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology; The Ohio State University; Mansfield, OH USA
| | - Sarah J Kuhl
- Department of Veterans Affairs; Martinez, CA USA
| | - Bob G Blasdel
- Department of Microbiology; The Ohio State University; Mansfield, OH USA
- PhageBiotics and The Evergreen State College; Olympia, WA USA
| | | |
Collapse
|
49
|
Sillankorva S, Oliveira D, Moura A, Henriques M, Faustino A, Nicolau A, Azeredo J. Efficacy of a broad host range lytic bacteriophage against E. coli adhered to urothelium. Curr Microbiol 2010; 62:1128-32. [PMID: 21140149 DOI: 10.1007/s00284-010-9834-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/22/2010] [Indexed: 11/26/2022]
Abstract
Persistent urinary tract infections (UTI) are often caused by E. coli adhered to urothelium. This type of cells is generally recognized as very tolerant to antibiotics which renders difficult the treatment of chronic UTI. This study investigates the use of lytic bacteriophages as alternative antimicrobial agents, particularly the interaction of phages with E. coli adhered to urothelium and specifically determines their efficiency against this type of cells. The bacterial adhesion to urothelium was performed varying the bacterial cell concentrations and the period and conditions (static, shaken) of adhesion. Three collection bacteriophages (T1, T4, and phiX174 like phages) were tested against clinical E. coli isolates and only one was selected for further infection experiments. Based on the lytic spectrum against clinical isolates and its ability to infect the highest number of antibiotic resistant strains, the T1-like bacteriophage was selected. This bacteriophage caused nearly a 45% reduction of the bacterial population after 2 h of treatment. This study provides evidence that bacteriophages are effective in controlling suspended and adhered cells and therefore can be a viable alternative to antibiotics to control urothelium- adhered bacteria.
Collapse
Affiliation(s)
- Sanna Sillankorva
- Department of Biological Engineering, University of Minho, Braga, Portugal.
| | | | | | | | | | | | | |
Collapse
|
50
|
Hoshiba H, Uchiyama J, Kato SI, Ujihara T, Muraoka A, Daibata M, Wakiguchi H, Matsuzaki S. Isolation and characterization of a novel Staphylococcus aureus bacteriophage, ϕMR25, and its therapeutic potential. Arch Virol 2010; 155:545-52. [DOI: 10.1007/s00705-010-0623-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/28/2009] [Indexed: 11/25/2022]
|