1
|
Salgado DM, Rivera GM, Pinto WA, Rodríguez J, Acosta G, Castañeda DM, Vega R, Perdomo-Celis F, Bosch I, Narváez CF. Unique Immune Blood Markers Between Severe Dengue and Sepsis in Children. Pediatr Infect Dis J 2023; 42:792-800. [PMID: 37463399 DOI: 10.1097/inf.0000000000003990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND Pediatric dengue and sepsis share clinical and pathophysiologic aspects. Multiple inflammatory and regulatory cytokines, decoy receptors and vascular permeability factors have been implicated in the pathogenesis of both diseases. The differential pattern and dynamic of these soluble factors, and the relationship with clinical severity between pediatric dengue and sepsis could offer new diagnosis and therapeutic strategies. METHODS We evaluated the concentration levels of 11 soluble factors with proinflammatory, regulatory and vascular permeability involvement, in plasma from children with dengue or sepsis, both clinically ranging from mild to severe, in the early, late and convalescence phases of the disease. RESULTS During early acute infection, children with sepsis exhibited specific higher concentration levels of IL-6, vascular endothelial growth factor (VEGF), and its soluble decoy receptor II (sVEGFR2) and lower concentration levels of IL-10 and the soluble tumor necrosis factor receptor 2 (sTNFR2), in comparison with children with severe dengue. In addition, the circulating amounts of soluble ST2, and VEGF/sVEGFR2 were widely associated with clinical and laboratory indicators of dengue severity, whereas secondary dengue virus infections were characterized by an enhanced cytokine response, relative to primary infections. In severe forms of dengue, or sepsis, the kinetics and the cytokines response during the late and convalescence phases of the disease also differentiate. CONCLUSIONS Dengue virus infection and septic processes in children are characterized by cytokine responses of a specific magnitude, pattern and kinetics, which are implicated in the pathophysiology and clinical outcome of these diseases.
Collapse
Affiliation(s)
- Doris M Salgado
- From the Departamento de Pediatría, Universidad Surcolombiana, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Gina M Rivera
- From the Departamento de Pediatría, Universidad Surcolombiana, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - William A Pinto
- From the Departamento de Pediatría, Universidad Surcolombiana, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Jairo Rodríguez
- From the Departamento de Pediatría, Universidad Surcolombiana, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Gladys Acosta
- From the Departamento de Pediatría, Universidad Surcolombiana, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Diana M Castañeda
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Rocío Vega
- From the Departamento de Pediatría, Universidad Surcolombiana, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Federico Perdomo-Celis
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Irene Bosch
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Carlos F Narváez
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| |
Collapse
|
2
|
Mosquera-Sulbaran JA, Pedreañez A, Hernandez-Fonseca JP, Hernandez-Fonseca H. Angiotensin II and dengue. Arch Virol 2023; 168:191. [PMID: 37368044 DOI: 10.1007/s00705-023-05814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Dengue is a disease caused by a flavivirus that is transmitted principally by the bite of an Aedes aegypti mosquito and represents a major public-health problem. Many studies have been carried out to identify soluble factors that are involved in the pathogenesis of this infection. Cytokines, soluble factors, and oxidative stress have been reported to be involved in the development of severe disease. Angiotensin II (Ang II) is a hormone with the ability to induce the production of cytokines and soluble factors related to the inflammatory processes and coagulation disorders observed in dengue. However, a direct involvement of Ang II in this disease has not been demonstrated. This review primarily summarizes the pathophysiology of dengue, the role of Ang II in various diseases, and reports that are highly suggestive of the involvement of this hormone in dengue.
Collapse
Affiliation(s)
- Jesus A Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela.
| | - Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela
- Servicio de Microscopia Electronica del Centro Nacional de Biotecnologia (CNB- CSIC) Madrid, Madrid, España
| | - Hugo Hernandez-Fonseca
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, Saint George's University, True Blue, West Indies, Grenada
| |
Collapse
|
3
|
Soo KM, Khalid B, Ching SM, Tham CL, Basir R, Chee HY. Meta-analysis of biomarkers for severe dengue infections. PeerJ 2017; 5:e3589. [PMID: 28929009 PMCID: PMC5602679 DOI: 10.7717/peerj.3589] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/26/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Dengue viral infection is an acute infection that has the potential to have severe complications as its major sequela. Currently, there is no routine laboratory biomarker with which to predict the severity of dengue infection or monitor the effectiveness of standard management. Hence, this meta-analysis compared biomarker levels between dengue fever (DF) and severe dengue infections (SDI) to identify potential biomarkers for SDI. METHODS Data concerning levels of cytokines, chemokines, and other potential biomarkers of DF, dengue hemorrhagic fever, dengue shock syndrome, and severe dengue were obtained for patients of all ages and populations using the Scopus, PubMed, and Ovid search engines. The keywords "(IL1* or IL-1*) AND (dengue*)" were used and the same process was repeated for other potential biomarkers, according to Medical Subject Headings terms suggested by PubMed and Ovid. Meta-analysis of the mean difference in plasma or serum level of biomarkers between DF and SDI patients was performed, separated by different periods of time (days) since fever onset. Subgroup analyses comparing biomarker levels of healthy plasma and sera controls, biomarker levels of primary and secondary infection samples were also performed, as well as analyses of different levels of severity and biomarker levels upon infection by different dengue serotypes. RESULTS Fifty-six studies of 53 biomarkers from 3,739 dengue cases (2,021 DF and 1,728 SDI) were included in this meta-analysis. Results showed that RANTES, IL-7, IL-8, IL-10, IL-18, TGF-b, and VEGFR2 levels were significantly different between DF and SDI. IL-8, IL-10, and IL-18 levels increased during SDI (95% CI, 18.1-253.2 pg/mL, 3-13 studies, n = 177-1,909, I2 = 98.86%-99.75%). In contrast, RANTES, IL-7, TGF-b, and VEGFR2 showed a decrease in levels during SDI (95% CI, -3238.7 to -3.2 pg/mL, 1-3 studies, n = 95-418, I2 = 97.59%-99.99%). Levels of these biomarkers were also found to correlate with the severity of the dengue infection, in comparison to healthy controls. Furthermore, the results showed that IL-7, IL-8, IL-10, TGF-b, and VEGFR2 display peak differences between DF and SDI during or before the critical phase (day 4-5) of SDI. DISCUSSION This meta-analysis suggests that IL-7, IL-8, IL-10, TGF-b, and VEGFR2 may be used as potential early laboratory biomarkers in the diagnosis of SDI. This can be used to predict the severity of dengue infection and to monitor the effectiveness of treatment. Nevertheless, methodological and reporting limitations must be overcome in future research to minimize variables that affect the results and to confirm the findings.
Collapse
Affiliation(s)
- Kuan-Meng Soo
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Bahariah Khalid
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siew-Mooi Ching
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hui-Yee Chee
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Conroy AL, Gélvez M, Hawkes M, Rajwans N, Tran V, Liles WC, Villar-Centeno LA, Kain KC. Host biomarkers are associated with progression to dengue haemorrhagic fever: a nested case-control study. Int J Infect Dis 2015; 40:45-53. [PMID: 26255888 DOI: 10.1016/j.ijid.2015.07.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Dengue represents the most important arboviral infection worldwide. Onset of circulatory collapse can be unpredictable. Biomarkers that can identify individuals at risk of plasma leakage may facilitate better triage and clinical management. DESIGN Using a nested case-control design, we randomly selected subjects from a prospective cohort study of dengue in Colombia (n=1582). Using serum collected within 96 hours of fever onset, we tested 19 biomarkers by ELISA in cases (developed dengue hemorrhagic fever or dengue shock syndrome (DHF/DSS); n=46), and controls (uncomplicated dengue fever (DF); n=65) and healthy controls (HC); n=15. RESULTS Ang-1 levels were lower and angptl3, sKDR, sEng, sICAM-1, CRP, CXCL10/IP-10, IL-18 binding protein, CHI3L1, C5a and Factor D levels were increased in dengue compared to HC. sICAM-1, sEng and CXCL10/IP-10 were further elevated in subjects who subsequently developed DHF/DSS (p=0.008, p=0.028 and p=0.025, respectively). In a logistic regression model, age (odds ratio (OR) (95% CI): 0.95 (0.92-0.98), p=0.001), hyperesthesia/hyperalgesia (OR; 3.8 (1.4-10.4), p=0.008) and elevated sICAM-1 (>298ng/mL: OR; 6.3 (1.5-25.7), p=0.011) at presentation were independently associated with progression to DHF/DSS. CONCLUSIONS These results suggest that inflammation and endothelial activation are important pathways in the pathogenesis of dengue and sICAM-1 levels may identify individuals at risk of plasma leakage.
Collapse
Affiliation(s)
- Andrea L Conroy
- Sandra A. Rotman Laboratories, Sandra Rotman Centre, University Health Network-Toronto General Hospital, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| | - Margarita Gélvez
- Centro de Investigaciones Epidemiológicas, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Michael Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| | - Nimerta Rajwans
- Sandra A. Rotman Laboratories, Sandra Rotman Centre, University Health Network-Toronto General Hospital, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| | - Vanessa Tran
- Sandra A. Rotman Laboratories, Sandra Rotman Centre, University Health Network-Toronto General Hospital, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| | - W Conrad Liles
- University of Washington, Department of Medicine, Seattle, WA, 98195, USA.
| | - Luis Angel Villar-Centeno
- Centro de Investigaciones Epidemiológicas, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Kevin C Kain
- Sandra A. Rotman Laboratories, Sandra Rotman Centre, University Health Network-Toronto General Hospital, University of Toronto, Toronto, ON, M5G 1L7, Canada; Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
5
|
Utility of humanized BLT mice for analysis of dengue virus infection and antiviral drug testing. J Virol 2013; 88:2205-18. [PMID: 24335303 DOI: 10.1128/jvi.03085-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) is the cause of a potentially life-threatening disease that affects millions of people worldwide. The lack of a small animal model that mimics the symptoms of DENV infection in humans has slowed the understanding of viral pathogenesis and the development of therapies and vaccines. Here, we investigated the use of humanized "bone marrow liver thymus" (BLT) mice as a model for immunological studies and assayed their applicability for preclinical testing of antiviral compounds. Human immune system (HIS) BLT-NOD/SCID mice were inoculated intravenously with a low-passage, clinical isolate of DENV-2, and this resulted in sustained viremia and infection of leukocytes in lymphoid and nonlymphoid organs. In addition, DENV infection increased serum cytokine levels and elicited DENV-2-neutralizing human IgM antibodies. Following restimulation with DENV-infected dendritic cells, in vivo-primed T cells became activated and acquired effector function. An adenosine nucleoside inhibitor of DENV decreased the circulating viral RNA when administered simultaneously or 2 days postinfection, simulating a potential treatment protocol for DENV infection in humans. In summary, we demonstrate that BLT mice are susceptible to infection with clinical DENV isolates, mount virus-specific adaptive immune responses, and respond to antiviral drug treatment. Although additional refinements to the model are required, BLT mice are a suitable platform to study aspects of DENV infection and pathogenesis and for preclinical testing of drug and vaccine candidates. IMPORTANCE Infection with dengue virus remains a major medical problem. Progress in our understanding of the disease and development of therapeutics has been hampered by the scarcity of small animal models. Here, we show that humanized mice, i.e., animals engrafted with components of a human immune system, that were infected with a patient-derived dengue virus strain developed clinical symptoms of the disease and mounted virus-specific immune responses. We further show that this mouse model can be used to test preclinically the efficacy of antiviral drugs.
Collapse
|
6
|
Mota J, Rico-Hesse R. Dengue virus tropism in humanized mice recapitulates human dengue fever. PLoS One 2011; 6:e20762. [PMID: 21695193 PMCID: PMC3112147 DOI: 10.1371/journal.pone.0020762] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/08/2011] [Indexed: 02/06/2023] Open
Abstract
Animal models of dengue virus disease have been very difficult to develop because of the virus' specificity for infection and replication in certain human cells. We developed a model of dengue fever in immunodeficient mice transplanted with human stem cells from umbilical cord blood. These mice show measurable signs of dengue disease as in humans (fever, viremia, erythema and thrombocytopenia), and after infection with the most virulent strain of dengue serotype 2, humanized mice showed infection in human cells in bone marrow, spleen and blood. Cytokines and chemokines were secreted by these human cells into the mouse bloodstream. We demonstrated that the pathology of dengue virus infection in these mice follows that reported in human patients, making this the first valid and relevant model for studying dengue fever pathogenesis in humans.
Collapse
Affiliation(s)
- Javier Mota
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - Rebeca Rico-Hesse
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
Infection with one of the four serotypes of dengue virus (DENV) causes a wide spectrum of clinical disease ranging from asymptomatic infection, undifferentiated fever, dengue fever (DF) to dengue hemorrhagic fever (DHF). DHF occurs in a minority of patients and is characterized by bleeding and plasma leakage which may lead to shock. There are currently no reliable clinical or laboratory indicators that accurately predict the development of DHF. Human studies have shown that high viral load and intense activation of the immune system are associated with DHF. Recently, endothelial cells and factors regulating vascular permeability have been demonstrated to play a role. In the absence of animal models that closely mimic DHF, human studies are essential in identifying predictors of severe illness. Well planned prospective studies with samples collected at different time points of the illness in well characterized patients are crucial for this effort. Ideally, clinical and laboratory predictive tools should be suitable for resource poor countries where dengue is endemic.
Collapse
Affiliation(s)
- Anon Srikiatkhachorn
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue, North, Worcester 01655, USA.
| | | |
Collapse
|
8
|
Ozturk B, Kuscu F, Tutuncu E, Sencan I, Gurbuz Y, Tuzun H. Evaluation of the association of serum levels of hyaluronic acid, sICAM-1, sVCAM-1, and VEGF-A with mortality and prognosis in patients with Crimean-Congo hemorrhagic fever. J Clin Virol 2009; 47:115-9. [PMID: 20005156 DOI: 10.1016/j.jcv.2009.10.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 10/10/2009] [Accepted: 10/27/2009] [Indexed: 01/23/2023]
Abstract
BACKGROUND Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral hemorrhagic disease. Pathogenesis of the disease has not been well described yet. A well-known pathogenic feature of CCHF virus is its capability to damage endothelium. Increased hyaluronic acid (HA) levels indicate liver sinusoidal endothelial damage. Soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1) and vascular endothelial growth factor-A (VEGF-A) play a role in the inflammatory process, vascular damage and plasma leakage. OBJECTIVES To investigate whether or not there is a relationship between HA, sICAM-1, sVCAM-1 and VEGF-A serum levels and fatality in CCHF. STUDY DESIGN Sixty-one patients who were confirmed by RT-PCR and serological tests for CCHF, included in the current study. HA, sICAM-1, sVCAM-1, VEGF-A levels in serum samples were analyzed by ELISA. RESULTS There were statistically significant differences between fatal and non-fatal CCHF patients in terms of HA, sICAM-1, sVCAM-1, and VEGF-A levels. In addition, AST and ALT levels were positively correlated with HA, sICAM-1, sVCAM-1, and VEGF-A levels. CONCLUSION HA, sICAM-1, sVCAM-1, and VEGF-A levels of the patients that died during hospitalization were statistically significantly higher than the patients that survived, and this finding suggests that the level of these molecules could be used as a prognostic marker in CCHF.
Collapse
Affiliation(s)
- Baris Ozturk
- Department of Infectious Diseases and Clinical Microbiology, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|