1
|
Guo Y, Li J, O'Brien J, Sivakumar M, Jiang G. Back-estimation of norovirus infections through wastewater-based epidemiology: A systematic review and parameter sensitivity. WATER RESEARCH 2022; 219:118610. [PMID: 35598472 DOI: 10.1016/j.watres.2022.118610] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/20/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The amount of norovirus RNA (Ribonucleic Acid) in raw wastewater, collected from a wastewater treatment plant (WWTP), can provide an indication of disease prevalence within the sampled catchment. However, an accurate back-estimation might be impeded by the uncertainties from in-sewer/in-sample degradation of viral RNA, variable shedding magnitude, and difficulties in measurement within raw wastewater. The current study reviewed the published literature regarding the factors of norovirus shedding, viral RNA decay in wastewater, and the occurrence of norovirus RNA in raw wastewater based on molecular detection. Sensitivity analysis for WBE back-estimation was conducted using the reported data of the factors mentioned above considering different viral loads in wastewater samples. It was found that the back-estimation is more sensitive to analytical detection uncertainty than shedding variability for norovirus. Although seasonal temperature change can lead to variation of decay rates and may influence the sensitivity of this pathogen-specific parameter, decay rates of norovirus RNA contribute negligibly to the variance in estimating disease prevalence, based on the available data from decay experiments in bulk wastewater under different temperatures. However, the effects of in-sewer transportation on viral RNA decay and retardation by sewer biofilms on pipe surfaces are largely unknown. Given the highest uncertainty from analytical measurement by molecular methods and complexity of in-sewer processes that norovirus experienced during the transportation to WWTP, future investigations are encouraged to improve the accuracy of viral RNA detection in wastewater and delineate viral retardation/interactions with wastewater biofilms in real sewers.
Collapse
Affiliation(s)
- Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia; Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jake O'Brien
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
2
|
Fumian TM, Fioretti JM, Lun JH, Dos Santos IAL, White PA, Miagostovich MP. Detection of norovirus epidemic genotypes in raw sewage using next generation sequencing. ENVIRONMENT INTERNATIONAL 2019; 123:282-291. [PMID: 30553201 DOI: 10.1016/j.envint.2018.11.054] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 05/23/2023]
Abstract
Noroviruses are a leading cause of epidemic and pandemic acute gastroenteritis (AGE) worldwide, and contaminated food and water are important routes for its transmission. Raw sewage has been used for viral surveillance to monitor the emergence of new norovirus strains with the potential to cause epidemics. In this study, we investigated norovirus occurrence and norovirus RNA levels in 156 samples collected from May 2013 to May 2014, across three different stages (52 samples each) of a wastewater treatment plant (WWTP) in Rio de Janeiro, Brazil. We also explored norovirus GII diversity in raw sewage samples by next-sequencing generation (NGS). In addition, we examined norovirus prevalence and molecular epidemiology from acute gastroenteritis cases. Using RT-qPCR, norovirus GI and GII was detected in 38.5% and 96.1% of raw sewage samples, 40.4% and 96.1% of primary effluent samples and 1.9% and 5.8% of final effluent samples, respectively. Norovirus RNA levels varied from 4 to 6.2 log10 genome copies per litre (gc L-1) for GI and from 4.4 to 7.3 log10 gc L-1 for GII. Using MiSeq NGS, we identified 13 norovirus genotypes over the one-year period, with six dominant capsid genotypes, including GII.4, GII.17, GII.5, GII.2, GII.3 and GII.1. GII.4 noroviruses were the most prevalent in wastewater samples (68.5%), and a similar trend was observed in AGE cases (71%). The emergent GII.17 was the second most prevalent genotype (14.3%) identified in the raw sewage samples, however, it was not detected in clinical cases. Due to the high burden of norovirus outbreaks and the lack of vaccine and antiviral drugs, it is essential to understand the genotypic diversity of norovirus at the population level. Complementary data obtained from both clinical and environmental (sewage) samples proved to be an effective strategy to monitor the circulation and emergence of norovirus epidemic genotypes.
Collapse
Affiliation(s)
- Tulio M Fumian
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil.
| | - Julia M Fioretti
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Jennifer H Lun
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ingrid A L Dos Santos
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Peter A White
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Marize P Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Suffredini E, Iaconelli M, Equestre M, Valdazo-González B, Ciccaglione AR, Marcantonio C, Della Libera S, Bignami F, La Rosa G. Genetic Diversity Among Genogroup II Noroviruses and Progressive Emergence of GII.17 in Wastewaters in Italy (2011-2016) Revealed by Next-Generation and Sanger Sequencing. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:141-150. [PMID: 29185203 DOI: 10.1007/s12560-017-9328-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/24/2017] [Indexed: 05/28/2023]
Abstract
Noroviruses (NoV) are a major cause of gastroenteritis worldwide. Recently, a novel variant of NoV GII.17 (GII.P17_GII.17 NoV), termed Kawasaki 2014, has been increasingly reported in NoV outbreaks in Asia, and has also been described in Europe and North America. In this study, sewage samples were investigated to study the occurrence and genetic diversity of NoV genogroup II (GII) along a 6-year period. Moreover, the spread of GII.17 strains (first appearance and occurrence along time) was specifically assessed. A total of 122 sewage samples collected from 2011 to 2016 from four wastewater treatment plants in Rome (Italy) were initially tested using real-time RT-(q)PCR for GII NoV. Positive samples were subsequently subjected to genotypic characterization by RT-nested PCRs using broad-range primes targeting the region C of the capsid gene of GII NoV, and specific primers targeting the same region of GII.17 NoV. In total, eight different genotypes were detected with the broad-range assay: GII.1 (n = 6), GII.2 (n = 8), GII.3 (n = 3), GII.4 (n = 13), GII.6 (n = 3), GII.7 (n = 2), GII.13 (n = 2), and GII.17 (n = 3), with the latter two genotypes detected only in 2016. Specific amplification of GII.17 NoV was successful in 14 out of 110 positive samples, spanned over the years 2013-2016. The amplicons of the broad-range PCR, pooled per year, were further analyzed by next-generation sequencing (NGS) for a deeper analysis of the genotypes circulating in the study period. NGS confirmed the circulation of GII.17 NoV since 2013 and detected, beyond the eight genotypes identified by Sanger sequencing, three additional genotypes regarded as globally uncommon: GII.5, GII.16, and GII.21. This study provides evidence that GII.17 NoV Kawasaki has been circulating in the Italian population before its appearance and identification in clinical cases, and has become a major genotype in 2016. Our results confirm the usefulness of wastewater surveillance coupled with NGS to study the molecular epidemiology of NoV and to monitor the emergence of NoV strains.
Collapse
Affiliation(s)
- E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Equestre
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - B Valdazo-González
- The National Institute for Biological Standards and Control, The Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, UK
| | - A R Ciccaglione
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - C Marcantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - S Della Libera
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - F Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
4
|
Environmental Surveillance of Norovirus Genogroups I and II for Sensitive Detection of Epidemic Variants. Appl Environ Microbiol 2017; 83:AEM.03406-16. [PMID: 28213546 DOI: 10.1128/aem.03406-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Sewage samples have been investigated to study the norovirus concentrations in sewage or the genotypes of noroviruses circulating in human populations. However, the statistical relationship between the concentration of the virus and the number of infected individuals and the clinical importance of genotypes or strains detected in sewage are unclear. In this study, we carried out both environmental and clinical surveillance of noroviruses for 3 years, 2013 to 2016. We performed cross-correlation analysis of the concentrations of norovirus GI or GII in sewage samples collected weekly and the reported number of gastroenteritis cases. Norovirus genotypes in sewage were also analyzed by pyrosequencing and compared with those identified in stool samples. The cross-correlation analysis found the peak coefficient (R = 0.51) at a lag of zero, indicating that the variation in the GII concentration, expressed as the log10 number of copies per milliliter, was coincident with that in the gastroenteritis cases. A total of 15 norovirus genotypes and up to 8 genotypes per sample were detected in sewage, which included all of the 13 genotypes identified in the stool samples except 2. GII.4 was most frequently detected in both sample types, followed by GII.17. Phylogenetic analysis revealed that a strain belonging to the GII.17 Kawasaki 2014 lineage had been introduced into the study area in the 2012-2013 season. An increase in GI.3 cases was observed in the 2015-2016 season, and sewage monitoring identified the presence of GI.3 in the previous season (2014-2015). Our results demonstrated that monitoring of noroviruses in sewage is useful for sensitive detection of epidemic variants in human populations.IMPORTANCE We obtained statistical evidence of the relationship between the variation in the norovirus GII concentration in sewage and that of gastroenteritis cases during the 3-year study period. Sewage sample analysis by a pyrosequencing approach enabled us to understand the temporal variation in the norovirus genotypes circulating in human populations. We found that a strain closely related to the GII.17 Kawasaki 2014 lineage had been introduced into the study area at least 1 year before its appearance and identification in clinical cases. A similar pattern was observed for GI.3; cases were reported in the 2015-2016 season, and closely related strains were found in sewage in the previous season. Our observation indicates that monitoring of noroviruses in sewage is useful for the rapid detection of an epidemic and is also sensitive enough to study the molecular epidemiology of noroviruses. Applying this approach to other enteric pathogens in sewage will enhance our understanding of their ecology.
Collapse
|
5
|
Kazama S, Masago Y, Tohma K, Souma N, Imagawa T, Suzuki A, Liu X, Saito M, Oshitani H, Omura T. Temporal dynamics of norovirus determined through monitoring of municipal wastewater by pyrosequencing and virological surveillance of gastroenteritis cases. WATER RESEARCH 2016; 92:244-53. [PMID: 26874777 DOI: 10.1016/j.watres.2015.10.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 10/14/2015] [Accepted: 10/17/2015] [Indexed: 05/21/2023]
Abstract
Norovirus is a leading etiological agent of viral gastroenteritis. Because of relatively mild disease symptoms and frequent asymptomatic infections, information on the ecology of this virus is limited. Our objective was to examine the genetic diversity of norovirus circulating in the human population by means of genotyping the virus in municipal wastewater. We investigated norovirus genogroups I and II (GI and GII) in municipal wastewater in Japan by pyrosequencing and quantitative PCR (qPCR) from November 2012 to March 2013. Virological surveillance for gastroenteritis cases was concurrently conducted in the same area. A total of fourteen distinct genotypes in total (GI.1, 3, 4, 6, 7, GII.2, 4, 5, 6, 7, 12, 13, 14, and 17), with up to eight genotypes detected per sample, were observed in wastewater using pyrosequencing; only four genotypes (GI.6, GII.4, 5, and 14) were obtained from clinical samples. Seventy-eight percent of norovirus-positive stool samples contained GII.4, but this genotype was not dominant in wastewater. The norovirus GII.4 Sydney 2012 variant, which appeared and spread during our study period, was detected in both the wastewater and clinical samples. These results suggest that an environmental approach using pyrosequencing yields a more detailed distribution of norovirus genotypes/variants. Thus, wastewater monitoring by pyrosequencing is expected to provide an effective analysis of the distribution of norovirus genotypes causing symptomatic and asymptomatic infections in human populations.
Collapse
Affiliation(s)
- Shinobu Kazama
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi, 980-8479, Japan
| | - Yoshifumi Masago
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi, 980-8479, Japan; Institute for the Advanced Study of Sustainability, United Nations University, Shibuya-ku, Tokyo 150-8925, Japan.
| | - Kentaro Tohma
- Department of Virology, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Nao Souma
- Department of Virology, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Toshifumi Imagawa
- Department of Virology, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Akira Suzuki
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, 983-8520, Japan
| | - Xiaofang Liu
- Department of Virology, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Mayuko Saito
- Department of Virology, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Hitoshi Oshitani
- Department of Virology, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Tatsuo Omura
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi, 980-8479, Japan
| |
Collapse
|
6
|
Zhirakovskaia EV, Tikunov AY, Bodnev SA, Klemesheva VV, Netesov SV, Tikunova NV. Molecular epidemiology of noroviruses associated with sporadic gastroenteritis in children in Novosibirsk, Russia, 2003-2012. J Med Virol 2015; 87:740-53. [DOI: 10.1002/jmv.24068] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Elena V. Zhirakovskaia
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of the Russian Academy of Sciences; Novosibirsk Russia
| | - Artem Yu Tikunov
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of the Russian Academy of Sciences; Novosibirsk Russia
| | - Sergey A. Bodnev
- State Research Center of Virology and Biotechnology VECTOR; Novosibirsk Region; Koltsovo Russia
| | | | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of the Russian Academy of Sciences; Novosibirsk Russia
| |
Collapse
|
7
|
Molecular epidemiology of human calicivirus infections in children with acute diarrhea in Shanghai: a retrospective comparison between inpatients and outpatients treated between 2006 and 2011. Arch Virol 2014; 159:1613-21. [PMID: 24420158 DOI: 10.1007/s00705-013-1881-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/28/2013] [Indexed: 01/24/2023]
|
8
|
Vicentini F, Denadai W, Gomes YM, Rose TL, Ferreira MSR, Le Moullac-Vaidye B, Le Pendu J, Leite JPG, Miagostovich MP, Spano LC. Molecular characterization of noroviruses and HBGA from infected Quilombola children in Espirito Santo State, Brazil. PLoS One 2013; 8:e69348. [PMID: 23894453 PMCID: PMC3718680 DOI: 10.1371/journal.pone.0069348] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/08/2013] [Indexed: 12/27/2022] Open
Abstract
Noroviruses (NoV) are the main etiological agents of gastroenteritis outbreaks worldwide and susceptibility to NoV infection has been related to the histo-blood group antigen (HBGA). This study aimed to determine the prevalence of NoV strains and to evaluate the HBGA phenotype and genotype of children from semi-isolated Quilombola communities, descendents of black slaves in Brazil. A total of 397 children up to eleven years old, with and without diarrhea, from Quilombola Communities in the Espirito Santo State, Brazil, were investigated for the presence of NoV from August 2007 to September 2009. Feces were collected from all the children, and blood from the NoV positive children. NoV was screened by reverse transcription-PCR with primers for the RNA-dependent RNA polymerase region; genogroup was determined by PCR with primers for the C and D regions and genotyped by sequencing. HBGA phenotype was performed by gel-spinning and FUT2 and FUT3 were analyzed by PCR or sequencing analysis. NoV were detected in 9.2% (12/131) of diarrheic and 1.5% (4/266) of non-diarrheic children (p<0.05, Fisher's exact test). GI and GII genogroups were present in 12.5% and 87.5% of the samples, respectively. The following genotypes were characterized: GII.4 (25%), GII.12 (25%), GII.6 (12.5%) and GI.1 (6.3%), GI.3 (12.5%) and GI.4 (6.3%). Children infected with NoV showed the A (n = 6), O (n = 6), and B (n = 2) HBGA phenotypes, and 13 of them were classified as secretors (Se) and one as a non secretor (se). Mutations of Se (40), (171,216,357,428,739,960) were found for the FUT2 gene and mutations of Le (59, 202, 314) for the FUT3 gene. The only se child was infected by NoV GI, whereas the Se children were indiscriminately infected by GI or GII. This study showed rates of NoV infection in symptomatic and asymptomatic Quilombola children consistent with other studies. However, children under 12 months were seven times more affected than those between 1 and 5 years old. GII.12 was as frequent as GII.4 and GI.1 and GI.4 were described for the first time in Brazil. Owing to the small number of cases studied, no clear pattern of susceptibility and/or HBGA resistance could be inferred.
Collapse
Affiliation(s)
- Fernando Vicentini
- Departamento de Ciências da Saúde, Universidade Federal do Espírito Santo, São Mateus, Espírito Santo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ferreira MSR, Xavier MDPTP, Tinga ACDC, Rose TL, Fumian TM, Fialho AM, de Assis RM, Carvalho Costa FA, de Oliveira SA, Leite JPG, Miagostovich MP. Assessment of gastroenteric viruses frequency in a children's day care center in Rio De Janeiro, Brazil: a fifteen year study (1994-2008). PLoS One 2012; 7:e33754. [PMID: 22448271 PMCID: PMC3309004 DOI: 10.1371/journal.pone.0033754] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/16/2012] [Indexed: 12/03/2022] Open
Abstract
This 15-year study aimed to determine the role of the main viruses responsible for acute infantile gastroenteritis cases in a day care center in the city of Rio de Janeiro, Brazil. From 1994 to 2008, 539 fecal samples were obtained from 23 outbreaks as well as sporadic cases that occurred in this period. The detection of Rotavirus group A (RVA), norovirus (NoV) and astrovirus (AstV) was investigated both by classical and molecular methods of viral detection. RVA was detected by enzymatic immune assay and/or polyacrylamide gel electrophoresis and genotyped by using semi-nested multiplex PCR. NoV and AstV were subsequently tested by real time PCR in all RVA-negative samples and genotyped throughout genome sequencing. Three protocols for molecular characterization of NoV nucleotide sequencing were performed with the partial nucleotide sequencing of genomic regions known as region B (polymerase gen), C and D (capsid gen).Viruses were identified in 47.7% (257/539) of the cases, and the detection rates of RVA, NoV and AstV in16.1% (87/539), 33.4% (151/452), and 6.3% (19/301), respectively. Most gastroenteritis cases were reported in autumn and winter, although NoV presented a broader monthly distribution. Viruses' detection rates were significantly higher among children aged less than 24 months old, although NoV cases were detected in all age groups. RVA genotypes as G1P[8], G9P[8], G2P[4], G3P[8] and G1+G3P[8] and RVA was no longer detected after 2005. NoV characterization revealed genotypes variability circulating in the period as GI.2, GI.3, GI.8 GII.2, GII.3, GII.4, GII.4 variants 2001 and 2006b, GII.6, GII.7, GII.12 and GII.17. AstV genotypes 1, 2, 4 and 5 were also characterized. Those data demonstrate the impact of NoV infection in cases of infantile gastroenteritis, surpassing RVA infection responsible for high morbidity rate in children under five years old.
Collapse
Affiliation(s)
- Mônica Simões Rocha Ferreira
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hoffmann D, Hutzenthaler M, Seebach J, Panning M, Umgelter A, Menzel H, Protzer U, Metzler D. Norovirus GII.4 and GII.7 capsid sequences undergo positive selection in chronically infected patients. INFECTION GENETICS AND EVOLUTION 2012; 12:461-6. [PMID: 22310302 DOI: 10.1016/j.meegid.2012.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/20/2012] [Accepted: 01/21/2012] [Indexed: 12/20/2022]
Abstract
Norovirus has become an important cause for infectious gastroenteritis. Particularly genotype II.4 (GII.4) has been shown to spread rapidly and causes worldwide pandemics. Emerging new strains evade population immunity and lead to high norovirus prevalence. Chronic infections have been described recently and will become more prevalent with increasing numbers of immunocompromized patients. Here, we studied norovirus evolution in three chronically infected patients, two genotypes II.4 and one II.7. A 719 and 757 nt region was analyzed for GII.4 and GII.7, respectively. This covers the entire hypervariable P2 domain of the VP1 capsid gene. Genetic variability at given and between different time points was assessed. Evolutionary adaptation was analyzed by Bayesian sampling of genealogies. This analysis clearly demonstrated positive selection rather than incidental drift for all three strains. The GII.7 and one GII.4 strain accumulated on average 5-9 mutations per 100 days, most of them non-synonymous. This is a much higher evolutionary rate than observed for noroviruses on a global level. Our data demonstrate that norovirus quasispecies are positively selected in chronically infected patients. The numbers of intraindividual amino acid mutations acquired in the capsid gene are similar to those separating consecutive GII.4 epidemic strains. Evolution in a given, chronically infected individual may thus generate novel genotypes at risk to expedite global evolution particularly for slowly evolving genotypes, as GII.7.
Collapse
Affiliation(s)
- Dieter Hoffmann
- Institute of Virology, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fioretti JM, Ferreira MSR, Victoria M, Vieira CB, Xavier MDPTP, Leite JPG, Miagostovich MP. Genetic diversity of noroviruses in Brazil. Mem Inst Oswaldo Cruz 2011; 106:942-7. [DOI: 10.1590/s0074-02762011000800008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 08/16/2011] [Indexed: 01/03/2023] Open
|
12
|
Rydell GE, Kindberg E, Larson G, Svensson L. Susceptibility to winter vomiting disease: a sweet matter. Rev Med Virol 2011; 21:370-82. [PMID: 22025362 DOI: 10.1002/rmv.704] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/09/2022]
Abstract
Norovirus, the cause of winter vomiting disease, has emerged in recent years to be a major cause of sporadic and epidemic gastroenteritis worldwide. The virus has been estimated to cause >200,000 deaths each year in developing countries. Although the virus is highly contagious, volunteer and field studies have shown that a subset of individuals appears resistant to infections. A single nucleotide mutation (G428A) in the fucosyltransferase gene (FUT2) on chromosome 19 provides strong protection from infection in 20% of the white population. Histo-blood group ABO(H) antigens with terminal fucose are believed to function as receptors for human norovirus in the gastrointestinal tract, but also negatively charged potential receptors have been identified. Norovirus infection is a unique example where a single nucleotide mutation in a fucosyltransferase gene plays a crucial role in susceptibility to one of the most common viral diseases. This review discusses the role of host genetics and carbohydrate structures in susceptibility to winter vomiting disease.
Collapse
Affiliation(s)
- Gustaf E Rydell
- Dept of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
13
|
Iritani N, Kaida A, Kubo H, Abe N, Goto K, Ogura H, Seto Y. Molecular epidemiology of noroviruses detected in seasonal outbreaks of acute nonbacterial gastroenteritis in Osaka City, Japan, from 1996-1997 to 2008-2009. J Med Virol 2010; 82:2097-105. [DOI: 10.1002/jmv.21915] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|