1
|
Ford CE, Brookes LM, Skelly E, Sergeant C, Jordine T, Balloux F, Nichols RA, Garner TWJ. Non-Lethal Detection of Frog Virus 3-Like (RUK13) and Common Midwife Toad Virus-Like (PDE18) Ranaviruses in Two UK-Native Amphibian Species. Viruses 2022; 14:v14122635. [PMID: 36560639 PMCID: PMC9786228 DOI: 10.3390/v14122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Ranaviruses have been involved in amphibian mass mortality events worldwide. Effective screening to control this pathogen is essential; however, current sampling methods are unsuitable for the detection of subclinical infections. Non-lethal screening is needed to prevent both further spread of ranavirus and losses of at-risk species. To assess non-lethal sampling methods, we conducted two experiments: bath exposing common frogs to RUK13 ranavirus at three concentrations, and exposing common toads to RUK13 or PDE18. Non-lethal sampling included buccal, digit, body and tank swabs, along with toe clips and stool taken across three time-points post-exposure. The presence/load of ranavirus was examined using quantitative PCR in 11 different tissues obtained from the same euthanised animals (incl. liver, gastro-intestinal tract and kidney). Buccal swab screening had the highest virus detection rate in both species (62% frogs; 71% toads) and produced consistently high virus levels compared to other non-lethal assays. The buccal swab was effective across multiple stages of infection and differing infection intensities, though low levels of infection were more difficult to detect. Buccal swab assays competed with, and even outperformed, lethal sampling in frogs and toads, respectively. Successful virus detection in the absence of clinical signs was observed (33% frogs; 50% toads); we found no difference in detectability for RUK13 and PDE18. Our results suggest that buccal swabbing could replace lethal sampling for screening and be introduced as standard practice for ranavirus surveillance.
Collapse
Affiliation(s)
- Charlotte E. Ford
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Zoological Society of London, Institute of Zoology, Nuffield Building, Outer Circle, London NW8 7LS, UK
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
- Correspondence: or
| | - Lola M. Brookes
- Zoological Society of London, Institute of Zoology, Nuffield Building, Outer Circle, London NW8 7LS, UK
- RVC Animal Welfare Science and Ethics, The Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Emily Skelly
- Zoological Society of London, Institute of Zoology, Nuffield Building, Outer Circle, London NW8 7LS, UK
| | - Chris Sergeant
- Zoological Society of London, Institute of Zoology, Nuffield Building, Outer Circle, London NW8 7LS, UK
| | - Tresai Jordine
- Zoological Society of London, Institute of Zoology, Nuffield Building, Outer Circle, London NW8 7LS, UK
| | - Francois Balloux
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Richard A. Nichols
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Trenton W. J. Garner
- Zoological Society of London, Institute of Zoology, Nuffield Building, Outer Circle, London NW8 7LS, UK
| |
Collapse
|
2
|
Box EK, Cleveland CA, Subramaniam K, Waltzek TB, Yabsley MJ. Molecular Confirmation of Ranavirus Infection in Amphibians From Chad, Africa. Front Vet Sci 2021; 8:733939. [PMID: 34604370 PMCID: PMC8481899 DOI: 10.3389/fvets.2021.733939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Ranaviruses are DNA viruses (Family Iridoviridae; Subfamily Alphairidovirinae) and ranaviral disease is considered an emerging infectious disease of ectothermic vertebrates. Ranavirus infection can have varying pathological effects on infected amphibians, reptiles, and fish, most notably causing significant mortality events and population declines. Despite having a broad global range with reports from six continents, only a single incidental finding in Xenopus longipes from mainland Africa (Cameroon) is known and lacks molecular confirmation. Thus, there is a considerable knowledge gap concerning ranaviruses in Africa. We opportunistically obtained tissue samples from 160 amphibians representing five genera (Hoplobatrachus, Hylarana, Ptychadena, Pyxicephalus, and Xenopus) and two turtles (Pelomedusa sp.) from Chad, Africa. Samples were tested for ranavirus infection using a conventional PCR assay targeting the major capsid protein (MCP). A total of 25/160 (16%) frogs tested positive including 15/87 (17%) Hoplobatrachus occipitalis, 10/58 (17%) Ptychadena spp., 0/3 Pyxicephalus spp., 0/9 Xenopus spp., and 0/3 Hylarana spp. One of two turtles tested positive. Partial MCP gene sequences indicated all samples were >98% similar to several frog virus 3 (FV3)-like sequences. Additional gene targets (DNA polymerase [DNApol], ribonucleotide reductase alpha [RNR- α], ribonucleotide reductase beta subunit [RNR- β]) were sequenced to provide further detailed classification of the virus. Sequences of individual gene targets indicate that the ranavirus detected in frogs in Chad is most similar to tiger frog virus (TFV), a FV3-like virus previously isolated from diseased amphibians cultured in China and Thailand. Full genome sequencing of one sample indicates that the Chad frog virus (CFV) is a well-supported sister group to the TFVs previously determined from Asia. This work represents the first molecular confirmation of ranaviruses from Africa and is a first step in comparing ranavirus phylogeography on a local and global scale.
Collapse
Affiliation(s)
- Erin K Box
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Christopher A Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
von Essen M, Leung WTM, Bosch J, Pooley S, Ayres C, Price SJ. High pathogen prevalence in an amphibian and reptile assemblage at a site with risk factors for dispersal in Galicia, Spain. PLoS One 2020; 15:e0236803. [PMID: 32730306 PMCID: PMC7392302 DOI: 10.1371/journal.pone.0236803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
Ranaviruses are agents of disease, mortality and population declines in ectothermic vertebrates and emergences have been repeatedly linked to human activities. Ranaviruses in the common midwife toad ranavirus lineage are emerging in Europe. They are known to be severe multi-host pathogens of amphibians and can also cause disease in reptiles. Recurrent outbreaks of ranavirus disease and mortality affecting three species have occurred at a small reservoir in north-west Spain but no data were available on occurrence of the pathogen in the other amphibian and reptile species present or at adjacent sites. We sampled nine species of amphibians and reptiles at the reservoir and nearby sites and screened for ranavirus presence using molecular methods. Our results show infection with ranavirus in all nine species, including first reports for Hyla molleri, Pelophylax perezi, Rana iberica, and Podarcis bocagei. We detected ranavirus in all four local sites and confirmed mass mortality incidents involving Lissotriton boscai and Triturus marmoratus were ongoing. The reservoir regularly hosts water sports tournaments and the risks of ranavirus dispersal through the translocation of contaminated equipment are discussed.
Collapse
Affiliation(s)
- Marius von Essen
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
- Imperial College London, Department of Life Sciences (Silwood Park), Ascot, United Kingdom
| | - William T. M. Leung
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- Research Unit of Biodiversity—CSIC/UO/PA, Universidad de Oviedo, Edificio de Investigación, Mieres, Spain
- * E-mail:
| | - Simon Pooley
- Imperial College London, Department of Life Sciences (Silwood Park), Ascot, United Kingdom
| | - Cesar Ayres
- Asociación Herpetológica Española, Madrid, Spain
| | - Stephen J. Price
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
- UCL Genetics Institute, London, United Kingdom
| |
Collapse
|
4
|
Campbell LJ, Pawlik AH, Harrison XA. Amphibian ranaviruses in Europe: important directions for future research. Facets (Ott) 2020. [DOI: 10.1139/facets-2020-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ranaviruses are an emerging group of pathogens capable of infecting all cold-blooded vertebrates. In Europe, ranaviruses pose a particularly potent threat to wild amphibian populations. Since the 1980s research on amphibian-infecting ranaviruses in Europe has been growing. The wide distribution of amphibian populations in Europe, the ease with which many are monitored, and the tractable nature of counterpart ex situ experimental systems have provided researchers with a unique opportunity to study many aspects of host–ranavirus interactions in the wild. These characteristics of European amphibian populations will also enable researchers to lead the way as the field of host–ranavirus interactions progresses. In this review, we provide a summary of the current key knowledge regarding amphibian infecting ranaviruses throughout Europe. We then outline important areas of further research and suggest practical ways each could be pursued. We address the study of potential interactions between the amphibian microbiome and ranaviruses, how pollution may exacerbate ranaviral disease either as direct stressors of amphibians or indirect modification of the amphibian microbiome. Finally, we discuss the need for continued surveillance of ranaviral emergence in the face of climate change.
Collapse
Affiliation(s)
- Lewis J. Campbell
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Alice H. Pawlik
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
5
|
Forzán MJ, Bienentreu J, Schock DM, Lesbarrères D. Multi-tool diagnosis of an outbreak of ranavirosis in amphibian tadpoles in the Canadian boreal forest. DISEASES OF AQUATIC ORGANISMS 2019; 135:33-41. [PMID: 31219433 DOI: 10.3354/dao03369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Investigation of mortalities in isolated wild amphibian populations presents diagnostic difficulties that can hinder reaching a definitive diagnosis for the cause of death. Disease can only be diagnosed when pathogen presence (e.g. detection by PCR) is linked to tissue lesions (histopathology) in the host. We report a 2-site outbreak of ranavirosis in wild anuran tadpoles in the boreal forest of Wood Buffalo National Park, Canada, diagnosed by histologic and molecular techniques. Mortalities occurred in wood frog Rana sylvatica tadpoles and boreal chorus frog Pseudacris maculata tadpoles. Lack of mortality in sympatric Canadian toad Bufo (Anaxyrus) hemiophrys tadpoles suggested lower disease susceptibility in this species. In the former 2 species, ranavirosis was diagnosed based on consistent histopathology, immunohistochemistry (IHC), in situ hybridization (ISH), and quantitative PCR results. The most common histopathologic lesion present in wood and boreal chorus frog tadpoles was necrosis of the skin, oral mucosa, renal tubular epithelium, renal hematopoietic tissue, and branchial epithelium. Mild hepatic and pancreatic necrosis and rare intracytoplasmic inclusion bodies in hepatocytes were less common. Skeletal and connective tissues in budding limbs often had multifocal to coalescing necrosis and were intensely positive for ranavirus, with IHC staining even in areas where no obvious necrosis could be observed. Abundant IHC and ISH staining in actively growing tissues support a link between disease emergence and amphibian developmental stage. Our findings provide a definitive diagnosis of ranavirosis in free-living amphibians and highlight the effectiveness of multi-tool approaches to mortality investigation and elucidation of pathogenesis of ranavirosis in wild amphibians.
Collapse
Affiliation(s)
- M J Forzán
- Cornell Wildlife Health Lab, Department of Population Medicine, Animal Health Diagnostic Center, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
6
|
Maclaine A, Forzán MJ, Mashkour N, Scott J, Ariel E. Pathogenesis of Bohle Iridovirus (Genus Ranavirus) in Experimentally Infected Juvenile Eastern Water Dragons ( Intellagama lesueurii lesueurii). Vet Pathol 2019; 56:465-475. [PMID: 30686212 DOI: 10.1177/0300985818823666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Juvenile eastern water dragons ( Intellagama lesueurii lesueurii) are highly susceptible to infection with Bohle iridovirus (BIV), a species of ranavirus first isolated from ornate burrowing frogs in Townsville, Australia. To investigate the progression of BIV infection in eastern water dragons, 11 captive-bred juveniles were orally inoculated with a dose of 104.33 TCID50 and euthanized at 3, 6, 8, 10, 12, and 14 days postinfection (dpi). Viral DNA was detected via polymerase chain reaction (PCR) in the liver, kidney, and cloacal swabs at 3 dpi. Mild lymphocytic infiltration was observed in the submucosa and mucosa of the tongue and liver at 3 dpi. Immunohistochemistry (IHC) first identified viral antigen in foci of splenic necrosis and in hepatocytes with intracytoplasmic inclusion or rare single-cell necrosis at 6 dpi. By 14 dpi, positive IHC labeling was found in association with lesions in multiple tissues. Selected tissues from an individual euthanized at 14 dpi were probed using in situ hybridization (ISH). The ISH labeling matched the location and pattern detected by IHC. The progression of BIV infection in eastern water dragons, based on lesion severity and virus detection, appears to start in the spleen, followed by the liver, then other organs such as the kidney, pancreas, oral mucosa, and skin. The early detection of ranaviral DNA in cloacal swabs and liver and kidney tissue samples suggests these to be a reliable source of diagnostic samples in the early stage of disease before the appearance of clinical signs, as well as throughout the infection.
Collapse
Affiliation(s)
- Alicia Maclaine
- 1 College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - María J Forzán
- 2 Cornell Wildlife Health Lab, Department of Population Medicine, Animal Health Diagnostic Center, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Narges Mashkour
- 1 College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Jennifer Scott
- 1 College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Ellen Ariel
- 1 College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
7
|
Sivasankar P, John KR, George MR, Mageshkumar P, Manzoor MM, Jeyaseelan MJP. Characterization of a virulent ranavirus isolated from marine ornamental fish in India. Virusdisease 2017; 28:373-382. [PMID: 29291228 DOI: 10.1007/s13337-017-0408-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 11/08/2017] [Indexed: 11/24/2022] Open
Abstract
A viral agent implicated in the mortality of marine ornamental "Similar Damselfish" (Pomacentrus similis Allen, 1991) was isolated and characterized. The virus grew well in marine and freshwater fish cell lines from seabass and snakehead. The virus was sensitive to chloroform, acidic pH (3.0) and heat treatment at 56 °C. Biochemical characterisation indicated that the virus had double stranded DNA genome. Transmission electron microscopic analysis of ultrathin sections of infected cell pellets showed iridovirus-like icosahedral virus particles of 120-130 nm. Purified virus had six structural protein bands that ranged from of 44 to 132 kDa. PCR analysis confirmed the presence of viral DNA in infected cell cultures and sequence analysis of the major capsid protein gene showed an identity of 99.82% to that of largemouth bass virus. Serum neutralization studies involving the viral agent and koi ranavirus (KIRV) indicated partial homogeneity between the two isolates. Experimental infection of seabass (Lates calcarifer) and similar damselfish (P. similis) fingerlings with the similar damselfish virus showed cumulative mortalities of 68.75 and 93.33%. The biophysical and biochemical properties of the viral agent isolated, serological characteristics, size of major capsid proteins and the sequence similarity of the MCP gene proved that the virus belongs to the genus Ranavirus of the family Iridoviridae. Ability of the virus to grow in marine and freshwater fish cell lines and its pathogenicity to one of the cultivable marine fish shows the wide host range of the virus. This is the first report of ranavirus induced mortality in marine fish in India.
Collapse
Affiliation(s)
- P Sivasankar
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Thoothukudi, 628008 India
| | - K Riji John
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Thoothukudi, 628008 India
| | - M Rosalind George
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Thoothukudi, 628008 India
| | - P Mageshkumar
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Thoothukudi, 628008 India
| | - M Mohamed Manzoor
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Thoothukudi, 628008 India
| | - M J Prince Jeyaseelan
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Thoothukudi, 628008 India
| |
Collapse
|
8
|
Kwon S, Park J, Choi WJ, Koo KS, Lee JG, Park D. First case of ranavirus-associated mass mortality in a natural population of the Huanren frog (Rana huanrenensis) tadpoles in South Korea. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1376706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Sera Kwon
- Department of Biology, Kangwon National University, Chuncheon, South Korea
| | - Jaejin Park
- Department of Biology, Kangwon National University, Chuncheon, South Korea
| | - Woo-Jin Choi
- Department of Biology, Kangwon National University, Chuncheon, South Korea
| | - Kyo-Soung Koo
- Department of Biology, Kangwon National University, Chuncheon, South Korea
| | - Jin-Gu Lee
- Gyeonggido Agricultural Research and Extension Services, Hwaseong, South Korea
| | - Daesik Park
- Division of Science Education, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
9
|
From fish to frogs and beyond: Impact and host range of emergent ranaviruses. Virology 2017; 511:272-279. [PMID: 28860047 DOI: 10.1016/j.virol.2017.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 11/21/2022]
Abstract
Ranaviruses are pathogens of ectothermic vertebrates, including amphibians. We reviewed patterns of host range and virulence of ranaviruses in the context of virus genotype and postulate that patterns reflect significant variation in the historical and current host range of three groups of Ranavirus: FV3-like, CMTV-like and ATV-like ranaviruses. Our synthesis supports previous hypotheses about host range and jumps: FV3s are amphibian specialists, while ATVs are predominantly fish specialists that switched once to caudate amphibians. The most recent common ancestor of CMTV-like ranaviruses and FV3-like forms appears to have infected amphibians but CMTV-like ranaviruses may circulate in both amphibian and fish communities independently. While these hypotheses are speculative, we hope that ongoing efforts to describe ranavirus genetics, increased surveillance of host species and targeted experimental assays of susceptibility to infection and/or disease will facilitate better tests of the importance of hypothetical evolutionary drivers of ranavirus virulence and host range.
Collapse
|
10
|
Hick PM, Subramaniam K, Thompson PM, Waltzek TB, Becker JA, Whittington RJ. Molecular epidemiology of Epizootic haematopoietic necrosis virus (EHNV). Virology 2017; 511:320-329. [PMID: 28818331 DOI: 10.1016/j.virol.2017.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
Abstract
Low genetic diversity of Epizootic haematopoietic necrosis virus (EHNV) was determined for the complete genome of 16 isolates spanning the natural range of hosts, geography and time since the first outbreaks of disease. Genomes ranged from 125,591-127,487 nucleotides with 97.47% pairwise identity and 106-109 genes. All isolates shared 101 core genes with 121 potential genes predicted within the pan-genome of this collection. There was high conservation within 90,181 nucleotides of the core genes with isolates separated by average genetic distance of 3.43 × 10-4 substitutions per site. Evolutionary analysis of the core genome strongly supported historical epidemiological evidence of iatrogenic spread of EHNV to naïve hosts and establishment of endemic status in discrete ecological niches. There was no evidence of structural genome reorganization, however, the complement of non-core genes and variation in repeat elements enabled fine scale molecular epidemiological investigation of this unpredictable pathogen of fish.
Collapse
Affiliation(s)
- Paul M Hick
- OIE Reference Laboratory for Epizootic Haematopoietic Necrosis Virus and Ranavirus Infection of Amphibians, Sydney School of Veterinary Science and School of Life and Environmental Sciences, The University Sydney, Werombi Road, Camden 2570, NSW, Australia.
| | - Kuttichantran Subramaniam
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Patrick M Thompson
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Thomas B Waltzek
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Joy A Becker
- OIE Reference Laboratory for Epizootic Haematopoietic Necrosis Virus and Ranavirus Infection of Amphibians, Sydney School of Veterinary Science and School of Life and Environmental Sciences, The University Sydney, Werombi Road, Camden 2570, NSW, Australia
| | - Richard J Whittington
- OIE Reference Laboratory for Epizootic Haematopoietic Necrosis Virus and Ranavirus Infection of Amphibians, Sydney School of Veterinary Science and School of Life and Environmental Sciences, The University Sydney, Werombi Road, Camden 2570, NSW, Australia
| |
Collapse
|
11
|
Forzán MJ, Jones KM, Ariel E, Whittington RJ, Wood J, Markham RJF, Daoust PY. Pathogenesis of Frog Virus 3 (Ranavirus, Iridoviridae) Infection in Wood Frogs (Rana sylvatica). Vet Pathol 2017; 54:531-548. [DOI: 10.1177/0300985816684929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wood frogs ( Rana sylvatica) are highly susceptible to infection with Frog virus 3 (FV3, Ranavirus, Iridoviridae), a cause of mass mortality in wild populations. To elucidate the pathogenesis of FV3 infection in wood frogs, 40 wild-caught adults were acclimated to captivity, inoculated orally with a fatal dose of 104.43 pfu/frog, and euthanized at 0.25, 0.5, 1, 2, 4, 9, and 14 days postinfection (dpi). Mild lesions occurred sporadically in the skin (petechiae) and bone marrow (necrosis) during the first 2 dpi. Severe lesions occurred 1 to 2 weeks postinfection and consisted of necrosis of medullary and extramedullary hematopoietic tissue, lymphoid tissue in spleen and throughout the body, and epithelium of skin, mucosae, and renal tubules. Viral DNA was first detected (polymerase chain reaction) in liver at 4 dpi; by dpi 9 and 14, all viscera tested (liver, kidney, and spleen), skin, and feces were positive. Immunohistochemistry (IHC) first detected viral antigen in small areas devoid of histologic lesions in the oral mucosa, lung, and colon at 4 dpi; by 9 and 14 dpi, IHC labeling of viral antigen associated with necrosis was found in multiple tissues. Based on IHC staining intensity and lesion severity, the skin, oral, and gastrointestinal epithelium and renal tubular epithelium were important sites of viral replication and shedding, suggesting that direct contact (skin) and fecal-oral contamination are effective routes of transmission and that skin tissue, oral, and cloacal swabs may be appropriate antemortem diagnostic samples in late stages of disease (>1 week postinfection) but poor samples to detect infection in clinically healthy frogs.
Collapse
Affiliation(s)
- M. J. Forzán
- Canadian Wildlife Health Cooperative, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - K. M. Jones
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - E. Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - R. J. Whittington
- School of Life and Environmental Sciences, Faculty of Veterinary Science, University of Sydney, Camden, New South Wales, Australia
| | - J. Wood
- Pisces Molecular LLC, Boulder, CO, USA
| | - R. J. Frederick Markham
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - P.-Y. Daoust
- Canadian Wildlife Health Cooperative, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
12
|
Genomic Sequencing of Ranaviruses Isolated from Turbot (Scophthalmus maximus) and Atlantic Cod (Gadus morhua). GENOME ANNOUNCEMENTS 2016; 4:4/6/e01393-16. [PMID: 27979944 PMCID: PMC5159577 DOI: 10.1128/genomea.01393-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ranaviruses have been isolated from Atlantic cod (Gadus morhua) and turbot (Scophthalmus maximus) in Denmark. Phylogenomic analyses revealed that these two ranaviruses are nearly identical and form a distinct clade at the base of the ranavirus tree branching off near other fish ranaviruses.
Collapse
|
13
|
Faulks LK, Östman Ö. Adaptive major histocompatibility complex (MHC) and neutral genetic variation in two native Baltic Sea fishes (perch Perca fluviatilis and zander Sander lucioperca) with comparisons to an introduced and disease susceptible population in Australia (P. fluviatilis): assessing the risk of disease epidemics. JOURNAL OF FISH BIOLOGY 2016; 88:1564-1583. [PMID: 26940068 DOI: 10.1111/jfb.12930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
This study assessed the major histocompatibility complex (MHC) and neutral genetic variation and structure in two percid species, perch Perca fluviatilis and zander Sander lucioperca, in a unique brackish ecosystem, the Baltic Sea. In addition, to assess the importance of MHC diversity to disease susceptibility in these populations, comparisons were made to an introduced, disease susceptible, P. fluviatilis population in Australia. Eighty-three MHC class II B exon 2 variants were amplified: 71 variants from 92 P. fluviatilis samples, and 12 variants from 82 S. lucioperca samples. Microsatellite and MHC data revealed strong spatial genetic structure in S. lucioperca, but not P. fluviatilis, across the Baltic Sea. Both microsatellite and MHC data showed higher levels of genetic diversity in P. fluviatilis from the Baltic Sea compared to Australia, which may have facilitated the spread of an endemic virus, EHNV in the Australian population. The relatively high levels of genetic variation in the Baltic Sea populations, together with spatial genetic structure, however, suggest that there currently seems to be little risk of disease epidemics in this system. To ensure this remains the case in the face of ongoing environmental changes, fisheries and habitat disturbance, the conservation of local-scale genetic variation is recommended.
Collapse
Affiliation(s)
- L K Faulks
- Department of Ecology and Genetics - Animal Ecology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Ö Östman
- Department of Aquatic Resources - Institute of Coastal Research, Swedish University of Agricultural Sciences, Skolvägen 6, 74242, Öregrund, Sweden
| |
Collapse
|
14
|
Use of cell lines and primary cultures to explore the capacity of rainbow trout to be a host for frog virus 3 (FV3). In Vitro Cell Dev Biol Anim 2015; 51:894-904. [PMID: 25948044 DOI: 10.1007/s11626-015-9911-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/03/2015] [Indexed: 12/11/2022]
Abstract
The capacity of rainbow trout, Oncorhynchus mykiss, to be a host for frog virus 3 (FV3) was evaluated at the cellular level. Cell cultures from this species were tested for their ability to express FV3 major capsid protein (MCP) gene, to develop cytopathic effect (CPE), and to produce FV3. After FV3 addition, MCP transcripts were detected in six of six cell lines and in primary macrophage cultures. CPE developed in all cell culture systems, except primary lymphocytes. For the macrophage cell line, RTS11, and primary macrophages, cell death was by apoptosis because DNA laddering and Annexin staining were detected. By contrast, markers of apoptosis did not accompany CPE in three epithelial cell lines from the gill (RTgill-W1), intestine (RTgut-GC), and liver (RTL-W1) and in two fibroblast cell lines from gonads (RTG-2) and skin (RTHDF). Therefore, FV3 was able to enter and begin replicating in several cell types. Yet, FV3 was produced in only two cell lines, RTG-2 and RTL-W1, and only modestly. Overall, these results suggest that if tissue accessibility were possible, FV3 would have the capacity to induce injury, but the ability to replicate would be limited, likely making rainbow trout a poor host for FV3.
Collapse
|
15
|
Forzán MJ, Jones KM, Vanderstichel RV, Wood J, Kibenge FSB, Kuiken T, Wirth W, Ariel E, Daoust PY. Clinical signs, pathology and dose-dependent survival of adult wood frogs, Rana sylvatica, inoculated orally with frog virus 3 Ranavirus sp., Iridoviridae. J Gen Virol 2015; 96:1138-1149. [DOI: 10.1099/vir.0.000043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/08/2015] [Indexed: 11/18/2022] Open
Affiliation(s)
- María J. Forzán
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Canada
- Canadian Wildlife Health Cooperative
| | - Kathleen M. Jones
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Canada
| | - Raphaël V. Vanderstichel
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Canada
| | - John Wood
- Pisces Molecular LLC, Boulder, Colorado, USA
| | - Frederick S. B. Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Canada
| | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Wytamma Wirth
- School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Australia
| | - Ellen Ariel
- School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Australia
| | - Pierre-Yves Daoust
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Canada
- Canadian Wildlife Health Cooperative
| |
Collapse
|
16
|
Weinheimer I, Jiu Y, Rajamäki ML, Matilainen O, Kallijärvi J, Cuellar WJ, Lu R, Saarma M, Holmberg CI, Jäntti J, Valkonen JPT. Suppression of RNAi by dsRNA-degrading RNaseIII enzymes of viruses in animals and plants. PLoS Pathog 2015; 11:e1004711. [PMID: 25747942 PMCID: PMC4352025 DOI: 10.1371/journal.ppat.1004711] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/28/2015] [Indexed: 01/08/2023] Open
Abstract
Certain RNA and DNA viruses that infect plants, insects, fish or poikilothermic animals encode Class 1 RNaseIII endoribonuclease-like proteins. dsRNA-specific endoribonuclease activity of the RNaseIII of rock bream iridovirus infecting fish and Sweet potato chlorotic stunt crinivirus (SPCSV) infecting plants has been shown. Suppression of the host antiviral RNA interference (RNAi) pathway has been documented with the RNaseIII of SPCSV and Heliothis virescens ascovirus infecting insects. Suppression of RNAi by the viral RNaseIIIs in non-host organisms of different kingdoms is not known. Here we expressed PPR3, the RNaseIII of Pike-perch iridovirus, in the non-hosts Nicotiana benthamiana (plant) and Caenorhabditis elegans (nematode) and found that it cleaves double-stranded small interfering RNA (ds-siRNA) molecules that are pivotal in the host RNA interference (RNAi) pathway and thereby suppresses RNAi in non-host tissues. In N. benthamiana, PPR3 enhanced accumulation of Tobacco rattle tobravirus RNA1 replicon lacking the 16K RNAi suppressor. Furthermore, PPR3 suppressed single-stranded RNA (ssRNA)--mediated RNAi and rescued replication of Flock House virus RNA1 replicon lacking the B2 RNAi suppressor in C. elegans. Suppression of RNAi was debilitated with the catalytically compromised mutant PPR3-Ala. However, the RNaseIII (CSR3) produced by SPCSV, which cleaves ds-siRNA and counteracts antiviral RNAi in plants, failed to suppress ssRNA-mediated RNAi in C. elegans. In leaves of N. benthamiana, PPR3 suppressed RNAi induced by ssRNA and dsRNA and reversed silencing; CSR3, however, suppressed only RNAi induced by ssRNA and was unable to reverse silencing. Neither PPR3 nor CSR3 suppressed antisense-mediated RNAi in Drosophila melanogaster. These results show that the RNaseIII enzymes of RNA and DNA viruses suppress RNAi, which requires catalytic activities of RNaseIII. In contrast to other viral silencing suppression proteins, the RNaseIII enzymes are homologous in unrelated RNA and DNA viruses and can be detected in viral genomes using gene modeling and protein structure prediction programs.
Collapse
Affiliation(s)
- Isabel Weinheimer
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Yaming Jiu
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Olli Matilainen
- Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Jukka Kallijärvi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Wilmer J. Cuellar
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Rui Lu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Carina I. Holmberg
- Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Jussi Jäntti
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Jari P. T. Valkonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Stöhr AC, López-Bueno A, Blahak S, Caeiro MF, Rosa GM, Alves de Matos AP, Martel A, Alejo A, Marschang RE. Phylogeny and differentiation of reptilian and amphibian ranaviruses detected in Europe. PLoS One 2015; 10:e0118633. [PMID: 25706285 PMCID: PMC4338083 DOI: 10.1371/journal.pone.0118633] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/21/2015] [Indexed: 11/23/2022] Open
Abstract
Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6–100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of ranaviruses and the emergence of pathogen pollution via animal trade of ectothermic vertebrates.
Collapse
Affiliation(s)
- Anke C. Stöhr
- Fachgebiet für Umwelt- und Tierhygiene, Universität Hohenheim, Stuttgart, Germany
| | - Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Silvia Blahak
- Chemisches und Veterinäruntersuchungsamt Ostwestfalen Lippe (CVUA-OWL), Detmold, Germany
| | - Maria F. Caeiro
- Centro de Estudos do Ambiente e do Mar (CESAM) Lisboa, Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Gonçalo M. Rosa
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - António Pedro Alves de Matos
- Centro de Estudos do Ambiente e do Mar (CESAM) Lisboa, Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, Portugal
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Alí Alejo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Spain
| | - Rachel E. Marschang
- Fachgebiet für Umwelt- und Tierhygiene, Universität Hohenheim, Stuttgart, Germany
- Laboklin GmbH & Co. KG, Laboratory for Clinical Diagnostics, Bad Kissingen, Germany
- * E-mail:
| |
Collapse
|
18
|
Waltzek TB, Miller DL, Gray MJ, Drecktrah B, Briggler JT, MacConnell B, Hudson C, Hopper L, Friary J, Yun SC, Malm KV, Weber ES, Hedrick RP. New disease records for hatchery-reared sturgeon. I. Expansion of frog virus 3 host range into Scaphirhynchus albus. DISEASES OF AQUATIC ORGANISMS 2014; 111:219-227. [PMID: 25320034 DOI: 10.3354/dao02761] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In 2009, juvenile pallid sturgeon Scaphirhynchus albus, reared at the Blind Pony State Fish Hatchery (Missouri, USA) to replenish dwindling wild stocks, experienced mass mortality. Histological examination revealed extensive necrosis of the haematopoietic tissues, and a virus was isolated from affected organs in cell culture and then observed by electron microscopy. Experimental infection studies revealed that the virus is highly pathogenic to juvenile pallid sturgeon, one of several species of sturgeon currently listed as Endangered. The DNA sequence of the full length major capsid protein gene of the virus was identical to that of the species Frog virus 3 (FV3), the type species for the genus Ranavirus, originally isolated from northern leopard frog Lithobates pipiens. Although FV3 infections and epizootics in amphibians and reptiles are well documented, there is only 1 prior report of a natural infection of FV3 in fish. Our results illustrate the broad potential host range for FV3, with the known potential to cause significant mortality in poikilothermic vertebrates across 3 taxonomic classes including bony fishes, anuran and caudate amphibians, and squamate and testudine reptiles.
Collapse
Affiliation(s)
- Thomas B Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Stöhr AC, Hoffmann A, Papp T, Robert N, Pruvost NBM, Reyer HU, Marschang RE. Long-term study of an infection with ranaviruses in a group of edible frogs (Pelophylax kl. esculentus) and partial characterization of two viruses based on four genomic regions. Vet J 2013; 197:238-44. [PMID: 23535222 DOI: 10.1016/j.tvjl.2013.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/18/2013] [Accepted: 02/15/2013] [Indexed: 11/26/2022]
Abstract
Several edible frogs (Pelophylax kl. esculentus) collected into a single group from various ponds in Europe died suddenly with reddening of the skin (legs, abdomen) and haemorrhages in the gastrointestinal tract. Ranavirus was detected in some of the dead frogs using PCR, and virus was also isolated in cell culture. Over the following 3 years, another two outbreaks occurred with low to high mortality in between asymptomatic periods. In the first 2 years, the same ranavirus was detected repeatedly, but a new ranavirus was isolated in association with the second mass-mortality event. The two different ranaviruses were characterized based on nucleotide sequences from four genomic regions, namely, major capsid protein, DNA polymerase, ribonucleoside diphosphate reductase alpha and beta subunit genes. The sequences showed slight variations to each other or GenBank entries and both clustered to the Rana esculenta virus (REV-like) clade in the phylogenetic analysis. Furthermore, a quiescent infection was demonstrated in two individuals. By comparing samples taken before and after transport and caging in groups it was possible to identify the pond of origin and a ranavirus was detected for the first time in wild amphibians in Germany.
Collapse
Affiliation(s)
- Anke C Stöhr
- Fachgebiet für Umwelt- und Tierhygiene, Universität Hohenheim, Garbenstr. 30, D-70599 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Viral diseases are an increasing threat to the thriving aquaculture industry worldwide. An emerging group of fish pathogens is formed by several ranaviruses, which have been isolated at different locations from freshwater and seawater fish species since 1985. We report the complete genome sequence of European sheatfish ranavirus (ESV), the first ranavirus isolated in Europe, which causes high mortality rates in infected sheatfish (Silurus glanis) and in other species. Analysis of the genome sequence shows that ESV belongs to the amphibian-like ranaviruses and is closely related to the epizootic hematopoietic necrosis virus (EHNV), a disease agent geographically confined to the Australian continent and notifiable to the World Organization for Animal Health.
Collapse
|
21
|
Holopainen R, Tapiovaara H, Honkanen J. Expression analysis of immune response genes in fish epithelial cells following ranavirus infection. FISH & SHELLFISH IMMUNOLOGY 2012; 32:1095-1105. [PMID: 22452879 DOI: 10.1016/j.fsi.2012.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/24/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
Ranaviruses (family Iridoviridae) are a growing threat to fish and amphibian populations worldwide. The immune response to ranavirus infection has been studied in amphibians, but little is known about the responses elicited in piscine hosts. In this study, the immune response and apoptosis induced by ranaviruses were investigated in fish epithelial cells. Epithelioma papulosum cyprini (EPC) cells were infected with four different viral isolates: epizootic haematopoietic necrosis virus (EHNV), frog virus 3 (FV3), European catfish virus (ECV) and doctor fish virus (DFV). Quantitative real-time PCR (qPCR) assays were developed to measure the mRNA expression of immune response genes during ranavirus infection. The target genes included tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), β2-microglobulin (β2M), interleukin-10 (IL-10) and transforming growth factor β (TGF-β). All ranaviruses elicited changes in immune gene expression. EHNV and FV3 caused a strong pro-inflammatory response with an increase in the expression of both IL-1β and TNF-α, whereas ECV and DFV evoked transient up-regulation of regulatory cytokine TGF-β. Additionally, all viral isolates induced increased β2M expression as well as apoptosis in the EPC cells. Our results indicate that epithelial cells can serve as an in vitro model for studying the mechanisms of immune response in the piscine host in the first stages of ranavirus infection.
Collapse
Affiliation(s)
- Riikka Holopainen
- Finnish Food Safety Authority Evira, Veterinary Virology Research Unit, Helsinki, Finland.
| | | | | |
Collapse
|
22
|
The genome sequence of the emerging common midwife toad virus identifies an evolutionary intermediate within ranaviruses. J Virol 2012; 86:3617-25. [PMID: 22301140 DOI: 10.1128/jvi.07108-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Worldwide amphibian population declines have been ascribed to global warming, increasing pollution levels, and other factors directly related to human activities. These factors may additionally be favoring the emergence of novel pathogens. In this report, we have determined the complete genome sequence of the emerging common midwife toad ranavirus (CMTV), which has caused fatal disease in several amphibian species across Europe. Phylogenetic and gene content analyses of the first complete genomic sequence from a ranavirus isolated in Europe show that CMTV is an amphibian-like ranavirus (ALRV). However, the CMTV genome structure is novel and represents an intermediate evolutionary stage between the two previously described ALRV groups. We find that CMTV clusters with several other ranaviruses isolated from different hosts and locations which might also be included in this novel ranavirus group. This work sheds light on the phylogenetic relationships within this complex group of emerging, disease-causing viruses.
Collapse
|
23
|
Marcos-Lopez M, Waltzek TB, Hedrick RP, Baxa DV, Garber AF, Liston R, Johnsen E, Forward BS, Backman S, Ferguson HW. Characterization of a novel alloherpesvirus from Atlantic cod (Gadus morhua). J Vet Diagn Invest 2011; 24:65-73. [PMID: 22362936 DOI: 10.1177/1040638711416629] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alloherpesviruses affect freshwater and marine fish species. The aim of the current study was to characterize a novel alloherpesvirus in Atlantic cod (Gadus morhua). Samples were processed for histopathology, transmission electron microscopy (TEM), virus isolation, molecular characterization, and in situ hybridization (ISH). Histopathology revealed that the infection was restricted to the gills and that it induced cytomegaly in infected cells. By TEM, numerous viral particles with morphology compatible with a herpesvirus were observed inside the cytomegalic cells. To characterize this new agent, polymerase chain reaction amplified regions of the ATPase subunit of the terminase, and DNA polymerase genes were sequenced. Phylogenetic analysis revealed strongest similarity with alloherpesviruses belonging to the genus Ictalurivirus and Salmonivirus. The ISH showed specific labeling of nuclear inclusions in the cytomegalic cells. While virus isolation was unsuccessful, the results obtained through different diagnostic tests in the present study confirm the discovery of a new alloherpesvirus affecting Atlantic cod. The authors propose the formal species designation Gadid herpesvirus 1 (GaHV-1) to be considered for approval by the International Committee on the Taxonomy of Viruses.
Collapse
Affiliation(s)
- Mar Marcos-Lopez
- Institute of Aquaculture, University of Stirling, Scotland, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The etiology of reptilian viral diseases can be attributed to a wide range of viruses occurring across different genera and families. Thirty to forty years ago, studies of viruses in reptiles focused mainly on the zoonotic potential of arboviruses in reptiles and much effort went into surveys and challenge trials of a range of reptiles with eastern and western equine encephalitis as well as Japanese encephalitis viruses. In the past decade, outbreaks of infection with West Nile virus in human populations and in farmed alligators in the USA has seen the research emphasis placed on the issue of reptiles, particularly crocodiles and alligators, being susceptible to, and reservoirs for, this serious zoonotic disease. Although there are many recognised reptilian viruses, the evidence for those being primary pathogens is relatively limited. Transmission studies establishing pathogenicity and cofactors are likewise scarce, possibly due to the relatively low commercial importance of reptiles, difficulties with the availability of animals and permits for statistically sound experiments, difficulties with housing of reptiles in an experimental setting or the inability to propagate some viruses in cell culture to sufficient titres for transmission studies. Viruses as causes of direct loss of threatened species, such as the chelonid fibropapilloma associated herpesvirus and ranaviruses in farmed and wild tortoises and turtles, have re-focused attention back to the characterisation of the viruses as well as diagnosis and pathogenesis in the host itself. 1. Introduction 2. Methods for working with reptilian viruses 3. Reptilian viruses described by virus families 3.1. Herpesviridae 3.2. Iridoviridae 3.2.1 Ranavirus 3.2.2 Erythrocytic virus 3.2.3 Iridovirus 3.3. Poxviridae 3.4. Adenoviridae 3.5. Papillomaviridae 3.6. Parvoviridae 3.7. Reoviridae 3.8. Retroviridae and inclusion body disease of Boid snakes 3.9. Arboviruses 3.9.1. Flaviviridae 3.9.2. Togaviridae 3.10. Caliciviridae 3.11. Picornaviridae 3.12. Paramyxoviridae 4. Summary 5. Acknowledgements 6. Competing interests 7. References
Collapse
Affiliation(s)
- Ellen Ariel
- Microbiology and Immunology, School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4810, Australia.
| |
Collapse
|