1
|
Goraichuk IV, Davis JF, Afonso CL, Suarez DL. Sequencing of historic samples provides complete coding sequences of chicken calicivirus from the United States. Microbiol Resour Announc 2024; 13:e0077724. [PMID: 39264163 PMCID: PMC11465789 DOI: 10.1128/mra.00777-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Here, we report the coding-complete genomic sequences of two chicken caliciviruses from US poultry flocks in 2003 and 2004. They show the same genomic organization as that of other members of the Bavovirus genus and have the highest nucleotide identity (~88%) with strains from clinically normal chickens from Germany in 2004 and Netherlands in 2019.
Collapse
Affiliation(s)
- Iryna V. Goraichuk
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA
| | - James F. Davis
- Georgia Poultry Laboratory Network, Gainesville, Georgia, USA
| | - Claudio L. Afonso
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA
| | - David L. Suarez
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA
| |
Collapse
|
2
|
Grimwood RM, Reyes EMR, Cooper J, Welch J, Taylor G, Makan T, Lim L, Dubrulle J, McInnes K, Holmes EC, Geoghegan JL. From islands to infectomes: host-specific viral diversity among birds across remote islands. BMC Ecol Evol 2024; 24:84. [PMID: 38926829 PMCID: PMC11209962 DOI: 10.1186/s12862-024-02277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Accelerating biodiversity loss necessitates monitoring the potential pathogens of vulnerable species. With a third of New Zealand's avifauna considered at risk of extinction, a greater understanding of the factors that influence microbial transmission in this island ecosystem is needed. We used metatranscriptomics to determine the viruses, as well as other microbial organisms (i.e. the infectomes), of seven bird species, including the once critically endangered black robin (Petroica traversi), on two islands in the remote Chatham Islands archipelago, New Zealand. RESULTS We identified 19 likely novel avian viruses across nine viral families. Black robins harboured viruses from the Flaviviridae, Herpesviridae, and Picornaviridae, while introduced starlings (Sturnus vulgaris) and migratory seabirds (Procellariiformes) carried viruses from six additional viral families. Potential cross-species virus transmission of a novel passerivirus (family: Picornaviridae) between native (black robins and grey-backed storm petrels) and introduced (starlings) birds was also observed. Additionally, we identified bacterial genera, apicomplexan parasites, as well as a novel megrivirus linked to disease outbreaks in other native New Zealand birds. Notably, island effects were outweighed by host taxonomy as a significant driver of viral composition, even among sedentary birds. CONCLUSIONS These findings underscore the value of surveillance of avian populations to identify and minimise escalating threats of disease emergence and spread in these island ecosystems. Importantly, they contribute to our understanding of the potential role of introduced and migratory birds in the transmission of microbes and associated diseases, which could impact vulnerable island-endemic species.
Collapse
Affiliation(s)
- Rebecca M Grimwood
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Enzo M R Reyes
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Jamie Cooper
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Jemma Welch
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Graeme Taylor
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Troy Makan
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Lauren Lim
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jérémy Dubrulle
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Kate McInnes
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand.
- Institute of Environmental Science and Research, Wellington, 5018, New Zealand.
| |
Collapse
|
3
|
Jilani MG, Hoque M, Ali S. Microsatellite diversity and complexity in the viral genomes of the family Caliciviridae. J Genet Eng Biotechnol 2023; 21:140. [PMID: 37999808 PMCID: PMC10673786 DOI: 10.1186/s43141-023-00582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Microsatellites or simple sequence repeats (SSR) consist of 1-6 nucleotide motifs of DNA or RNA which are ubiquitously present in tandem repeated sequences across genome in viruses: prokaryotes and eukaryotes. They may be localized to both the coding and non-coding regions. SSRs play an important role in replication, gene regulation, transcription, and protein function. The Caliciviridae (CLV) family of viruses have ss-RNA, non-enveloped, icosahedral symmetry 27-35 nm in diameter in size. The size of the genome lies between 6.4 and 8.6 kb. RESULTS The incidence, composition, diversity, complexity, and host range of different microsatellites in 62 representatives of the family of Caliciviridae were systematically analyzed. The full-length genome sequences were assessed from NCBI ( https://www.ncbi.nlm.nih.gov ), and microsatellites were extracted through MISA software. The average genome size is about 7538 bp ranging from 6273 (CLV61) to 8798 (CLV47) bp. The average GC content of the genomes was ~ 51%. There are a total of 1317 SSRs and 53 cSSRs in the studied genomes. CLV 41 and CLV 49 contain the highest and lowest value of SSRs with 32 and 10 respectively, while CLV16 had maximum cSSR incidence of 4. There were 29 species which do not contain any cSSR. The incidence of mono-, di-, and tri-nucleotide SSRs was 219, 884, and 206, respectively. The most prevalent mono-, di-, and tri-nucleotide repeat motifs were "C" (126 SSRs), AC/CA (240 SSRs), and TGA/ACT (23 SSRs), respectively. Most of the SSRs and cSSRs are biased toward the coding region with a minimum of ~ 90% incident SSRs in the genomes' coding region. Viruses with similar host are found close to each other on the phylogenetic tree suggesting virus host being one of the driving forces for their evolution. CONCLUSIONS The Caliciviridae genomes does not conform to any pattern of SSR signature in terms of incidence, composition, and localization. This unique property of SSR plays an important role in viral evolution. Clustering of similar host in the phylogenetic tree is the evidence of the uniqueness of SSR signature.
Collapse
Affiliation(s)
- Md Gulam Jilani
- Department of Biological Sciences, Clinical and Applied Genomics (CAG) Laboratory, Aliah University, IIA/27, Newtown, Kolkata, 700160, India
| | - Mehboob Hoque
- Department of Biological Sciences, Applied Bio-Chemistry (ABC) Lab, Aliah University, Kolkata, India
| | - Safdar Ali
- Department of Biological Sciences, Clinical and Applied Genomics (CAG) Laboratory, Aliah University, IIA/27, Newtown, Kolkata, 700160, India.
| |
Collapse
|
4
|
Porcine sapovirus-induced RIPK1-dependent necroptosis is proviral in LLC-PK cells. PLoS One 2023; 18:e0279843. [PMID: 36735696 PMCID: PMC9897573 DOI: 10.1371/journal.pone.0279843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/15/2022] [Indexed: 02/04/2023] Open
Abstract
Sapoviruses belonging to the genus Sapovirus within the family Caliciviridae are commonly responsible for severe acute gastroenteritis in both humans and animals. Caliciviruses are known to induce intrinsic apoptosis in vitro and in vivo, however, calicivirus-induced necroptosis remains to be fully elucidated. Here, we demonstrate that infection of porcine kidney LLC-PK cells with porcine sapovirus (PSaV) Cowden strain as a representative of caliciviruses induces receptor-interacting protein kinase 1 (RIPK1)-dependent necroptosis and acts as proviral compared to the antiviral function of PSaV-induced apoptosis. Infection of LLC-PK cells with PSaV Cowden strain showed that the interaction of phosphorylated RIPK1 (pRIPK1) with RIPK3 (pRIPK3), mixed lineage kinase domain-like protein (pMLKL) increased in a time-dependent manner, indicating induction of PSaV-induced RIPK1-dependent necroptosis. Interfering of PSaV-infected cells with each necroptotic molecule (RIPK1, RIPK3, or MLKL) by treatment with each specific chemical inhibitor or knockdown with each specific siRNA significantly reduced replication of PSaV but increased apoptosis and cell viability, implying proviral action of PSaV-induced necroptosis. In contrast, treatment of PSaV-infected cells with pan-caspase inhibitor Z-VAD-FMK increased PSaV replication and necroptosis, indicating an antiviral action of PSaV-induced apoptosis. These results suggest that PSaV-induced RIPK1-dependent necroptosis and apoptosis‒which have proviral and antiviral effects, respectively‒counterbalanced each other in virus-infected cells. Our study contributes to understanding the nature of PSaV-induced necroptosis and apoptosis and will aid in developing efficient and affordable therapies against PSaV and other calicivirus infections.
Collapse
|
5
|
Characterization of a Novel RNA Virus Causing Massive Mortality in Yellow Catfish, Pelteobagrus fulvidraco, as an Emerging Genus in Caliciviridae ( Picornavirales). Microbiol Spectr 2022; 10:e0062422. [PMID: 35924844 PMCID: PMC9431444 DOI: 10.1128/spectrum.00624-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An emerging disease in farmed yellow catfish (Pelteobagrus fulvidraco) causing massive mortality broke out in 2020 in Hubei, China. Histopathological examination indicated significant changes in kidneys and spleens of diseased fish. Electron microscopy revealed large numbers of viral particles in the kidneys and spleens. These particles were spherical with a diameter of approximately 35 nm. By using RNA sequencing and rapid identification of cDNA ends, the full nucleotide sequence of the virus was identified. The viral genome comprises 7,432 bp and contains three open reading frames sharing no nucleotide sequence similarity with other viruses; however, the amino acid sequence partially matched that of the nonstructural (NS) proteins from viruses in the order Picornavirales. Combined with the phylogenetic analysis, the conserved amino acid motifs and the domains of the viral genome predict a genome order typical of a calicivirus. Therefore, this virus was tentatively named yellow catfish calicivirus (YcCV). Cell culture showed that YcCV could cause a cytopathic effect in the channel catfish kidney cell line (CCK) at early passages. In artificial infection, this virus could infect healthy yellow catfish and led to clinical symptoms similar to those that occurred naturally. In situ hybridization analysis detected positive signals of the virus in kidney, spleen, liver, heart, and gill tissues of diseased fish. This study represents the first report of calicivirus infection in yellow catfish and provides a solid basis for future studies on the control of this viral disease. IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. A novel calicivirus identified from yellow catfish also causes substantial mortality. Using an RNA sequencing (RNA-seq) and rapid amplification of cDNA ends (RACE) method, the full nucleotide sequence was identified and characterized, and this virus was tentatively named yellow catfish calicivirus (YcCV). A nucleotide sequence similarity search found no match with other viruses, and an amino acid sequence comparison indicated approximately 23.3% amino acid homology with the viruses in the order Picornavirales. These findings may represent a new avenue to explain virus evolution and suggest a need to further study the pathogenesis of calicivirus and characterize possible interactions among interspecific viruses in the aquaculture environment.
Collapse
|
6
|
Kubacki J, Qi W, Fraefel C. Differential Viral Genome Diversity of Healthy and RSS-Affected Broiler Flocks. Microorganisms 2022; 10:microorganisms10061092. [PMID: 35744610 PMCID: PMC9231120 DOI: 10.3390/microorganisms10061092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
The intestinal virus community contributes to health and disease. Runting and stunting syndrome (RSS) is associated with enteric viruses and leads to economic losses in the poultry industry. However, many viruses that potentially cause this syndrome have also been identified in healthy animals. To determine the difference in the virome of healthy and diseased broilers, samples from 11 healthy and 17 affected broiler flocks were collected at two time points and analyzed by Next-Generation Sequencing. Virus genomes of Parvoviridae, Astroviridae, Picornaviridae, Caliciviridae, Reoviridae, Adenoviridae, Coronaviridae, and Smacoviridae were identified at various days of poultry production. De novo sequence analysis revealed 288 full or partial avian virus genomes, of which 97 belonged to the novel genus Chaphamaparvovirus. This study expands the knowledge of the diversity of enteric viruses in healthy and RSS-affected broiler flocks and questions the association of some viruses with the diseases.
Collapse
Affiliation(s)
- Jakub Kubacki
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Correspondence:
| | - Weihong Qi
- Functional Genomics Center Zurich, 8057 Zurich, Switzerland;
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
7
|
A novel calicivirus discovered in trumpeter swans (Cygnus buccinator) expands the richness of known avian caliciviruses. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100169. [DOI: 10.1016/j.crmicr.2022.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Chang WS, Rose K, Holmes EC. Meta-transcriptomic analysis of the virome and microbiome of the invasive Indian myna ( Acridotheres tristis) in Australia. One Health 2021; 13:100360. [PMID: 34917744 PMCID: PMC8666354 DOI: 10.1016/j.onehlt.2021.100360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/03/2022] Open
Abstract
Invasive species exert a serious impact on native fauna and flora and have become the target of eradication and management efforts worldwide. Invasive avian species can also be important pathogen reservoirs, although their viromes and microbiomes have rarely been studied. As one of the top 100 invasive pest species globally, the expansion of Indian mynas (Acridotheres tristis) into peri-urban and rural environments, in conjunction with increasing free-ranging avian agricultural practices, may increase the risk of microbial pathogens jumping species boundaries. Herein, we used a meta-transcriptomic approach to explore the microbes present in brain, liver and large intestine of 16 invasive Indian myna birds in Sydney, Australia. From this, we discovered seven novel viruses from the families Adenoviridae, Caliciviridae, Flaviviridae, Parvoviridae and Picornaviridae. Interestingly, each of the novel viruses identified shared less than 80% genomic similarity with their closest relatives from other avian species, indicative of a lack of detectable virus transmission between invasive mynas to native or domestic species. Of note, we also identified two coccidian protozoa, Isospora superbusi and Isospora greineri, from the liver and gut tissues of mynas. Overall, these data demonstrate that invasive mynas can harbor a diversity of viruses and other microorganisms such that ongoing pathogen surveillance in this species is warranted.
Collapse
Affiliation(s)
- Wei-Shan Chang
- School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Karrie Rose
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Edward C Holmes
- School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Mor SK, Kumar R, Sobhy NM, Singh A, Kakrudi N, Marusak RA, Goyal SM, Porter RE. Enteric Viruses Associated with Mid-growth Turkey Enteritis. Avian Dis 2021; 64:471-477. [PMID: 33347553 DOI: 10.1637/0005-2086-64.4.471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/12/2020] [Indexed: 11/05/2022]
Abstract
Since August 2014, the University of Minnesota Veterinary Diagnostic Laboratory has received cases of turkey enteritis that are clinically different from previously described cases of poult enteritis syndrome and light turkey syndrome. The birds develop dark green and extremely foul-smelling diarrhea starting at 8-10 wk of age, which may last up to 15-16 wk of age. The affected turkey flocks show poor uniformity, and feed conversion and market weights are reduced. Multiple-age farms are affected more often than the single-age farms. Morbidity varies from flock to flock and in some cases reaches 100%. At necropsy, undigested feed with increased mucus is observed in the intestines along with prominent mucosal congestion and/or hemorrhage. Microscopically, lymphocytic infiltrates expand the villi in duodenum and jejunum to form lymphoid follicles, which are often accompanied by heterophils. Next generation sequencing (Illumina Miseq) on a pool of feces from affected birds identified genetic sequences of viruses belonging to Astroviridae, Reoviridae, Picornaviridae, Picobirnaviridae, and Adenoviridae. On testing pools of fecal samples from apparently healthy (16 pools) and affected birds (30 pools), there was a higher viral load in the feces of affected birds. Picobirnavirus was detected only in the affected birds; 20 of 30 pools (66.7%) were positive. These results indicate that a high viral load of turkey picobirnavirus alone, or in association with novel picornaviruses, may be a cause of this new type of turkey enteritis.
Collapse
Affiliation(s)
- Sunil K Mor
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Rahul Kumar
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108.,U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University and Cattle Research Institute (DUVASU), Mathura, UP 281001, India
| | - Nader M Sobhy
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Azad Singh
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Nima Kakrudi
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | | | - Sagar M Goyal
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Robert E Porter
- Veterinary Diagnostic Laboratory and Department of Veterinary Population Medicine College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
10
|
Porcine Sapovirus-Induced Tight Junction Dissociation via Activation of RhoA/ROCK/MLC Signaling Pathway. J Virol 2021; 95:JVI.00051-21. [PMID: 33692204 PMCID: PMC8139687 DOI: 10.1128/jvi.00051-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tight junctions (TJs) are a major barrier and also an important portal of entry for different pathogens. Porcine sapovirus (PSaV) induces early disruption of the TJ integrity of polarized LLC-PK cells, allowing it to bind to the buried occludin co-receptors hidden beneath the TJs on the basolateral surface. However, the signaling pathways involved in the PSaV-induced TJ dissociation are not yet known. Here, we found that the RhoA/ROCK/MLC signaling pathway was activated in polarized LLC-PK cells during the early infection of PSaV Cowden strain in the presence of bile acid. Specific inhibitors of RhoA, ROCK, and MLC restored PSaV-induced reduction of transepithelial resistance, increase of paracellular flux, intracellular translocation of occludin, and lateral membrane lipid diffusion. Moreover, each inhibitor significantly reduced PSaV replication, as evidenced by a reduction in viral protein synthesis, genome copy number, and progeny viruses. The PKC/MLCK and RhoA/ROCK/MYPT signaling pathways, known to dissociate TJs, were not activated during early PSaV infection. Among the above signaling pathways, the RhoA/ROCK/MLC signaling pathway was only activated by PSaV in the absence of bile acid, and specific inhibitors of this signaling pathway restored early TJ dissociation. Our findings demonstrate that PSaV binding to cell surface receptors activates the RhoA/ROCK/MLC signaling pathway, which in turn disrupts TJ integrity via the contraction of the actomyosin ring. Our study contributes to understanding how PSaV enters the cells and will aid in developing efficient and affordable therapies against PSaV and other calicivirus infections.IMPORTANCEPorcine sapovirus (PSaV), one of the most important enteric pathogens, is known to disrupt tight junction (TJ) integrity to expose its buried co-receptor occludin in polarized LLC-PK cells. However, the cellular signaling pathways that facilitate TJ dissociation are not yet completely understood. Here, we demonstrate that early infection of PSaV in polarized LLC-PK cells in either the presence or absence of bile acids activates the RhoA/ROCK/MLC signaling pathway, whose inhibitors reverse the early PSaV infection-induced early dissociation of TJs and reduce PSaV replication. However, early PSaV infection did not activate the PKC/MLCK and RhoA/ROCK/MYPT signaling pathways, which are also known to dissociate TJs. This study provides a better understanding of the mechanism involved in early PSaV infection-induced disruption of TJs, which is important for controlling or preventing PSaV and other calicivirus infections.
Collapse
|
11
|
Cuéllar-Cruz M. The histo-blood group antigens of the host cell may determine the binding of different viruses such as SARS-CoV-2. Future Microbiol 2021; 16:107-118. [PMID: 33459559 PMCID: PMC7842250 DOI: 10.2217/fmb-2020-0158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Viruses have caused the death of millions of people worldwide. Specifically, human viruses are grouped into 21 families, including the family of coronaviruses (CoVs). In December 2019, in Wuhan, China, a new human CoV was identified, SARS-CoV-2. The first step of the infection mechanism of the SARS-CoV-2 in the human host is adhesion, which occurs through the S glycoprotein that is found in diverse human organs. Another way through which SARS-CoV-2 could possibly attach to the host's cells is by means of the histo-blood group antigens. In this work, we have reviewed the mechanisms by which some viruses bind to the histo-blood group antigens, which could be related to the susceptibility of the individual and are dependent on the histo-blood group.
Collapse
Affiliation(s)
- Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, México
| |
Collapse
|
12
|
Vinjé J, Estes MK, Esteves P, Green KY, Katayama K, Knowles NJ, L'Homme Y, Martella V, Vennema H, White PA, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Caliciviridae. J Gen Virol 2020; 100:1469-1470. [PMID: 31573467 PMCID: PMC7011698 DOI: 10.1099/jgv.0.001332] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The family Caliciviridae includes viruses with single-stranded, positive-sense RNA genomes of 7.4–8.3 kb. The most clinically important representatives are human noroviruses, which are a leading cause of acute gastroenteritis in humans. Virions are non-enveloped with icosahedral symmetry. Members of seven genera infect mammals (Lagovirus, Norovirus, Nebovirus, Recovirus, Sapovirus, Valovirus and Vesivirus), members of two genera infect birds (Bavovirus and Nacovirus), and members of two genera infect fish (Minovirus and Salovirus). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caliciviridae, which is available at ictv.global/report/caliciviridae.
Collapse
Affiliation(s)
- Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Pedro Esteves
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Kim Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kazuhiko Katayama
- Laboratory of Viral infection I, Kitasato Institute for Life Sciences Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | | | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Bari, Italy
| | - Harry Vennema
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
13
|
Lin S, Zhang S, Wang S, Xie K, Jiang D, Xiao S, Chen X, Chen S. Development of an EvaGreen based real-time RT-PCR assay for rapid detection, quantitation and diagnosis of goose calicivirus. Mol Cell Probes 2019; 49:101489. [PMID: 31747564 DOI: 10.1016/j.mcp.2019.101489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/01/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023]
Abstract
An unclassified calicivirus (CV) detected in geese was recently reported and proposed as a new member of the family Caliciviridae. There is limited information about the epidemiology, etiology and detection method of goose-origin CV (GCV) to date. In this study, an EvaGreen based fluorescence quantitative real-time RT-PCR assay was developed and optimized for the detection of GCVs. The assay sensitively detected GCV RNA template with a good linear standard curve. We also demonstrated the specificity and reproducibility of the detection method for GCVs. Thus, the method developed in this study will benefit the investigation of possible sporadic outbreaks of CV infections in geese, as well as epidemiological and etiological studies of GCVs.
Collapse
Affiliation(s)
- Su Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China.
| | - Shizhong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China.
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China.
| | - Kaichun Xie
- Animal Veterinary and Aquatic Product Bureau, Nanping, 353000, China.
| | - Dandan Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China.
| | - Shifeng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China.
| | - Xiuqin Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| |
Collapse
|
14
|
Peñaflor-Téllez Y, Trujillo-Uscanga A, Escobar-Almazán JA, Gutiérrez-Escolano AL. Immune Response Modulation by Caliciviruses. Front Immunol 2019; 10:2334. [PMID: 31632406 PMCID: PMC6779827 DOI: 10.3389/fimmu.2019.02334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Noroviruses and Sapoviruses, classified in the Caliciviridae family, are small positive-stranded RNA viruses, considered nowadays the leading cause of acute gastroenteritis globally in both children and adults. Although most noroviruses have been associated with gastrointestinal disease in humans, almost 50 years after its discovery, there is still a lack of comprehensive evidence regarding its biology and pathogenesis mainly because they can be neither conveniently grown in cultured cells nor propagated in animal models. However, other members of this family such as Feline calicivirus (FCV), Murine norovirus (MNV), Rabbit hemorrhagic disease virus (RHDV), and Porcine sapovirus (PS), from which there are accessible propagation systems, have been useful to study the calicivirus replication strategies. Using cell cultures and animal models, many of the functions of the viral proteins in the viral replication cycles have been well-characterized. Moreover, evidence of the role of viral proteins from different members of the family in the establishment of infection has been generated and the mechanism of their immunopathogenesis begins to be understood. In this review, we discuss different aspects of how caliciviruses are implicated in membrane rearrangements, apoptosis, and evasion of the immune responses, highlighting some of the pathogenic mechanisms triggered by different members of the Caliciviridae family.
Collapse
Affiliation(s)
- Yoatzin Peñaflor-Téllez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| | - Adrian Trujillo-Uscanga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| | - Jesús Alejandro Escobar-Almazán
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN, Mexico City, Mexico
| |
Collapse
|
15
|
Canuti M, Kroyer ANK, Ojkic D, Whitney HG, Robertson GJ, Lang AS. Discovery and Characterization of Novel RNA Viruses in Aquatic North American Wild Birds. Viruses 2019; 11:E768. [PMID: 31438486 PMCID: PMC6784231 DOI: 10.3390/v11090768] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/25/2022] Open
Abstract
Wild birds are recognized viral reservoirs but our understanding about avian viral diversity is limited. We describe here three novel RNA viruses that we identified in oropharyngeal/cloacal swabs collected from wild birds. The complete genome of a novel gull metapneumovirus (GuMPV B29) was determined. Phylogenetic analyses indicated that this virus could represent a novel avian metapneumovirus (AMPV) sub-group, intermediate between AMPV-C and the subgroup of the other AMPVs. This virus was detected in an American herring (1/24, 4.2%) and great black-backed (4/26, 15.4%) gulls. A novel gull coronavirus (GuCoV B29) was detected in great black-backed (3/26, 11.5%) and American herring (2/24, 8.3%) gulls. Phylogenetic analyses of GuCoV B29 suggested that this virus could represent a novel species within the genus Gammacoronavirus, close to other recently identified potential novel avian coronaviral species. One GuMPV-GuCoV co-infection was detected. A novel duck calicivirus (DuCV-2 B6) was identified in mallards (2/5, 40%) and American black ducks (7/26, 26.9%). This virus, of which we identified two different types, was fully sequenced and was genetically closest to other caliciviruses identified in Anatidae, but more distant to other caliciviruses from birds in the genus Anas. These discoveries increase our knowledge about avian virus diversity and host distributions.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, NL A1B 3X9, Canada.
| | - Ashley N K Kroyer
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, NL A1B 3X9, Canada
| | - Davor Ojkic
- Animal Health Laboratory, Laboratory Services Division, University of Guelph, 419 Gordon St., Guelph, ON N1H 6R8, Canada
| | - Hugh G Whitney
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, NL A1B 3X9, Canada
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, 6 Bruce Street, Mount Pearl, NL A1N 4T3, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
16
|
de Souza WM, Fumagalli MJ, de Araujo J, Ometto T, Modha S, Thomazelli LM, Durigon EL, Murcia PR, Figueiredo LTM. Discovery of novel astrovirus and calicivirus identified in ruddy turnstones in Brazil. Sci Rep 2019; 9:5556. [PMID: 30944402 PMCID: PMC6447618 DOI: 10.1038/s41598-019-42110-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023] Open
Abstract
Birds are the natural reservoir of viruses with zoonotic potential, as well as contributing to the evolution, emergence, and dissemination of novel viruses. In this study, we applied a high-throughput screening approach to identify the diversity of viruses in 118 samples of birds captured between October 2006 to October 2010 in the North and Northeast regions of Brazil. We found nearly complete genomes of novel species of astrovirus and calicivirus in cloacal swabs of ruddy turnstones (Arenaria interpres) collected in Coroa do Avião islet, Pernambuco State. These viruses are positive-sense single-stranded RNA with a genome of ~7 to 8 kb, and were designated as Ruddy turnstone astrovirus (RtAstV) and Ruddy turnstone calicivirus (RTCV), respectively. Phylogenetic analysis showed that RtAstV and RTCV grouped in a monophyletic clade with viruses identified from poultry samples (i.e., chicken, goose, and turkey), including viruses associated with acute nephritis in chickens. Attempts of viral propagation in monkey and chicken cell lines for both viruses were unsuccessful. Also, we found genomes related with viral families that infect invertebrates and plants, suggesting that they might be ingested in the birds' diet. In sum, these findings shed new light on the diversity of viruses in migratory birds with the notable characterization of a novel astrovirus and calicivirus.
Collapse
Affiliation(s)
- William Marciel de Souza
- Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil.
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, United Kingdom.
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, 13083-862, Campinas, São Paulo, Brazil.
| | - Marcílio Jorge Fumagalli
- Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Jansen de Araujo
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Tatiana Ometto
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, United Kingdom
| | | | - Edison Luís Durigon
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Pablo Ramiro Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, United Kingdom
| | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| |
Collapse
|
17
|
Early Porcine Sapovirus Infection Disrupts Tight Junctions and Uses Occludin as a Coreceptor. J Virol 2019; 93:JVI.01773-18. [PMID: 30463963 PMCID: PMC6364031 DOI: 10.1128/jvi.01773-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022] Open
Abstract
The genus Sapovirus belongs to the family Caliciviridae, and its members are common causative agents of severe acute gastroenteritis in both humans and animals. Some caliciviruses are known to use either terminal sialic acids or histo-blood group antigens as attachment factors and/or cell surface proteins, such as CD300lf, CD300ld, and junctional adhesion molecule 1 of tight junctions (TJs), as receptors. However, the roles of TJs and their proteins in sapovirus entry have not been examined. In this study, we found that porcine sapovirus (PSaV) significantly decreased transepithelial electrical resistance and increased paracellular permeability early in infection of LLC-PK cells, suggesting that PSaV dissociates TJs of cells. This led to the interaction between PSaV particles and occludin, which traveled in a complex into late endosomes via Rab5- and Rab7-dependent trafficking. Inhibition of occludin using small interfering RNA (siRNA), a specific antibody, or a dominant-negative mutant significantly blocked the entry of PSaV. Transient expression of occludin in nonpermissive Chinese hamster ovary (CHO) cells conferred susceptibility to PSaV, but only for a limited time. Although claudin-1, another TJ protein, neither directly interacted nor was internalized with PSaV particles, it facilitated PSaV entry and replication in the LLC-PK cells. We conclude that PSaV particles enter LLC-PK cells by binding to occludin as a coreceptor in PSaV-dissociated TJs. PSaV and occludin then form a complex that moves to late endosomes via Rab5- and Rab7-dependent trafficking. In addition, claudin-1 in the TJs opened by PSaV infection facilitates PSaV entry and infection as an entry factor.IMPORTANCE Sapoviruses (SaVs) cause severe acute gastroenteritis in humans and animals. Although they replicate in intestinal epithelial cells, which are tightly sealed by apical-junctional complexes, such as tight junctions (TJs), the mechanisms by which SaVs hijack TJs and their proteins for successful entry and infection remain largely unknown. Here, we demonstrate that porcine SaVs (PSaVs) induce early dissociation of TJs, allowing them to bind to the TJ protein occludin as a functional coreceptor. PSaVs then travel in a complex with occludin into late endosomes through Rab5- and Rab7-dependent trafficking. Claudin-1, another TJ protein, does not directly interact with PSaV but facilitates the entry of PSaV into cells as an entry factor. This work contributes to our understanding of the entry of SaV and other caliciviruses into cells and may aid in the development of efficient and affordable drugs to treat SaV infections.
Collapse
|
18
|
Barrera-Vázquez OS, Cancio-Lonches C, Hernández-González O, Chávez-Munguia B, Villegas-Sepúlveda N, Gutiérrez-Escolano AL. The feline calicivirus leader of the capsid protein causes survivin and XIAP downregulation and apoptosis. Virology 2018; 527:146-158. [PMID: 30529563 DOI: 10.1016/j.virol.2018.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 01/29/2023]
Abstract
Calicivirus infection causes intrinsic apoptosis, leading to viral propagation in the host. During murine norovirus infection, a reduction in the anti-apoptotic protein survivin has been documented. Here we report that in feline calicivirus infection, a downregulation of the anti-apoptotic proteins survivin and XIAP occur, which correlates with the translocation of the pro-apoptotic protein Smac/DIABLO from the mitochondria to the cytoplasm and the activation of caspase-3. Inhibition of survivin degradation by lactacystin treatment caused a delay in apoptosis progression, reducing virus release, without affecting virus production. However, the overexpression of survivin caused a negative effect in viral progeny production. Overexpression of the leader of the capsid protein (LC), but not of the protease-polymerase NS6/7, results in the downregulation of survivin and XIAP, caspase activation and mitochondrial damage. These results indicate that LC is responsible for the induction of apoptosis in transfected cells and most probably in FCV infection.
Collapse
Affiliation(s)
- Oscar Salvador Barrera-Vázquez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico
| | - Clotilde Cancio-Lonches
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico
| | - Olivia Hernández-González
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico
| | - Bibiana Chávez-Munguia
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico
| | - Nicolás Villegas-Sepúlveda
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F CP 07360, Mexico..
| |
Collapse
|
19
|
Wille M, Eden JS, Shi M, Klaassen M, Hurt AC, Holmes EC. Virus-virus interactions and host ecology are associated with RNA virome structure in wild birds. Mol Ecol 2018; 27:5263-5278. [PMID: 30375075 PMCID: PMC6312746 DOI: 10.1111/mec.14918] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Little is known about the factors that shape the ecology of RNA viruses in nature. Wild birds are an important case in point, as other than influenza A virus, avian samples are rarely tested for viruses, especially in the absence of overt disease. Using bulk RNA-sequencing ("meta-transcriptomics"), we revealed the viral diversity present in Australian wild birds through the lens of the ecological factors that may determine virome structure and abundance. A meta-transcriptomic analysis of four Anseriformes (waterfowl) and Charadriiformes (shorebird) species sampled in temperate and arid Australia revealed the presence of 27 RNA virus genomes, 18 of which represent newly described species. The viruses identified included a previously described gammacoronavirus and influenza A viruses. Additionally, we identified novel virus species from the families Astroviridae, Caliciviridae, Reoviridae, Rhabdoviridae, Picobirnaviridae and Picornaviridae. We noted differences in virome structure that reflected underlying differences in location and influenza A infection status. Red-necked Avocets (Recurvirostra novaehollandiae) from Australia's arid interior possessed the greatest viral diversity and abundance, markedly higher than individuals sampled in temperate Australia. In Ruddy Turnstones (Arenaria interpres) and dabbling ducks (Anas spp.), viral abundance and diversity were higher and more similar in hosts that were positive for influenza A infection compared to those that were negative for this virus, despite samples being collected on the same day and from the same location. This study highlights the extent and diversity of RNA viruses in wild birds and lays the foundation for understanding the factors that determine virome structure in wild populations.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Centre for Virus Research, Sydney, New South Wales, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Soliman M, Kim DS, Kim C, Seo JY, Kim JY, Park JG, Alfajaro MM, Baek YB, Cho EH, Park SI, Kang MI, Chang KO, Goodfellow I, Cho KO. Porcine sapovirus Cowden strain enters LLC-PK cells via clathrin- and cholesterol-dependent endocytosis with the requirement of dynamin II. Vet Res 2018; 49:92. [PMID: 30223898 PMCID: PMC6142377 DOI: 10.1186/s13567-018-0584-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022] Open
Abstract
Caliciviruses in the genus Sapovirus are a significant cause of viral gastroenteritis in humans and animals. However, the mechanism of their entry into cells is not well characterized. Here, we determined the entry mechanism of porcine sapovirus (PSaV) strain Cowden into permissive LLC-PK cells. The inhibition of clathrin-mediated endocytosis using chlorpromazine, siRNAs, and a dominant negative (DN) mutant blocked entry and infection of PSaV Cowden strain, confirming a role for clathrin-mediated internalization. Entry and infection were also inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin and was restored by the addition of soluble cholesterol, indicating that cholesterol also contributes to entry and infection of this strain. Furthermore, the inhibition of dynamin GTPase activity by dynasore, siRNA depletion of dynamin II, or overexpression of a DN mutant of dynamin II reduced the entry and infection, suggesting that dynamin mediates the fission and detachment of clathrin- and cholesterol-pits for entry of this strain. In contrast, the inhibition of caveolae-mediated endocytosis using nystatin, siRNAs, or a DN mutant had no inhibitory effect on entry and infection of this strain. It was further determined that cell entry of PSaV Cowden strain required actin rearrangements for vesicle internalization, endosomal trafficking from early to late endosomes through microtubules, and late endosomal acidification for uncoating. We conclude that PSaV strain Cowden is internalized into LLC-PK cells by clathrin- and cholesterol-mediated endocytosis that requires dynamin II and actin rearrangement, and that the uncoating occurs in the acidified late endosomes after trafficking from the early endosomes through microtubules.
Collapse
Affiliation(s)
- Mahmoud Soliman
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Deok-Song Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Chonsaeng Kim
- Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ja-Young Seo
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Yun Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jun-Gyu Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mia Madel Alfajaro
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Hyo Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mun-Il Kang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
21
|
Alfajaro MM, Cho EH, Park JG, Kim JY, Soliman M, Baek YB, Kang MI, Park SI, Cho KO. Feline calicivirus- and murine norovirus-induced COX-2/PGE2 signaling pathway has proviral effects. PLoS One 2018; 13:e0200726. [PMID: 30021004 PMCID: PMC6051663 DOI: 10.1371/journal.pone.0200726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Cyclooxygenases (COXs)/prostaglandin E2 (PGE2) signaling pathways are known to modulate a variety of homeostatic processes and are involved in various pathophysiological conditions. COXs/PGE2 signaling pathways have also been demonstrated to have proviral or antiviral effects, which appeared different even in the same virus family. A porcine sapovirus Cowden strain, a member of genus Sapovirus within the Caliciviridae family, induces strong COX-2/PGE2 but transient COX-1/PGE2 signaling to enhance virus replication. However, whether infections of other viruses in the different genera activate COXs/PGE2 signaling, and thus affect the replication of viruses, remains unknown. In the present study, infections of cells with the feline calicivirus (FCV) F9 strain in the genus Vesivirus and murine norovirus (MNV) CW-1 strain in the genus Norovirus only activated the COX-2/PGE2 signaling in a time-dependent manner. Treatment with pharmacological inhibitors or transfection of small interfering RNAs (siRNAs) against COX-2 enzyme significantly reduced the production of PGE2 as well as FCV and MNV replications. The inhibitory effects of these pharmacological inhibitors against COX-2 enzyme on the replication of both viruses were restored by the addition of PGE2. Silencing of COX-1 via siRNAs and inhibition of COX-1 via an inhibitor also decrease the production of PGE2 and replication of both viruses, which can be attributed to the inhibition COX-1/PGE2 signaling pathway. These data indicate that the COX-2/PGE2 signaling pathway has proviral effects for the replication of FCV and MNV, and pharmacological inhibitors against these enzymes serve as potential therapeutic candidates for treating FCV and MNV infections.
Collapse
Affiliation(s)
- Mia Madel Alfajaro
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Hyo Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jun-Gyu Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Yun Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mahmoud Soliman
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mun-Il Kang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Metagenomics detection and characterisation of viruses in faecal samples from Australian wild birds. Sci Rep 2018; 8:8686. [PMID: 29875375 PMCID: PMC5989203 DOI: 10.1038/s41598-018-26851-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/17/2018] [Indexed: 01/19/2023] Open
Abstract
We present an optimised metagenomics method for detection and characterisation of all virus types including single and double stranded DNA/RNA and enveloped and non-enveloped viruses. Initial evaluation included both spiked and non-spiked bird faecal samples as well as non-spiked human faecal samples. From the non-spiked bird samples (Australian Muscovy duck and Pacific black ducks) we detected 21 viruses, and we also present a summary of a few viruses detected in human faecal samples. We then present a detailed analysis of selected virus sequences in the avian samples that were somewhat similar to known viruses, and had good quality (Q20 or higher) and quantity of next-generation sequencing reads, and was of interest from a virological point of view, for example, avian coronavirus and avian paramyxovirus 6. Some of these viruses were closely related to known viruses while others were more distantly related with 70% or less identity to currently known/sequenced viruses. Besides detecting viruses, the technique also allowed the characterisation of host mitochondrial DNA present and thus identifying host species, while ribosomal RNA sequences provided insight into the "ribosomal activity microbiome"; of gut parasites; and of food eaten such as plants or insects, which we correlated to non-avian host associated viruses.
Collapse
|
23
|
Bat Caliciviruses and Human Noroviruses Are Antigenically Similar and Have Overlapping Histo-Blood Group Antigen Binding Profiles. mBio 2018; 9:mBio.00869-18. [PMID: 29789360 PMCID: PMC5964351 DOI: 10.1128/mbio.00869-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. Caliciviridae represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and in vitro assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in Perimyotis subflavus near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel Caliciviridae genus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens.IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. The animal reservoirs for human caliciviruses are unknown; bats represent critical reservoir species for several emerging and zoonotic diseases. Recent reports have identified several bat caliciviruses but have not characterized biological functions associated with disease risk, including their potential emergence in other mammalian populations. In this report, we identified a novel bat calicivirus that is most closely related to nonhuman primate caliciviruses. Using this new bat calicivirus and a second norovirus-like bat calicivirus capsid gene sequence, we generated virus-like particles that have host carbohydrate ligand binding patterns similar to those of human and animal noroviruses and that share antigens with human noroviruses. The similarities to human noroviruses with respect to binding patterns and antigenic epitopes illustrate the potential for bat caliciviruses to emerge in other species and the importance of pathogen surveillance in wild-animal populations.
Collapse
|
24
|
Bovine Nebovirus Interacts with a Wide Spectrum of Histo-Blood Group Antigens. J Virol 2018; 92:JVI.02160-17. [PMID: 29467317 PMCID: PMC5899197 DOI: 10.1128/jvi.02160-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/06/2018] [Indexed: 11/20/2022] Open
Abstract
Some viruses within the Caliciviridae family initiate their replication cycle by attachment to cell surface carbohydrate moieties, histo-blood group antigens (HBGAs), and/or terminal sialic acids (SAs). Although bovine nebovirus (BNeV), one of the enteric caliciviruses, is an important causative agent of acute gastroenteritis in cattle, its attachment factors and possibly other cellular receptors remain unknown. Using a comprehensive series of protein-ligand biochemical assays, we sought to determine whether BNeV recognizes cell surface HBGAs and/or SAs as attachment factors. It was found that BNeV virus-like particles (VLPs) bound to A type/H type 2/Ley HBGAs expressed in the bovine digestive tract and are related to HBGAs expressed in humans and other host species, suggesting a wide spectrum of HBGA recognition by BNeV. BNeV VLPs also bound to a large variety of different bovine and human saliva samples of all ABH and Lewis types, supporting previously obtained results and suggesting a zoonotic potential of BNeV transmission. Removal of α1,2-linked fucose and α1,3/4-linked fucose epitopes of target HBGAs by confirmation-specific enzymes reduced the binding of BNeV VLPs to synthetic HBGAs, bovine and human saliva, cultured cell lines, and bovine small intestine mucosa, further supporting a wide HBGA binding spectrum of BNeV through recognition of α1,2-linked fucose and α1,3/4-linked fucose epitopes of targeted HBGAs. However, removal of terminal α2,3- and α2,6-linked SAs by their specific enzyme had no inhibitory effects on binding of BNeV VLPs, indicating that BNeV does not use terminal SAs as attachment factors. Further details of the binding specificity of BNeV remain to be explored. IMPORTANCE Enteric caliciviruses such as noroviruses, sapoviruses, and recoviruses are the most important etiological agents of severe acute gastroenteritis in humans and many other mammalian host species. They initiate infection by attachment to cell surface carbohydrate moieties, HBGAs, and/or terminal SAs. However, the attachment factor(s) for BNeV, a recently classified enteric calicivirus genus/type species, remains unexplored. Here, we demonstrate that BNeV VLPs have a wide spectrum of binding to synthetic HBGAs, bovine and human saliva samples, and bovine duodenal sections. We further discovered that α1,2-linked fucose and α1,3/4-linked fucose epitopes are essential for binding of BNeV VLPs. However, BNeV VLPs do not bind to terminal SAs on cell carbohydrates. Continued investigation regarding the proteinaceous receptor(s) will be necessary for better understanding of the tropism, pathogenesis, and host range of this important viral genus.
Collapse
|
25
|
Yang L, Wang Q, Xu L, Tu C, Huang X, He B. Detection and Characterization of a Novel Norovirus in Bats, China. Virol Sin 2018; 33:100-103. [PMID: 29508188 PMCID: PMC5866260 DOI: 10.1007/s12250-018-0010-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/21/2017] [Indexed: 01/06/2023] Open
Affiliation(s)
- Ling'en Yang
- College of Animal Science, Fujian A & F University, Fuzhou, 350002, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Quanxi Wang
- College of Animal Science, Fujian A & F University, Fuzhou, 350002, China
| | - Lin Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Changchun Tu
- College of Animal Science, Fujian A & F University, Fuzhou, 350002, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, China
| | - Xiaohong Huang
- College of Animal Science, Fujian A & F University, Fuzhou, 350002, China.
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, 130122, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, China.
| |
Collapse
|
26
|
Hauck R, Gallardo RA, Woolcock PR, Shivaprasad HL. A Coronavirus Associated with Runting Stunting Syndrome in Broiler Chickens. Avian Dis 2017; 60:528-34. [PMID: 27309300 DOI: 10.1637/11353-122215-case] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Runting stunting syndrome (RSS) is a disease condition that affects broilers and causes impaired growth and poor feed conversion because of enteritis characterized by pale and distended small intestines with watery contents. The etiology of the disease is multifactorial, and a large variety of viral agents have been implicated. Here we describe the detection and isolation of an infectious bronchitis virus (IBV) -like coronavirus from the intestines of a flock of 60,000 14-day-old brown/red broiler chicks. The birds showed typical clinical signs of RSS including stunting and uneven growth. At necropsy, the small intestines were pale and distended with watery contents. Histopathology of the intestines revealed increased cellularity of the lamina propria, blunting of villi, and cystic changes in the crypts. Negative stain electron microscopy of the intestinal contents revealed coronavirus particles. Transmission electron microscopy of the intestine confirmed coronavirus in the cytoplasm of enterocytes. Using immunohistochemistry (IHC), IBV antigen was detected in the intestinal epithelial cells as well as in the proventriculus and pancreas. There were no lesions in the respiratory system, and no IBV antigen was detected in trachea, lung, air sac, conjunctiva, and cecal tonsils. A coronavirus was isolated from the intestine of chicken embryos but not from the allantoic sac inoculated with the intestinal contents of the broiler chicks. Sequencing of the S1 gene showed nucleic acid sequence identities of 93.8% to the corresponding region of IBV California 99 and of 85.7% to IBV Arkansas. Nucleic acid sequence identities to other IBV genotypes were lower. The histopathologic lesions in the intestines were reproduced after experimental infection of specific-pathogen-free chickens inoculated in the conjunctiva and nares. Five days after infection, six of nine investigated birds showed enteritis associated with IBV antigen as detected by IHC. In contrast to the field infection, birds in the experimental group showed clear respiratory signs and lesions in the upper respiratory tract. The results suggest a broader tissue tropism of this isolate, which might be related to the mutations in the S1 gene.
Collapse
Affiliation(s)
- Rüdiger Hauck
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA
| | - Rodrigo A Gallardo
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA
| | - Peter R Woolcock
- B University of California, California Animal Health and Food Safety Laboratory System, 620 West Health Science Dr., Davis, CA 95616
| | - H L Shivaprasad
- C University of California, California Animal Health and Food Safety Laboratory System, 18830 Rd. 112, Tulare, CA 93274
| |
Collapse
|
27
|
Mor SK, Phelps NBD, Ng TFF, Subramaniam K, Primus A, Armien AG, McCann R, Puzach C, Waltzek TB, Goyal SM. Genomic characterization of a novel calicivirus, FHMCV-2012, from baitfish in the USA. Arch Virol 2017; 162:3619-3627. [PMID: 28815386 DOI: 10.1007/s00705-017-3519-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/20/2017] [Indexed: 11/25/2022]
Abstract
During regulatory sampling of fathead minnows (Pimephales promelas), a novel calicivirus was isolated from homogenates of kidney and spleen inoculated into bluegill fry (BF-2) cells. Infected cell cultures exhibiting cytopathic effects were screened by PCR-based methods for selected fish viral pathogens. Illumina HiSeq next generation sequencing of the total RNA revealed a novel calicivirus genome that showed limited protein sequence similarity to known homologs in a BLASTp search. The complete genome of this fathead minnow calicivirus (FHMCV) is 6564 nt long, encoding a polyprotein of 2114 aa in length. The complete polyprotein shared only 21% identity with Atlantic salmon calicivirus,followed by 11% to 14% identity with mammalian caliciviruses. A molecular detection assay (RT-PCR) was designed from this sequence for screening of field samples for FHMCV in the future. This virus likely represents a prototype species of a novel genus in the family Caliciviridae, tentatively named "Minovirus".
Collapse
Affiliation(s)
- Sunil Kumar Mor
- Minnesota Veterinary Diagnostic Laboratory, Department of Veterinary Population Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN, 55108, USA.
| | - Nicholas B D Phelps
- Minnesota Aquatic Invasive Species Research Center, Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, St. Paul, MN, 55108, USA
| | - Terry Fei Fan Ng
- College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA, 30602, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Alexander Primus
- Minnesota Veterinary Diagnostic Laboratory, Department of Veterinary Population Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Anibal G Armien
- Minnesota Veterinary Diagnostic Laboratory, Department of Veterinary Population Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Rebekah McCann
- US Fish and Wildlife Service, La Crosse Fish Health Center, 555 Lester Avenue, Onalaska, WI, 54650, USA
| | - Corey Puzach
- US Fish and Wildlife Service, La Crosse Fish Health Center, 555 Lester Avenue, Onalaska, WI, 54650, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Sagar M Goyal
- Minnesota Veterinary Diagnostic Laboratory, Department of Veterinary Population Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN, 55108, USA
| |
Collapse
|
28
|
Lima DA, Cibulski SP, Finkler F, Teixeira TF, Varela APM, Cerva C, Loiko MR, Scheffer CM, Dos Santos HF, Mayer FQ, Roehe PM. Faecal virome of healthy chickens reveals a large diversity of the eukaryote viral community, including novel circular ssDNA viruses. J Gen Virol 2017; 98:690-703. [PMID: 28100302 DOI: 10.1099/jgv.0.000711] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study is focused on the identification of the faecal virome of healthy chickens raised in high-density, export-driven poultry farms in Brazil. Following high-throughput sequencing, a total of 7743 de novo-assembled contigs were constructed and compared with known nucleotide/amino acid sequences from the GenBank database. Analyses with blastx revealed that 279 contigs (4 %) were related to sequences of eukaryotic viruses. Viral genome sequences (total or partial) indicative of members of recognized viral families, including Adenoviridae, Caliciviridae, Circoviridae, Parvoviridae, Picobirnaviridae, Picornaviridae and Reoviridae, were identified, some of those representing novel genotypes. In addition, a range of circular replication-associated protein encoding DNA viruses were also identified. The characterization of the faecal virome of healthy chickens described here not only provides a description of the viruses encountered in such niche but should also represent a baseline for future studies comparing viral populations in healthy and diseased chicken flocks. Moreover, it may also be relevant for human health, since chickens represent a significant proportion of the animal protein consumed worldwide.
Collapse
Affiliation(s)
- Diane A Lima
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Samuel P Cibulski
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Fabrine Finkler
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Thais F Teixeira
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Ana Paula M Varela
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Cristine Cerva
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Márcia R Loiko
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Camila M Scheffer
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Helton F Dos Santos
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Fabiana Q Mayer
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil
| | - Paulo M Roehe
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Wang F, Wang M, Dong Y, Zhang B, Zhang D. Genetic characterization of a novel calicivirus from a goose. Arch Virol 2017; 162:2115-2118. [PMID: 28289976 DOI: 10.1007/s00705-017-3302-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/13/2017] [Indexed: 11/28/2022]
Abstract
A novel calicivirus (strain H146) was detected in a goose and sequenced. The H146 genome consisted of two open reading frames (ORFs) with an 8-nucleotide (nt) overlap between the two ORFs, similar to what has been found in the bat sapovirus TLC58. The virus was most closely related to nacoviruses when comparing the complete genome sequence (49% identity), non-structural region (NS; 31-34% amino acid [aa] sequence identity), and major structural VP1 region (28-30% aa identity), whereas both goose calicivirus N and feline calicivirus were the closest relatives of H146 in the VP2 region (20% aa sequence identity). The levels of divergence between H146 and its closest relatives in different genomic regions are comparable to those between some members of different genera. Phylogenetic analysis based on the NS and VP1 amino acid sequences clearly demonstrated that H146 formed a separate clade. Thus, calicivirus H146 was identified as a founding member of a novel genus for which we propose the name "Sanovirus".
Collapse
Affiliation(s)
- Fumin Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Minghang Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yunhan Dong
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Bing Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
30
|
Devaney R, Trudgett J, Trudgett A, Meharg C, Smyth V. A metagenomic comparison of endemic viruses from broiler chickens with runting-stunting syndrome and from normal birds. Avian Pathol 2016; 45:616-629. [PMID: 27215546 PMCID: PMC7113909 DOI: 10.1080/03079457.2016.1193123] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Runting-stunting syndrome (RSS) in broiler chickens is an enteric disease that causes significant economic losses to poultry producers worldwide due to elevated feed conversion ratios, decreased body weight during growth, and excessive culling. Of specific interest are the viral agents associated with RSS which have been difficult to fully characterize to date. Past research into the aetiology of RSS has implicated a wide variety of RNA and DNA viruses however, to date, no individual virus has been identified as the main agent of RSS and the current opinion is that it may be caused by a community of viruses, collectively known as the virome. This paper attempts to characterize the viral pathogens associated with 2–3-week-old RSS-affected and unaffected broiler chickens using next-generation sequencing and comparative metagenomics. Analysis of the viromes identified a total of 20 DNA and RNA viral families, along with 2 unidentified categories, comprised of 31 distinct viral genera and 7 unclassified genera. The most abundant viral families identified in this study were the Astroviridae, Caliciviridae, Picornaviridae, Parvoviridae, Coronaviridae, Siphoviridae, and Myoviridae. This study has identified historically significant viruses associated with the disease such as chicken astrovirus, avian nephritis virus, chicken parvovirus, and chicken calicivirus along with relatively novel viruses such as chicken megrivirus and sicinivirus 1 and will help expand the knowledge related to enteric disease in broiler chickens, provide insights into the viral constituents of a healthy avian gut, and identify a variety of enteric viruses and viral communities appropriate for further study.
Collapse
Affiliation(s)
- Ryan Devaney
- a School of Biological Sciences, Queens University Belfast , Belfast , UK
| | | | - Alan Trudgett
- a School of Biological Sciences, Queens University Belfast , Belfast , UK
| | - Caroline Meharg
- a School of Biological Sciences, Queens University Belfast , Belfast , UK
| | | |
Collapse
|
31
|
Kemenesi G, Gellért Á, Dallos B, Görföl T, Boldogh S, Estók P, Marton S, Oldal M, Martella V, Bányai K, Jakab F. Sequencing and molecular modeling identifies candidate members of Caliciviridae family in bats. INFECTION GENETICS AND EVOLUTION 2016; 41:227-232. [PMID: 27085289 PMCID: PMC7172268 DOI: 10.1016/j.meegid.2016.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
Emerging viral diseases represent an ongoing challenge for globalized world and bats constitute an immense, partially explored, reservoir of potentially zoonotic viruses. Caliciviruses are important human and animal pathogens and, as observed for human noroviruses, they may impact on human health on a global scale. By screening fecal samples of bats in Hungary, calicivirus RNA was identified in the samples of Myotis daubentonii and Eptesicus serotinus bats. In order to characterize more in detail the bat caliciviruses, large portions of the genome sequence of the viruses were determined. Phylogenetic analyses and molecular modeling identified firmly the two viruses as candidate members within the Caliciviridae family, with one calicivirus strain resembling members of the Sapovirus genus and the other bat calicivirus being more related to porcine caliciviruses of the proposed genus Valovirus. This data serves the effort for detecting reservoir hosts for potential emerging viruses and recognize important evolutionary relationships. Two novel bat caliciviruses were genetically characterized. Mature viral capsids were molecularly modeled. Bat caliciviruses are highly heterogeneous genetically. The two novel viruses are genetically related to valoviruses and sapoviruses. New sequences were most closely related to Chinese sequences.
Collapse
Affiliation(s)
- Gábor Kemenesi
- Virological Research Group, János Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ákos Gellért
- Department of Applied Genomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Bianka Dallos
- Virological Research Group, János Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Tamás Görföl
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary; Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Péter Estók
- Department of Zoology, Eszterházy Károly College, Eger, Hungary
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miklós Oldal
- Virological Research Group, János Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Vito Martella
- Dipartimento di Medicina Veterinaria, Universitá Aldo Moro di Bari, Valenzano, Italy
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Jakab
- Virological Research Group, János Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| |
Collapse
|
32
|
Di Martino B, Di Profio F, Lanave G, De Grazia S, Giammanco GM, Lavazza A, Buonavoglia C, Marsilio F, Bányai K, Martella V. Antibodies for strain 2117-like vesiviruses (caliciviruses) in humans. Virus Res 2015; 210:279-82. [PMID: 26319448 DOI: 10.1016/j.virusres.2015.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/13/2015] [Accepted: 08/21/2015] [Indexed: 11/25/2022]
Abstract
The vesivirus strain 2117 has been identified as contaminant of bioreactors used for production of human drugs, due to possible contamination of the reagents used for cell cultivation. Using an ELISA assay, antibodies specific for 2117-like viruses were detected in 32/410 (7.8%) human sera, indicating exposure to these viruses.
Collapse
Affiliation(s)
- Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Italy.
| | | | - Gianvito Lanave
- Faculty of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Simona De Grazia
- Department of Scienze per la Promozione della Salute "G. D'Alessandro", Università degli Studi di Palermo, Italy
| | - Giovanni M Giammanco
- Department of Scienze per la Promozione della Salute "G. D'Alessandro", Università degli Studi di Palermo, Italy
| | - Antonio Lavazza
- Centro di Referenza Nazionale per le Malattie Virali dei Lagomorfi, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Italy
| | - Canio Buonavoglia
- Faculty of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Italy
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Vito Martella
- Faculty of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| |
Collapse
|
33
|
Abstract
Sapoviruses cause acute gastroenteritis in humans and animals. They belong to the genus Sapovirus within the family Caliciviridae. They infect and cause disease in humans of all ages, in both sporadic cases and outbreaks. The clinical symptoms of sapovirus gastroenteritis are indistinguishable from those caused by noroviruses, so laboratory diagnosis is essential to identify the pathogen. Sapoviruses are highly diverse genetically and antigenically. Currently, reverse transcription-PCR (RT-PCR) assays are widely used for sapovirus detection from clinical specimens due to their high sensitivity and broad reactivity as well as the lack of sensitive assays for antigen detection or cell culture systems for the detection of infectious viruses. Sapoviruses were first discovered in 1976 by electron microscopy in diarrheic samples of humans. To date, sapoviruses have also been detected from several animals: pigs, mink, dogs, sea lions, and bats. In this review, we focus on genomic and antigenic features, molecular typing/classification, detection methods, and clinical and epidemiological profiles of human sapoviruses.
Collapse
|
34
|
Day JM, Oakley BB, Seal BS, Zsak L. Comparative analysis of the intestinal bacterial and RNA viral communities from sentinel birds placed on selected broiler chicken farms. PLoS One 2015; 10:e0117210. [PMID: 25635690 PMCID: PMC4311960 DOI: 10.1371/journal.pone.0117210] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/21/2014] [Indexed: 12/28/2022] Open
Abstract
There is a great deal of interest in characterizing the complex microbial communities in the poultry gut, and in understanding the effects of these dynamic communities on poultry performance, disease status, animal welfare, and microbes with human health significance. Investigations characterizing the poultry enteric virome have identified novel poultry viruses, but the roles these viruses play in disease and performance problems have yet to be fully characterized. The complex bacterial community present in the poultry gut influences gut development, immune status, and animal health, each of which can be an indicator of overall performance. The present metagenomic investigation was undertaken to provide insight into the colonization of specific pathogen free chickens by enteric microorganisms under field conditions and to compare the pre-contact intestinal microbiome with the altered microbiome following contact with poultry raised in the field. Analysis of the intestinal virome from contact birds ("sentinels") placed on farms revealed colonization by members of the Picornaviridae, Picobirnaviridae, Reoviridae, and Astroviridae that were not present in pre-contact birds or present in proportionally lower numbers. Analysis of the sentinel gut bacterial community revealed an altered community in the post-contact birds, notably by members of the Lachnospiracea/Clostridium and Lactobacillus families and genera. Members of the avian enteric Reoviridae and Astroviridae have been well-characterized and have historically been implicated in poultry enteric disease; members of the Picobirnaviridae and Picornaviridae have only relatively recently been described in the poultry and avian gut, and their roles in the recognized disease syndromes and in poultry performance in general have not been determined. This metagenomic analysis has provided insight into the colonization of the poultry gut by enteric microbes circulating in commercial broiler flocks, and has identified enteric viruses and virus communities that warrant further study in order to understand their role(s) in avian gut health and disease.
Collapse
Affiliation(s)
- J. Michael Day
- United States Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA, United States of America
| | - Brian B. Oakley
- United States Department of Agriculture, Agricultural Research Service, Poultry Microbiological Safety Research Unit, Athens, GA, United States of America
| | - Bruce S. Seal
- United States Department of Agriculture, Agricultural Research Service, Poultry Microbiological Safety Research Unit, Athens, GA, United States of America
| | - Laszlo Zsak
- United States Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA, United States of America
| |
Collapse
|
35
|
Mikalsen AB, Nilsen P, Frøystad-Saugen M, Lindmo K, Eliassen TM, Rode M, Evensen Ø. Characterization of a novel calicivirus causing systemic infection in atlantic salmon (Salmo salar L.): proposal for a new genus of caliciviridae. PLoS One 2014; 9:e107132. [PMID: 25203050 PMCID: PMC4159302 DOI: 10.1371/journal.pone.0107132] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/11/2014] [Indexed: 12/30/2022] Open
Abstract
The Caliciviridae is a family of viruses infecting humans, a wide range of animals, birds and marine fish and mammals, resulting in a wide spectrum of diseases. We describe the identification and genetic characterization of a novel calicivirus replicating in Atlantic salmon. The virus has a high prevalence in farmed salmon and is found in fish suffering from several diseases and conditions and also in presumable healthy fish. A challenge and vaccination trial shows that the calicivirus replicates in Atlantic salmon and establishes a systemic infection, which can be reduced by vaccination with formalin-inactivated virus preparation. The virus, named Atlantic salmon calicivirus (ASCV), is found in two genetically distinct variants, a cell culture isolated and a variant sequenced directly from field material. The genomes are 7,4 kb and contain two open reading frames where typical conserved amino acid motifs and domains predict a gene order reminiscent of calicivirus genomes. Phylogenetic analysis performed on extracted capsid amino acid sequences segregated the two ASCV variants in a unique cluster sharing root with the branch of noroviruses infecting humans and the unassigned Tulane virus and St-Valérien like viruses, infecting rhesus monkey and pig, respectively, with relatively large distance to the marine calicivirus subgroup of vesiviruses. Based on the analyses presented, the ASCV is predicted to represent a new genus of Caliciviridae for which we propose the name Salovirus.
Collapse
Affiliation(s)
- Aase B. Mikalsen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, Dept. of Basic Sciences and Aquatic Medicine, Oslo, Norway
- * E-mail:
| | | | | | | | | | | | - Øystein Evensen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, Dept. of Basic Sciences and Aquatic Medicine, Oslo, Norway
| |
Collapse
|
36
|
Abstract
Human noroviruses (HuNV) are a significant cause of viral gastroenteritis in humans worldwide. HuNV attaches to cell surface carbohydrate structures known as histo-blood group antigens (HBGAs) prior to internalization, and HBGA polymorphism among human populations is closely linked to susceptibility to HuNV. Noroviruses are divided into 6 genogroups, with human strains grouped into genogroups I (GI), II, and IV. Canine norovirus (CNV) is a recently discovered pathogen in dogs, with strains classified into genogroups IV and VI. Whereas it is known that GI to GIII noroviruses bind to HBGAs and GV noroviruses recognize terminal sialic acid residues, the attachment factors for GIV and GVI noroviruses have not been reported. This study sought to determine the carbohydrate binding specificity of CNV and to compare it to the binding specificities of noroviruses from other genogroups. A panel of synthetic oligosaccharides were used to assess the binding specificity of CNV virus-like particles (VLPs) and identified α1,2-fucose as a key attachment factor. CNV VLP binding to canine saliva and tissue samples using enzyme-linked immunosorbent assays (ELISAs) and immunohistochemistry confirmed that α1,2-fucose-containing H and A antigens of the HBGA family were recognized by CNV. Phenotyping studies demonstrated expression of these antigens in a population of dogs. The virus-ligand interaction was further characterized using blockade studies, cell lines expressing HBGAs, and enzymatic removal of candidate carbohydrates from tissue sections. Recognition of HBGAs by CNV provides new insights into the evolution of noroviruses and raises concerns regarding the potential for zoonotic transmission of CNV to humans. IMPORTANCE Infections with human norovirus cause acute gastroenteritis in millions of people each year worldwide. Noroviruses can also affect nonhuman species and are divided into 6 different groups based on their capsid sequences. Human noroviruses in genogroups I and II interact with histo-blood group antigen carbohydrates, bovine noroviruses (genogroup III) interact with alpha-galactosidase (α-Gal) carbohydrates, and murine norovirus (genogroup V) recognizes sialic acids. The canine-specific strains of norovirus are grouped into genogroups IV and VI, and this study is the first to characterize which carbohydrate structures they can recognize. Using canine norovirus virus-like particles, this work shows that representative genogroup IV and VI viruses can interact with histo-blood group antigens. The binding specificity of canine noroviruses is therefore very similar to that of the human norovirus strains classified into genogroups I and II. This raises interesting questions about the evolution of noroviruses and suggests it may be possible for canine norovirus to infect humans.
Collapse
|
37
|
Complete genome sequence of a novel calicivirus from a goose. Arch Virol 2014; 159:2529-31. [PMID: 24756346 DOI: 10.1007/s00705-014-2083-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Abstract
A novel goose calicivirus (GoCV) was sequenced. The 8013-nt-long genome was organized into two open reading frames that were in the same frame and separated by 3 nucleotides. This feature is similar to what has been observed in turkey calicivirus (TuCV). Comparison of GoCV with other caliciviruses showed that it shared the highest amino acid sequence identities of 62, 38, and 52% in the nonstructural protein, VP1, and VP2, respectively, with TuCV. Phylogenetic analysis based on the amino acid sequences of nonstructural protein and VP1 demonstrated that GoCV was most closely related to but distinct from TuCV. Thus, GoCV was identified as a novel member in the proposed genus Nacovirus.
Collapse
|
38
|
Abstract
ABSTRACT: The Caliciviridae includes small positive-sense, ssRNA viruses, which infect both animals and humans and cause a wide range of diseases. Human caliciviruses are considered the leading cause of outbreaks and sporadic cases of viral gastroenteritis worldwide. Caliciviruses are nonenveloped with a positive-sense, ssRNA genome. As with other positive-sense, ssRNA viruses, they require interactions between viral components and host-cellular factors at different steps along the viral life cycle. Although knowledge about the role of host-cell proteins in the Caliciviridae life cycle remains modest, evidence on this topic is rapidly emerging. This article compiles and discusses the information regarding the involvement of host-cellular factors in the various stages of the calicivirus replication process, emphasizing factors that might be involved in viral translation and/or RNA replication.
Collapse
Affiliation(s)
- Ana Lorena Gutiérrez-Escolano
- *Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
39
|
Molecular epidemiology of human calicivirus infections in children with acute diarrhea in Shanghai: a retrospective comparison between inpatients and outpatients treated between 2006 and 2011. Arch Virol 2014; 159:1613-21. [DOI: 10.1007/s00705-013-1881-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/28/2013] [Indexed: 01/24/2023]
|
40
|
|
41
|
Smits SL, Rahman M, Schapendonk CME, van Leeuwen M, Faruque ASG, Haagmans BL, Endtz HP, Osterhaus ADME. Calicivirus from novel Recovirus genogroup in human diarrhea, Bangladesh. Emerg Infect Dis 2012; 18:1192-5. [PMID: 22709854 PMCID: PMC3376821 DOI: 10.3201/eid1807.120344] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To identify unknown human viruses in the enteric tract, we examined 105 stool specimens from patients with diarrhea in Bangladesh. A novel calicivirus was identified in a sample from 1 patient and subsequently found in samples from 5 other patients. Phylogenetic analyses classified this virus within the proposed genus Recovirus.
Collapse
|
42
|
Sestak K, Feely S, Fey B, Dufour J, Hargitt E, Alvarez X, Pahar B, Gregoricus N, Vinjé J, Farkas T. Experimental inoculation of juvenile rhesus macaques with primate enteric caliciviruses. PLoS One 2012; 7:e37973. [PMID: 22666426 PMCID: PMC3364207 DOI: 10.1371/journal.pone.0037973] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/27/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Tissue culture-adapted Tulane virus (TV), a GI.1 rhesus enteric calicivirus (ReCV), and a mixture of GII.2 and GII.4 human norovirus (NoV)-containing stool sample were used to intrastomacheally inoculate juvenile rhesus macaques (Macaca mulatta) in order to evaluate infection caused by these viruses. METHODOLOGY & FINDINGS: Two of the three TV-inoculated macaques developed diarrhea, fever, virus-shedding in stools, inflammation of duodenum and 16-fold increase of TV-neutralizing (VN) serum antibodies but no vomiting or viremia. No VN-antibody responses could be detected against a GI.2 ReCV strain FT285, suggesting that TV and FT285 represent different ReCV serotypes. Both NoV-inoculated macaques remained asymptomatic but with demonstrable virus shedding in one animal. Examination of duodenum biopsies of the TV-inoculated macaques showed lymphocytic infiltration of the lamina propria and villous blunting. TV antigen-positive (TV+) cells were detected in the lamina propria. In most of the TV+ cells TV co-localized perinuclearly with calnexin--an endoplasmic reticulum protein. A few CD20+TV+ double-positive B cells were also identified in duodenum. To corroborate the authenticity of CD20+TV+ B cells, in vitro cultures of peripheral blood mononuclear cells (PBMCs) from healthy macaques were inoculated with TV. Multicolor flow cytometry confirmed the presence of TV antigen-containing B cells of predominantly CD20+HLA-DR+ phenotype. A 2-log increase of viral RNA by 6 days post inoculation (p<0.05) suggested active TV replication in cultured lymphocytes. CONCLUSIONS/SIGNIFICANCE Taken together, our results show that ReCVs represent an alternative cell culture and animal model to study enteric calicivirus replication, pathogenesis and immunity.
Collapse
Affiliation(s)
- Karol Sestak
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Tulane University School of Medicine, Covington, Louisiana, United States of America
- * E-mail: (KS); (TF)
| | - Stephanie Feely
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Brittney Fey
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jason Dufour
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Tulane University School of Medicine, Covington, Louisiana, United States of America
| | - Edwin Hargitt
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xavier Alvarez
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Tulane University School of Medicine, Covington, Louisiana, United States of America
| | - Bapi Pahar
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Tulane University School of Medicine, Covington, Louisiana, United States of America
| | - Nicole Gregoricus
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jan Vinjé
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Tibor Farkas
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (KS); (TF)
| |
Collapse
|
43
|
Discovery and genetic characterization of novel caliciviruses in German and Dutch poultry. Arch Virol 2012; 157:1499-507. [DOI: 10.1007/s00705-012-1326-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
|
44
|
Discovery and genomic characterization of a novel bat sapovirus with unusual genomic features and phylogenetic position. PLoS One 2012; 7:e34987. [PMID: 22514697 PMCID: PMC3325917 DOI: 10.1371/journal.pone.0034987] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
Sapovirus is a genus of caliciviruses that are known to cause enteric disease in humans and animals. There is considerable genetic diversity among the sapoviruses, which are classified into different genogroups based on phylogenetic analysis of the full-length capsid protein sequence. While several mammalian species, including humans, pigs, minks, and dogs, have been identified as animal hosts for sapoviruses, there were no reports of sapoviruses in bats in spite of their biological diversity. In this report, we present the results of a targeted surveillance study in different bat species in Hong Kong. Five of the 321 specimens from the bat species, Hipposideros pomona, were found to be positive for sapoviruses by RT-PCR. Complete or nearly full-length genome sequences of approximately 7.7 kb in length were obtained for three strains, which showed similar organization of the genome compared to other sapoviruses. Interestingly, they possess many genomic features atypical of most sapoviruses, like high G+C content and minimal CpG suppression. Phylogenetic analysis of the viral proteins suggested that the bat sapovirus descended from an ancestral sapovirus lineage and is most closely related to the porcine sapoviruses. Codon usage analysis showed that the bat sapovirus genome has greater codon usage bias relative to other sapovirus genomes. In summary, we report the discovery and genomic characterization of the first bat calicivirus, which appears to have evolved under different conditions after early divergence from other sapovirus lineages.
Collapse
|
45
|
Molecular detection of novel picornaviruses in chickens and turkeys. Virus Genes 2011; 44:262-72. [PMID: 22160827 PMCID: PMC7089249 DOI: 10.1007/s11262-011-0695-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/23/2011] [Indexed: 01/27/2023]
Abstract
Fecal specimens, including swabs and litter extracts, collected from chickens, domestic ducks, turkeys, and Canadian geese were tested using degenerate primers targeting regions encoding for conserved amino acid motifs (YGDD and DY(T/S)(R/K/G)WDST) in calicivirus RNA-dependent RNA polymerases. Similar motifs are also present in other RNA viruses. Two fecal specimens and 18 litter extracts collected from chickens and turkeys yielded RT-PCR products. BLAST search and phylogenetic analysis revealed that all amplicons represented picornaviruses that clustered into two major groups. Four chicken and one turkey samples yielded 250 bp amplicons with 84–91% nucleotide identity to the recently described turkey hepatitis viruses, while 280 and 283 bp amplicons obtained from 11 chicken and 4 turkey samples represented novel picornaviruses with the closest nucleotide identity to kobuviruses (54–61%) and turdiviruses (47–54%). Analysis of 2.2–3.2 kb extended genome sequences including the partial P2 (2C) and complete P3 (3A, 3B (VPg), 3Cpro, and 3Dpol) regions of selected strains indicated that viruses yielding the 280/283 bp amplicons represent a putative new genus of Picornaviridae. The 3′-non-translated region (NTR) of the turkey hepatitis-like viruses described in this study was significantly longer (641–654 nt) than that of any of the other piconaviruses and included a putative short open reading frame (ORF). In summary, we report the molecular detection of novel picornaviruses that appear to be endemic in both chickens and turkeys.
Collapse
|
46
|
Abstract
Noroviruses are recognized as emerging enteric pathogens of humans and have been identified in recent years in a number of mammalian species. The role of noroviruses as pathogens in immune-competent animals and under natural conditions remains uncertain, although both homologous and heterologous animal models are now available to investigate the pathogenesis, the immune response, and the molecular mechanism regulating norovirus infection. Recently, evidence has been gathered that noroviruses may also circulate in domestic carnivores. The zoonotic implications of these novel viruses deserve more attention, due to the strict social interactions between humans and pets.
Collapse
Affiliation(s)
- Vito Martella
- Dipartimento di Sanità Pubblica e Zootecnia, Università degli Studi Aldo Moro di Bari, S.p. per Casamassima km 3, 70010 Valenzano, Bari, Italy.
| | | | | |
Collapse
|
47
|
Di Martino B, Di Profio F, Ceci C, Martella V, Lavazza A, Massirio I, Marsilio F. Seroprevalence of St-Valerien-like caliciviruses in Italian swine. J Gen Virol 2011; 93:102-105. [PMID: 21940412 DOI: 10.1099/vir.0.036236-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
St-Valérien-like viruses are newly recognized porcine caliciviruses recently detected in North America and Europe. In this study, baculovirus-expressed virus-like particles of the St-Valérien strain 25A/ITA were generated and used for the development of an antibody-detection ELISA kit to assess the seroprevalence of these novel caliciviruses in swine. Antibodies specific for St-Valérien-like virus were detected in 63 (10.3 %) of 614 serum samples tested with titres ranging from 1 : 50 (28.6 %) to 1 : 800 (40.7 %). These results indicate that St-Valérien-like infections are common among domestic pigs, italy.
Collapse
Affiliation(s)
- Barbara Di Martino
- Department of Scienze Biomediche Comparate, University of Teramo, Teramo, Italy
| | - Federica Di Profio
- Department of Scienze Biomediche Comparate, University of Teramo, Teramo, Italy
| | - Chiara Ceci
- Department of Scienze Biomediche Comparate, University of Teramo, Teramo, Italy
| | - Vito Martella
- Department of Public Health and Animal Sciences, University of Bari, Valenzano, Bari, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Italy
| | | | - Fulvio Marsilio
- Department of Scienze Biomediche Comparate, University of Teramo, Teramo, Italy
| |
Collapse
|