1
|
Sultan HA, Talaat S, Amer SAM, Tantawy L, El-Zanaty AEI, Albadrani GM, Al-Ghadi MQ, Abdel-Daim MM, Elfeil WK. Experimental infection of Clades 2.2.1.2 (H5N1) and 2.3.4.4b (H5N8) of highly pathogenic avian influenza virus infection in commercial broilers. Comp Immunol Microbiol Infect Dis 2024; 113:102229. [PMID: 39332166 DOI: 10.1016/j.cimid.2024.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/29/2024]
Abstract
In this study the pathogenicity, infectivity, and transmissibility of H5N1 highly pathogenic avian influenza (HPAI) clade 2.2.1.2 and H5N8 HPAI clade 2.3.4.4b viruses were evaluated in commercial broilers on days 24 and 31. The mortality rate was 100 % in both challenge viruses and in contact birds either on day 24 or day 31 which confirmed the highly pathogenicity of both clades (2.2.1.2/ 2.3.4.4b) in commercial broilers. Both clades (H5N8 clade 2.3.4.4b/ H5N1 clade 2.2.1.2 viruses) were efficiently replicate within and transmitted between commercial broilers. The H5N8-infected birds shed high titer of viruses from oropharynx and cloaca, which associated with the field spread of AIV-H5N8 in commercial broilers. Mean lesion score in both challenged clades showed similar scores, which confirmed the pathogenicity of both clades in commercial broilers' organs (mainly spleen, cerebellum, thymus, Bursa, Lung) which confirm the neurogenic affinity of the virus. In the central nervous system, non-suppurative encephalitis consisting in multifocal areas of necrosis in cerebral hemispheres, intense spongiosis, neuronal chromatolysis and gliosis were commonly observed. In cerebrum, chromatolysis of Purkinje neurons was a common finding. In the lung, interstitial pneumonia consisting of moderate to severe increase of the cellularity (macrophages and lymphoid cells) in air capillaries and focal areas of necrosis associated with intense viral replication was commonly observed. In lymphoid tissues, including spleen, thymus, and bursa of Fabricius, multifocal areas of necrosis/apoptosis of variable intensity in mononuclear cells were present. Particularly, diffuse necrotic areas were present in the spleen. In the liver, we detected focal areas of necrosis with mild distention of hepatic sinusoids. To conclude the AIV either H5N1 or H5N8 have neurological affinity with immune suppression effect based on necrosis and apoptosis of lymphoid tissues.
Collapse
Affiliation(s)
- Hesham A Sultan
- Birds and Rabbit Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Shaimaa Talaat
- Birds and Rabbit Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Sameh Abdel-Moez Amer
- Department of Poultry Diseases, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Laila Tantawy
- Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | | | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Wael K Elfeil
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
2
|
Bedair NM, Sakr MA, Mourad A, Eissa N, Mostafa A, Khamiss O. Molecular characterization of the whole genome of H9N2 avian influenza virus isolated from Egyptian poultry farms. Arch Virol 2024; 169:99. [PMID: 38625394 PMCID: PMC11021324 DOI: 10.1007/s00705-024-06018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
H9N2 avian influenza viruses (AIVs) affect both poultry and humans on a global level, and they are especially prevalent in Egypt. In this study, we sequenced the entire genome of AIV H9N2 isolated from chickens in Egypt in 2021, using next-generation sequencing (NGS) technology. Phylogenetic analysis of the resulting sequences showed that the studied strain was generally monophyletic and grouped within the G1 sublineage of the Eurasian lineage. Four segments (polymerase basic 2 [PB2], polymerase basic 1 [PB1], polymerase acidic [PA], and non-structural [NS]) were related to Egyptian genotype II, while the nucleoprotein (NP), neuraminidase (NA), matrix (M), and haemagglutinin (HA) segments were related to Egyptian genotype I. Molecular analysis revealed that HA protein contained amino acid residues (191H and 234L) that suggested a predilection for attaching to human-like receptors. The antigenic sites of HA had two nonsynonymous mutations: V194I at antigenic site A and M40K at antigenic site B. Furthermore, the R403W and S372A mutations, which have been observed in H3N2 and H2N2 strains that caused human pandemics, were found in the NA protein of the detected strain. The internal proteins contained virulence markers: 504V in the PB2 protein, 622G, 436Y, 207K, and 677T in the PB1 protein, 127V, 550L, and 672L in PA protein, and 64F and 69P in the M protein. These results show that the detected strain had undergone intrasubtype reassortment. Furthermore, it contains changes in the viral proteins that make it more likely to be virulent, raising a question about the tendency of AIV H9N2 to become highly pathogenic in the future for both poultry and humans.
Collapse
Affiliation(s)
- Nahed M Bedair
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt
| | - Moustafa A Sakr
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt.
| | - Ahmed Mourad
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Nourhan Eissa
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Omaima Khamiss
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt
| |
Collapse
|
3
|
Baek YG, Lee YN, Park YR, Chung DH, Kwon JH, Si YJ, Heo GB, Lee YJ, Lee DH, Lee EK. Evolution, Transmission, and Pathogenicity of High Pathogenicity Avian Influenza Virus A (H5N8) Clade 2.3.4.4, South Korea, 2014–2016. Front Vet Sci 2022; 9:906944. [PMID: 35799844 PMCID: PMC9253604 DOI: 10.3389/fvets.2022.906944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
During 2014–2016, clade 2.3.4.4 H5N8 high pathogenicity avian influenza virus (HPAIV) caused the largest known avian influenza epidemic in South Korea. Based on data from earlier H5N8 outbreaks, primitive H5N8 virus in South Korea was classified into five subgroups: C1, C2, C3, C4, and C5. The present study investigated the pathogenic and molecular epidemiologic characteristics of H5N8 viruses obtained from 388 cases of poultry farms and 85 cases of wild bird infections in South Korea during 2014–2016. Representative viruses of subgroups C1, C2, and C4 showed significant pathobiological differences in specific pathogen-free (SPF) chickens, with the H1731 (C1) virus showing substantially lower infectivity, transmissibility, and pathogenicity than the H2102 (C2) and H1924 (C4) viruses. Full genome sequence analysis showed the number of mutations that significantly increased in domestic duck-origin H5N8 HPAIVs compared to the viruses from gallinaceous poultry. These differences may have been due to the long-term circulation of viruses in domestic duck farms. The same mutations, at positions 219 and 757 of PB1, independently evolving in the C0, C1, and C2 subgroups may have been positively selected, resulting in convergent evolution at the amino acid level. Bayesian discrete trait phylodynamic analysis (DTA) indicated multiple introductions of H5N8 HPAIV from wild birds into domestic poultry in various regions in South Korea. Following initial viral introduction into domestic duck farms in the western part of Korea, domestic ducks played a major role in viral transmission and maintenance. These findings highlight the need for continued genomic surveillance and pathobiological characterization of HPAIV in birds. Enhanced biosecurity in poultry farms should be implemented to prevent the introduction, maintenance, and spread of HPAIV.
Collapse
Affiliation(s)
- Yoon-Gi Baek
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Yu-Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Yu-Ri Park
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - David H. Chung
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, United States
| | - Jung-Hoon Kwon
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Young-Jae Si
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Gyeong-Beom Heo
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
- *Correspondence: Dong-Hun Lee
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
- Eun-Kyoung Lee
| |
Collapse
|
4
|
Multiple Gene Segments Are Associated with Enhanced Virulence of Clade 2.3.4.4 H5N8 Highly Pathogenic Avian Influenza Virus in Mallards. J Virol 2021; 95:e0095521. [PMID: 34232725 DOI: 10.1128/jvi.00955-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses from the H5Nx Goose/Guangdong/96 lineage continue to cause outbreaks in domestic and wild bird populations. Two distinct genetic groups of H5N8 HPAI viruses, hemagglutinin (HA) clades 2.3.4.4A and 2.3.4.4B, caused intercontinental outbreaks in 2014 to 2015 and 2016 to 2017, respectively. Experimental infections using viruses from these outbreaks demonstrated a marked difference in virulence in mallards, with the H5N8 virus from 2014 causing mild clinical disease and the 2016 H5N8 virus causing high mortality. To assess which gene segments are associated with enhanced virulence of H5N8 HPAI viruses in mallards, we generated reassortant viruses with 2014 and 2016 viruses. For single-segment reassortants in the genetic backbone of the 2016 virus, pathogenesis experiments in mallards revealed that morbidity and mortality were reduced for all eight single-segment reassortants compared to the parental 2016 virus, with significant reductions in mortality observed with the polymerase basic protein 2 (PB2), nucleoprotein (NP), and matrix (M) reassortants. No differences in morbidity and mortality were observed with reassortants that either have the polymerase complex segments or the HA and neuraminidase (NA) segments of the 2016 virus in the genetic backbone of the 2014 virus. In vitro assays showed that the NP and polymerase acidic (PA) segments of the 2014 virus lowered polymerase activity when combined with the polymerase complex segments of the 2016 virus. Furthermore, the M segment of the 2016 H5N8 virus was linked to filamentous virion morphology. Phylogenetic analyses demonstrated that gene segments related to the more virulent 2016 H5N8 virus have persisted in the contemporary H5Nx HPAI gene pool until 2020. IMPORTANCE Outbreaks of H5Nx HPAI viruses from the goose/Guangdong/96 lineage continue to occur in many countries and have resulted in substantial impact on wild birds and poultry. Epidemiological evidence has shown that wild waterfowl play a major role in the spread of these viruses. While HPAI virus infection in gallinaceous species causes high mortality, a wide range of disease outcomes has been observed in waterfowl species. In this study, we examined which gene segments contribute to severe disease in mallards infected with H5N8 HPAI viruses. No virus gene was solely responsible for attenuating the high virulence of a 2016 H5N8 virus, but the PB2, NP, and M segments significantly reduced mortality. The findings herein advance our knowledge on the pathobiology of avian influenza viruses in waterfowl and have potential implications on the ecology and epidemiology of H5Nx HPAI in wild bird populations.
Collapse
|
5
|
Elsobky Y, El Afandi G, Abdalla E, Byomi A, Reddy G. Possible ramifications of climate variability on HPAI-H5N1 outbreak occurrence: Case study from the Menoufia, Egypt. PLoS One 2020; 15:e0240442. [PMID: 33119614 PMCID: PMC7595442 DOI: 10.1371/journal.pone.0240442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022] Open
Abstract
Long endemicity of the Highly Pathogenic Avian Influenza (HPAI) H5N1 subtype in Egypt poses a lot of threats to public health. Contrary to what is previously known, outbreaks have been circulated continuously in the poultry sectors all year round without seasonality. These changes call the need for epidemiological studies to prove or deny the influence of climate variability on outbreak occurrence, which is the aim of this study. This work proposes a modern approach to examine the degree to which the HPAI-H5N1disease event is being influenced by climate variability as a potential risk factor using generalized estimating equations (GEEs). GEE model revealed that the effect of climate variability differs according to the timing of the outbreak occurrence. Temperature and relative humidity could have both positive and negative effects on disease events. During the cold seasons especially in the first quarter, higher minimum temperatures, consistently show higher risks of disease occurrence, because this condition stimulates viral activity, while lower minimum temperatures support virus survival in the other quarters of the year with the highest negative effect in the third quarter. On the other hand, relative humidity negatively affects the outbreak in the first quarter of the year as the humid weather does not support viral circulation, while the highest positive effect was found in the second quarter during which low humidity favors the disease event.
Collapse
Affiliation(s)
- Yumna Elsobky
- Department of Hygiene and Zoonosis, Faculty of Vet. Medicine, University of Sadat City, Sadat City, Egypt
| | - Gamal El Afandi
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, Alabama, United States of America.,Astronomy and Meteorology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ehsan Abdalla
- Department of Graduate Public Health, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama, United States of America
| | - Ahmed Byomi
- Department of Hygiene and Zoonosis, Faculty of Vet. Medicine, University of Sadat City, Sadat City, Egypt
| | - Gopal Reddy
- Pathobiology Department, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama, United States of America
| |
Collapse
|
6
|
Normal modes analysis and surface electrostatics of haemagglutinin proteins as fingerprints for high pathogenic type A influenza viruses. BMC Bioinformatics 2020; 21:354. [PMID: 32838732 PMCID: PMC7445075 DOI: 10.1186/s12859-020-03563-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Type A influenza viruses circulate and spread among wild birds and mostly consist of low pathogenic strains. However, fast genome variation timely results in the insurgence of high pathogenic strains, which when infecting poultry birds may cause a million deaths and strong commercial damage. More importantly, the host shift may concern these viruses and sustained human-to-human transmission may result in a dangerous pandemic outbreak. Therefore, fingerprints specific to either low or high pathogenic strains may represent a very important tool for global surveillance. Results We combined Normal Modes Analysis and surface electrostatic analysis of a mixed strain dataset of influenza A virus haemagglutinins from high and low pathogenic strains in order to infer specific fingerprints. Normal Modes Analysis sorted the strains in two different, homogeneous clusters; sorting was independent of clades and specific instead to high vs low pathogenicity. A deeper analysis of fluctuations and flexibility regions unveiled a special role for the 110-helix region. Specific sorting was confirmed by surface electrostatics analysis, which further allowed to focus on regions and mechanisms possibly crucial to the low-to-high transition. Conclusions Evidence from previous work demonstrated that changes in surface electrostatics are associated with the evolution and spreading of avian influenza A virus clades, and seemingly involved also in the avian to mammalian host shift. This work shows that a combination of electrostatics and Normal Modes Analysis can also identify fingerprints specific to high and low pathogenicity. The possibility to predict which specific mutations may result in a shift to high pathogenicity may help in surveillance and vaccine development.
Collapse
|
7
|
Loss of Fitness of Mexican H7N3 Highly Pathogenic Avian Influenza Virus in Mallards after Circulating in Chickens. J Virol 2019; 93:JVI.00543-19. [PMID: 31068421 DOI: 10.1128/jvi.00543-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/30/2019] [Indexed: 11/20/2022] Open
Abstract
Outbreaks of highly pathogenic avian influenza (HPAI) virus subtype H7N3 have been occurring in commercial chickens in Mexico since its first introduction in 2012. In order to determine changes in virus pathogenicity and adaptation in avian species, three H7N3 HPAI viruses from 2012, 2015, and 2016 were evaluated in chickens and mallards. All three viruses caused high mortality in chickens when given at medium to high doses and replicated similarly. No mortality or clinical signs and similar infectivity were observed in mallards inoculated with the 2012 and 2016 viruses. However, the 2012 H7N3 HPAI virus replicated well in mallards and transmitted to contacts, whereas the 2016 virus replicated poorly and did not transmit to contacts, which indicates that the 2016 virus is less adapted to mallards. In vitro, the 2016 virus grew slower and to lower titers than did the 2012 virus in duck fibroblast cells. Full-genome sequencing showed 115 amino acid differences between the 2012 and the 2016 viruses, with some of these changes previously associated with changes in replication in avian species, including hemagglutinin (HA) A125T, nucleoprotein (NP) M105V, and NP S377N. In conclusion, as the Mexican H7N3 HPAI virus has passaged through large populations of chickens in a span of several years and has retained its high pathogenicity for chickens, it has decreased in fitness in mallards, which could limit the potential spread of this HPAI virus by waterfowl.IMPORTANCE Not much is known about changes in host adaptation of avian influenza (AI) viruses in birds after long-term circulation in chickens or other terrestrial poultry. Although the origin of AI viruses affecting poultry is wild aquatic birds, the role of these birds in further dispersal of poultry-adapted AI viruses is not clear. Previously, we showed that HPAI viruses isolated early from poultry outbreaks could still infect and transmit well in mallards. In this study, we demonstrate that the Mexican H7N3 HPAI virus after four years of circulation in chickens replicates poorly and does not transmit in mallards but remains highly pathogenic in chickens. This information on changes in host adaptation is important for understanding the epidemiology of AI viruses and the role that wild waterfowl may play in disseminating viruses adapted to terrestrial poultry.
Collapse
|
8
|
Ali A, Safwat M, Kilany WH, Nagy A, Shehata AA, El-Abideen MAZ, Dahshan AHM, Arafa ASA. Combined H5ND inactivated vaccine protects chickens against challenge by different clades of highly pathogenic avian influenza viruses subtype H5 and virulent Newcastle disease virus. Vet World 2019; 12:97-105. [PMID: 30936661 PMCID: PMC6431814 DOI: 10.14202/vetworld.2019.97-105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/30/2018] [Indexed: 01/07/2023] Open
Abstract
Aim The aim of the current study was to evaluate the efficacy of a trivalent-inactivated oil-emulsion vaccine against challenge by different clades highly pathogenic avian influenza (HPAI) viruses including HPAI-H5N8 and the virulent genotype VII Newcastle disease virus (NDV) (vNDV). Materials and Methods The vaccine studied herein is composed of reassortant AI viruses rgA/Chicken/Egypt/ME1010/2016 (clade 2.2.1.1), H5N1 rgA/Chicken/Egypt/RG-173CAL/2017 (clade 2.2.1.2), and "NDV" (LaSota NDV/CK/Egypt/11478AF/11); all used at a concentration of 108 EID50/bird and mixed with Montanide-ISA70 oil adjuvant. Two-week-old specific pathogen free (SPF) chickens were immunized subcutaneously with 0.5 ml of the vaccine, and hemagglutination inhibition (HI) antibody titers were monitored weekly. The intranasal challenge was conducted 4 weeks post-vaccination (PV) using 106 EID50/0.1 ml of the different virulent HPAI-H5N1 viruses representing clades 2.2.1, 2.2.1.1, 2.2.1.2, 2.3.4.4b-H5N8, and the vNDV. Results The vaccine induced HI antibody titers of >6log2 against both H5N1 and NDV viruses at 2 weeks PV. Clinical protection against all HPAI H5N1 viruses and vNDV was 100%, except for HPAI H5N1 clade-2.2.1 and HPAI H5N8 clade-2.3.4.4b viruses that showed 93.3% protection. Challenged SPF chickens showed significant decreases in the virus shedding titers up to <3log10 compared to challenge control chickens. No virus shedding was detected 6 "days post-challenge" in all vaccinated challenged groups. Conclusion Our results indicate that the trivalent H5ND vaccine provides significant clinical protection against different clades of the HPAI viruses including the newly emerging H5N8 HPAI virus. Availability of such potent multivalent oil-emulsion vaccine offers an effective tool against HPAI control in endemic countries and promises simpler vaccination programs.
Collapse
Affiliation(s)
- Ahmed Ali
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Marwa Safwat
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Walid H Kilany
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Abdou Nagy
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.,Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Awad A Shehata
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, University of Sadat City, Menoufia 22857, Egypt
| | - Mohamed A Zain El-Abideen
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Al-Hussien M Dahshan
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdel-Satar A Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| |
Collapse
|
9
|
Tolba HMN, Abou Elez RMM, Elsohaby I, Ahmed HA. Molecular identification of avian influenza virus subtypes H5N1 and H9N2 in birds from farms and live bird markets and in respiratory patients. PeerJ 2018; 6:e5473. [PMID: 30202644 PMCID: PMC6129142 DOI: 10.7717/peerj.5473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/28/2018] [Indexed: 12/23/2022] Open
Abstract
Background Avian influenza viruses (AIVs) have been endemic in Egypt since 2006, and the co-circulation of high-pathogenic avian influenza H5N1 and low-pathogenic avian influenza H9N2 subtypes in poultry has been reported; therefore, Egypt is considered a hotspot for the generation of new subtypes and genotypes. We aimed to characterize AIVs circulating on commercial farms and in live bird markets (LBMs) during the winters of 2015 and 2016 in the study area and to identify H5N1 and H9N2 viruses in respiratory patients. Methods In total, 159 samples were collected from ducks, pigeons and quails on farms (n = 59) and in LBMs (n = 100) and screened by real-time RT-PCR for H5N1 and H9N2 subtypes. Clinical and postmortem examination was carried out on birds from the farms. Positive H5N1 samples were sequenced and analysed for mutations. Tracheal swabs were also collected from 89 respiratory patients admitted to respiratory hospitals in the same study area. Results Overall, H5N1 was identified in 13.6% of birds from farms, while it was detected in 17% of birds in LBMs. Subtype H9N2 was only identified from pigeons on farms (6.5%) and LBMs (11.4%). Sequencing of the haemagglutination gene (HA) in nine representative H5N1 isolates revealed a multi-basic amino acid motif at the cleavage site (321-PQGEKRRKKR/GLF-333), which is characteristic of highly pathogenic AIV, in five of our isolates, while the other four isolates showed an amino acid substitution (Q322K) at this cleavage site to make it (321-P K GEKRRKKR/GLF-333). All the isolates belonged to clade 2.2.1.2, and a comparison of HA sequences at the amino acid level showed 98.8-100% homology among the nine isolates, while they showed 94.1-96.1% identity with reference strains and the commonly used vaccine strain in Egypt. Out of 89 respiratory patients, 3.4% were positive for H5N1 and no patients were positive for H9N2. Discussion Our results indicated the circulation of the endemic H5N1 and H9N2 viruses among poultry in 2015 and 2016. Birds on farms and in LBMs are reservoirs playing a role in the dissemination of the virus and producing a public health risk. The application of proper hygienic measures in farms and LBMs to control the exposure of birds and humans to the source of infection along with continuous monitoring of the circulating viruses will provide information on understanding the evolution of the viruses for vaccine studies.
Collapse
Affiliation(s)
- Hala M N Tolba
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha M M Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ibrahim Elsohaby
- Department of Animal Medicine, Division of Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.,Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Heba A Ahmed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Avian influenza A (H5N1) outbreaks in different poultry farm types in Egypt: the effect of vaccination, closing status and farm size. BMC Vet Res 2018; 14:187. [PMID: 29914481 PMCID: PMC6006767 DOI: 10.1186/s12917-018-1519-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/10/2018] [Indexed: 01/31/2023] Open
Abstract
Background The Avian Influenza A (H5N1) virus is endemic in poultry in Egypt. The winter of 2014/2015 was particularly worrying as new clusters of HPAI A (H5N1) virus emerged, leading to an important number of AI A (H5N1) outbreaks in poultry farms and sporadic human cases. To date, few studies have investigated the distribution of HPAI A (H5N1) outbreaks in Egypt in relation to protective / risk factors at the farm level, a gap we intend to fill. The aim of the study was to analyse passive surveillance data that were based on observation of sudden and high mortality of poultry or drop in duck or chicken egg production, as a basis to better understand and discuss the risk of HPAI A (H5N1) presence at the farm level in large parts of the Nile Delta. Results The probability of HPAI A (H5N1) presence was associated with several characteristics of the farms. Vaccination status, absence of windows/openings in the farm and the number of birds per cycle of production were found to be protective factors, whereas the presence of a duck farm with significant mortality or drop in egg production in the village was found to be a risk factor. Conclusions Results demonstrate the key role of several prevention and biosecurity measures to reduce HPAI A (H5N1) virus circulation, which could promote better poultry farm biosecurity in Egypt. Electronic supplementary material The online version of this article (10.1186/s12917-018-1519-8) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Dhingra MS, Artois J, Dellicour S, Lemey P, Dauphin G, Von Dobschuetz S, Van Boeckel TP, Castellan DM, Morzaria S, Gilbert M. Geographical and Historical Patterns in the Emergences of Novel Highly Pathogenic Avian Influenza (HPAI) H5 and H7 Viruses in Poultry. Front Vet Sci 2018; 5:84. [PMID: 29922681 PMCID: PMC5996087 DOI: 10.3389/fvets.2018.00084] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/03/2018] [Indexed: 01/28/2023] Open
Abstract
Over the years, the emergence of novel H5 and H7 highly pathogenic avian influenza viruses (HPAI) has been taking place through two main mechanisms: first, the conversion of a low pathogenic into a highly pathogenic virus, and second, the reassortment between different genetic segments of low and highly pathogenic viruses already in circulation. We investigated and summarized the literature on emerging HPAI H5 and H7 viruses with the aim of building a spatio-temporal database of all these recorded conversions and reassortments events. We subsequently mapped the spatio-temporal distribution of known emergence events, as well as the species and production systems that they were associated with, the aim being to establish their main characteristics. From 1959 onwards, we identified a total of 39 independent H7 and H5 LPAI to HPAI conversion events. All but two of these events were reported in commercial poultry production systems, and a majority of these events took place in high-income countries. In contrast, a total of 127 reassortments have been reported from 1983 to 2015, which predominantly took place in countries with poultry production systems transitioning from backyard to intensive production systems. Those systems are characterized by several co-circulating viruses, multiple host species, regular contact points in live bird markets, limited biosecurity within value chains, and frequent vaccination campaigns that impose selection pressures for emergence of novel reassortants. We conclude that novel HPAI emergences by these two mechanisms occur in different ecological niches, with different viral, environmental and host associated factors, which has implications in early detection and management and mitigation of the risk of emergence of novel HPAI viruses.
Collapse
Affiliation(s)
- Madhur S Dhingra
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.,Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Jean Artois
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Simon Dellicour
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Gwenaelle Dauphin
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Thomas P Van Boeckel
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.,Center for Disease Dynamics, Economics and Policy, Washington, DC, United States
| | | | - Subhash Morzaria
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.,Fonds National de la Recherche Scientifique (FNRS), Brussels, Belgium
| |
Collapse
|
12
|
Salaheldin AH, Kasbohm E, El-Naggar H, Ulrich R, Scheibner D, Gischke M, Hassan MK, Arafa ASA, Hassan WM, Abd El-Hamid HS, Hafez HM, Veits J, Mettenleiter TC, Abdelwhab EM. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt. Front Microbiol 2018; 9:528. [PMID: 29636730 PMCID: PMC5880882 DOI: 10.3389/fmicb.2018.00528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed), biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered.
Collapse
Affiliation(s)
- Ahmed H Salaheldin
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Institute of Poultry Diseases, Free University of Berlin, Berlin, Germany.,Department of Poultry Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Elisa Kasbohm
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Heba El-Naggar
- Veterinary Serum and Vaccine Research Institute, Cairo, Egypt
| | - Reiner Ulrich
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mohamed K Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Abdel-Satar A Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Wafaa M Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | | | - Hafez M Hafez
- Institute of Poultry Diseases, Free University of Berlin, Berlin, Germany
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
13
|
Ducatez M, Sonnberg S, Crumpton JC, Rubrum A, Phommachanh P, Douangngeun B, Peiris M, Guan Y, Webster R, Webby R. Highly pathogenic avian influenza H5N1 clade 2.3.2.1 and clade 2.3.4 viruses do not induce a clade-specific phenotype in mallard ducks. J Gen Virol 2017; 98:1232-1244. [PMID: 28631606 PMCID: PMC5825919 DOI: 10.1099/jgv.0.000806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/07/2017] [Indexed: 11/18/2022] Open
Abstract
Among the diverse clades of highly pathogenic avian influenza (HPAI) H5N1 viruses of the goose/Guangdong lineage, only a few have been able to spread across continents: clade 2.2 viruses spread from China to Europe and into Africa in 2005-2006, clade 2.3.2.1 viruses spread from China to Eastern Europe in 2009-2010 and clade 2.3.4.4 viruses of the H5Nx subtype spread from China to Europe and North America in 2014/2015. While the poultry trade and wild-bird migration have been implicated in the spread of HPAI H5N1 viruses, it has been proposed that robust virus-shedding by wild ducks in the absence of overt clinical signs may have contributed to the wider dissemination of the clade 2.2, 2.3.2.1 and 2.3.4.4 viruses. Here we determined the phenotype of two divergent viruses from clade 2.3.2.1, a clade that spread widely, and two divergent viruses from clade 2.3.4, a clade that was constrained to Southeast Asia, in young (ducklings) and adult (juvenile) mallard ducks. We found that the virus-shedding magnitude and duration, transmission pattern and pathogenicity of the viruses in young and adult mallard ducks were largely independent of the virus clade. A clade-specific pattern could only be detected in terms of cumulative virus shedding, which was higher with clade 2.3.2.1 than with clade 2.3.4 viruses in juvenile mallards, but not in ducklings. The ability of clade 2.3.2.1c A/common buzzard/Bulgaria/38 WB/2010-like viruses to spread cross-continentally may, therefore, have been strain-specific or independent of phenotype in wild ducks.
Collapse
Affiliation(s)
- Mariette Ducatez
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Stephanie Sonnberg
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jeri Carol Crumpton
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Adam Rubrum
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Phouvong Phommachanh
- Department of Livestock and Fisheries, Ministry of Agriculture, Vientiane, Lao PDR, Laos
| | - Bounlom Douangngeun
- Department of Livestock and Fisheries, Ministry of Agriculture, Vientiane, Lao PDR, Laos
| | - Malik Peiris
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong SAR
| | - Yi Guan
- Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong SAR
| | - Robert Webster
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard Webby
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
14
|
Visualization of Alternative Functional Configurations of Influenza Virus Hemagglutinin Facilitates Rapid Selection of Complementing Vaccines in Emergency Situations. Int J Mol Sci 2017; 18:ijms18040766. [PMID: 28375167 PMCID: PMC5412350 DOI: 10.3390/ijms18040766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 11/17/2022] Open
Abstract
Successful immunization against avian influenza virus (AIV) requires eliciting an adequate polyclonal response to AIV hemagglutinin (HA) subunit 1 (HA1) epitopes. Outbreaks of highly-pathogenic (HP) AIV subtype H5N1 can occur in vaccinated flocks in many endemic areas. Protection against emerging AIV is partly hindered by the limitations of vaccine production and transport, the use of leaky vaccines, and the use of multiple, and often antigenically-diverse, vaccines. It was hypothesized that the majority of alternative functional configurations (AFC) within the AIV HA1 can be represented by the pool of vaccine seed viruses currently in production because only a finite number of AFC are possible within each substructure of the molecule. Therefore, combinations of commercial vaccines containing complementing structural units (CSU) to each HA1 substructure can elicit responses to the totality of a given emerging AIV HA1 substructure isoforms. Analysis of homology-based 3D models of vaccine seed and emerging viruses facilitated the definition of HA1 AFC isoforms. CSU-based plots were used to predict which commercial vaccine combinations could have been used to cover nine selected AFC isoforms on recent Egyptian HP AIV H5N1 outbreak viruses. It is projected that expansion of the vaccine HA1 3D model database will improve international emergency responses to AIV.
Collapse
|
15
|
Arafa AS, Yamada S, Imai M, Watanabe T, Yamayoshi S, Iwatsuki-Horimoto K, Kiso M, Sakai-Tagawa Y, Ito M, Imamura T, Nakajima N, Takahashi K, Zhao D, Oishi K, Yasuhara A, Macken CA, Zhong G, Hanson AP, Fan S, Ping J, Hatta M, Lopes TJS, Suzuki Y, El-Husseiny M, Selim A, Hagag N, Soliman M, Neumann G, Hasegawa H, Kawaoka Y. Risk assessment of recent Egyptian H5N1 influenza viruses. Sci Rep 2016; 6:38388. [PMID: 27922116 PMCID: PMC5138598 DOI: 10.1038/srep38388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype are enzootic in poultry populations in different parts of the world, and have caused numerous human infections in recent years, particularly in Egypt. However, no sustained human-to-human transmission of these viruses has yet been reported. We tested nine naturally occurring Egyptian H5N1 viruses (isolated in 2014-2015) in ferrets and found that three of them transmitted via respiratory droplets, causing a fatal infection in one of the exposed animals. All isolates were sensitive to neuraminidase inhibitors. However, these viruses were not transmitted via respiratory droplets in three additional transmission experiments in ferrets. Currently, we do not know if the efficiency of transmission is very low or if subtle differences in experimental parameters contributed to these inconsistent results. Nonetheless, our findings heighten concern regarding the pandemic potential of recent Egyptian H5N1 influenza viruses.
Collapse
Affiliation(s)
- A.-S. Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza, Egypt
| | - S. Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - M. Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - T. Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - S. Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - K. Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - M. Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Y. Sakai-Tagawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - M. Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - T. Imamura
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - N. Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo 162-8640, Japan
| | - K. Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo 162-8640, Japan
| | - D. Zhao
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - K. Oishi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - A. Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - C. A. Macken
- Bioinformatics Institute, The University of Auckland, Auckland 1142, New Zealand
| | - G. Zhong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - A. P. Hanson
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - S. Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - J. Ping
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - M. Hatta
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - T. J. S. Lopes
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Y. Suzuki
- College of Life and Health Sciences, Chubu University, Aichi 487-8501, Japan
| | - M. El-Husseiny
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza, Egypt
| | - A. Selim
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza, Egypt
| | - N. Hagag
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza, Egypt
| | - M. Soliman
- General Organization for Veterinary Services, Dokki, Giza, Egypt
| | - G. Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - H. Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo 162-8640, Japan
| | - Y. Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
16
|
Abdelwhab EM, Veits J, Mettenleiter TC. Biological fitness and natural selection of amantadine resistant variants of avian influenza H5N1 viruses. Virus Res 2016; 228:109-113. [PMID: 27914930 DOI: 10.1016/j.virusres.2016.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/19/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
Abstract
Outbreaks caused by the highly pathogenic H5N1 avian influenza virus (A/H5N1) devastated the poultry industry in several countries and posed a significant pandemic threat. In addition to culling of infected poultry and vaccination, amantadine has been applied in poultry in some countries to control the spread of the virus. The prevalence of the amantadine resistance marker at position 31 (Ser31Asn) of the M2 protein increased over time. However, little is known about the biological fitness and selection of H5N1 amantadine resistant strains over their sensitive counterparts. Here, using reverse genetics we investigated the biological impact of Ser31Asn in M2 commonly seen in viruses in clade 2.2.1.1 in farmed poultry in Egypt. Findings of the current study indicated that the resistance to amantadine conferred by Asn31 evolved rapidly after the application of amantadine in commercial poultry. Both the resistant and sensitive strains replicated at similar levels in avian cell culture. Asn31 increased virus entry into the cells and cell-to-cell spread and was genetically stable for several passages in cell culture. Moreover, upon co-infection of cell culture resistant strains dominated sensitive viruses even in the absence of selection by amantadine. Together, rapid emergence, stability and domination of amantadine-resistant variants over sensitive strains limit the efficacy of amantadine in poultry.
Collapse
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt.
| | - Jutta Veits
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
17
|
Kayali G, Kandeil A, El-Shesheny R, Kayed AS, Maatouq AM, Cai Z, McKenzie PP, Webby RJ, El Refaey S, Kandeel A, Ali MA. Avian Influenza A(H5N1) Virus in Egypt. Emerg Infect Dis 2016; 22:379-88. [PMID: 26886164 PMCID: PMC4766899 DOI: 10.3201/eid2203.150593] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt.
Collapse
|
18
|
Abdelwhab ESM, Veits J, Tauscher K, Ziller M, Grund C, Hassan MK, Shaheen M, Harder TC, Teifke J, Stech J, Mettenleiter TC. Progressive glycosylation of the haemagglutinin of avian influenza H5N1 modulates virus replication, virulence and chicken-to-chicken transmission without significant impact on antigenic drift. J Gen Virol 2016; 97:3193-3204. [PMID: 27902339 DOI: 10.1099/jgv.0.000648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Highly pathogenic H5N1 avian influenza virus (A/H5N1) devastated the poultry industry and continues to pose a pandemic threat. Studying the progressive genetic changes in A/H5N1 after long-term circulation in poultry may help us to better understand A/H5N1 biology in birds. A/H5N1 clade 2.2.1.1 antigenic drift viruses have been isolated from vaccinated commercial poultry in Egypt. They exhibit a peculiar stepwise accumulation of glycosylation sites (GS) in the haemagglutinin (HA) with viruses carrying, beyond the conserved 5 GS, additional GS at amino acid residues 72, 154, 236 and 273 resulting in 6, 7, 8 or 9 GS in the HA. Available information about the impact of glycosylation on virus fitness and pathobiology is mostly derived from mammalian models. Here, we generated recombinant viruses imitating the progressive acquisition of GS in HA and investigated their biological relevance in vitro and in vivo. Our in vitro results indicated that the accumulation of GS correlated with increased glycosylation, increased virus replication, neuraminidase activity, cell-to-cell spread and thermostability, however, strikingly, without significant impact on virus escape from neutralizing antibodies. In vivo, glycosylation modulated virus virulence, tissue tropism, replication and chicken-to-chicken transmission. Predominance in the field was towards viruses with hyperglycosylated HA. Together, progressive glycosylation of the HA may foster persistence of A/H5N1 by increasing replication, stability and bird-to-bird transmission without significant impact on antigenic drift.
Collapse
Affiliation(s)
- El-Sayed M Abdelwhab
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt.,Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Jutta Veits
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Tauscher
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Mario Ziller
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christian Grund
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Mohamed K Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Momtaz Shaheen
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Timm C Harder
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Jens Teifke
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Jürgen Stech
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
19
|
Naguib MM, Abdelwhab EM, Harder TC. Evolutionary features of influenza A/H5N1 virus populations in Egypt: poultry and human health implications. Arch Virol 2016; 161:1963-7. [DOI: 10.1007/s00705-016-2849-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/28/2016] [Indexed: 01/29/2023]
|
20
|
Arafa A, El-Masry I, Kholosy S, Hassan MK, Dauphin G, Lubroth J, Makonnen YJ. Phylodynamics of avian influenza clade 2.2.1 H5N1 viruses in Egypt. Virol J 2016; 13:49. [PMID: 27000533 PMCID: PMC4802640 DOI: 10.1186/s12985-016-0477-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/26/2016] [Indexed: 12/03/2022] Open
Abstract
Background Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype are widely distributed within poultry populations in Egypt and have caused multiple human infections. Linking the epidemiological and sequence data is important to understand the transmission, persistence and evolution of the virus. This work describes the phylogenetic dynamics of H5N1 based on molecular characterization of the hemagglutinin (HA) gene of isolates collected from February 2006 to May 2014. Methods Full-length HA sequences of 368 H5N1 viruses were generated and were genetically analysed to study their genetic evolution. They were collected from different poultry species, production sectors, and geographic locations in Egypt. The Bayesian Markov Chain Monte Carlo (BMCMC) method was applied to estimate the evolutionary rates among different virus clusters; additionally, an analysis of selection pressures in the HA gene was performed using the Single Likelihood Ancestor Counting (SLAC) method. Results The phylogenetic analysis of the H5 gene from 2006–14 indicated the presence of one virus introduction of the classic clade (2.2.1) from which two main subgroups were originated, the variant subgroup which was further subdivided into 2 sub-divisions (2.2.1.1 and 2.2.1.1a) and the endemic subgroup (2.2.1.2). The clade 2.2.1.2 showed a high evolution rate over a period of 6 years (6.9 × 10−3 sub/site/year) in comparison to the 2.2.1.1a variant cluster (7.2 × 10−3 over a period of 4 years). Those two clusters are under positive selection as they possess 5 distinct positively selected sites in the HA gene. The mutations at 120, 154, and 162 HA antigenic sites and the other two mutations (129∆, I151T) that occurred from 2009–14 were found to be stable in the 2.2.1.2 clade. Additionally, 13 groups of H5N1 HPAI viruses were identified based on their amino acid sequences at the cleavage site and “EKRRKKR” became the dominant pattern beginning in 2013. Conclusions Continuous evolution of H5N1 HPAI viruses in Egypt has been observed in all poultry farming and production systems in almost all regions of the country. The wide circulation of the 2.2.1.2 clade carrying triple mutations (120, 129∆, I151T) associated with increased binding affinity to human receptors is an alarming finding of public health importance. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0477-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdelsatar Arafa
- Food and Agriculture Organization of the United Nations (FAO) - Emergency Center of Transboundary Animal Diseases (ECTAD), 11 Al Eslah El Zerai St, P.O. Box, 2223, Giza, Egypt. .,National Laboratory for Veterinary Quality Control on Poultry Production (NLQP), Animal Health Research Institute, P.O. Box, 264, Giza, Egypt.
| | - Ihab El-Masry
- Food and Agriculture Organization of the United Nations (FAO) - Emergency Center of Transboundary Animal Diseases (ECTAD), 11 Al Eslah El Zerai St, P.O. Box, 2223, Giza, Egypt
| | - Shereen Kholosy
- National Laboratory for Veterinary Quality Control on Poultry Production (NLQP), Animal Health Research Institute, P.O. Box, 264, Giza, Egypt
| | - Mohammed K Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production (NLQP), Animal Health Research Institute, P.O. Box, 264, Giza, Egypt
| | - Gwenaelle Dauphin
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - Juan Lubroth
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - Yilma J Makonnen
- Food and Agriculture Organization of the United Nations (FAO) - Emergency Center of Transboundary Animal Diseases (ECTAD), 11 Al Eslah El Zerai St, P.O. Box, 2223, Giza, Egypt.
| |
Collapse
|
21
|
Abdelwhab EM, Hassan MK, Abdel-Moneim AS, Naguib MM, Mostafa A, Hussein ITM, Arafa A, Erfan AM, Kilany WH, Agour MG, El-Kanawati Z, Hussein HA, Selim AA, Kholousy S, El-Naggar H, El-Zoghby EF, Samy A, Iqbal M, Eid A, Ibraheem EM, Pleschka S, Veits J, Nasef SA, Beer M, Mettenleiter TC, Grund C, Ali MM, Harder TC, Hafez HM. Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on. INFECTION GENETICS AND EVOLUTION 2016; 40:80-90. [PMID: 26917362 DOI: 10.1016/j.meegid.2016.02.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/09/2022]
Abstract
It is almost a decade since the highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 was introduced to Egypt in 2005, most likely, via wild birds; marking the longest endemic status of influenza viruses in poultry outside Asia. The endemic A/H5N1 in Egypt still compromises the poultry industry, poses serious hazards to public health and threatens to become potentially pandemic. The control strategies adopted for A/H5N1 in Egyptian poultry using diverse vaccines in commercialized poultry neither eliminated the virus nor did they decrease its evolutionary rate. Several virus clades have evolved, a few of them disappeared and others prevailed. Disparate evolutionary traits in both birds and humans were manifested by accumulation of clade-specific mutations across viral genomes driven by a variety of selection pressures. Viruses in vaccinated poultry populations displayed higher mutation rates at the immunogenic epitopes, promoting viral escape and reducing vaccine efficiency. On the other hand, viruses isolated from humans displayed changes in the receptor binding domain, which increased the viral affinity to bind to human-type glycan receptors. Moreover, viral pathogenicity exhibited several patterns in different hosts. This review aims to provide an overview of the viral evolution, pathogenicity and vaccine efficacy of A/H5N1 in Egypt during the last ten years.
Collapse
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - M K Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - A S Abdel-Moneim
- Virology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; Microbiology Department, Virology Division, College of Medicine, Taif University, Al-Taif 21944, Saudi Arabia
| | - M M Naguib
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany; National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - A Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza 12311, Egypt; Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, Giessen 35392, Germany
| | - I T M Hussein
- Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - A Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - A M Erfan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - W H Kilany
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - M G Agour
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt; Animal Health Research Institute, Dokki, 12618 Giza, Egypt
| | - Z El-Kanawati
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - H A Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - A A Selim
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - S Kholousy
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - H El-Naggar
- Veterinary Serum and Vaccine Research Institute, Abbasia, El-Sekka El-Beida St., PO Box 131, Cairo 11381, Egypt
| | - E F El-Zoghby
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - A Samy
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - M Iqbal
- Avian Influenza Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, United Kingdom
| | - A Eid
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - E M Ibraheem
- Animal Health Research Institute, Dokki, 12618 Giza, Egypt
| | - S Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, Giessen 35392, Germany
| | - J Veits
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - S A Nasef
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - M Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - T C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - C Grund
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - M M Ali
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt; Animal Health Research Institute, Dokki, 12618 Giza, Egypt
| | - T C Harder
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - H M Hafez
- Institute of Poultry Diseases, Freie Universität Berlin, Königsweg 63, 14163 Berlin, Germany.
| |
Collapse
|
22
|
Abdelwhab EM, Abdel-Moneim AS. Epidemiology, ecology and gene pool of influenza A virus in Egypt: will Egypt be the epicentre of the next influenza pandemic? Virulence 2016; 6:6-18. [PMID: 25635701 DOI: 10.4161/21505594.2014.992662] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Outside Asia, Egypt is considered to be an influenza H5N1 epicentre and presents a far greater pandemic risk than other countries. The long-term endemicity of H5N1 and the recent emergence of H9N2 in poultry call attention to the need for unravelling the epidemiology, ecology and highly diverse gene pool of influenza A virus (IAV) in Egypt which is the aim of this review. Isolation of a considerable number of IAV subtypes from several avian and mammalian hosts was described. Co-infections of poultry with H5N1 and H9N2 and subclinical infections of pigs and humans with H1N1 and H5N1 may raise the potential for the reassortment of these viruses. Moreover, the adjustment of IAV genomes, particularly H5N1, to optimize their evolution toward efficient transmission in human is progressing in Egypt. Understanding the present situation of influenza viruses in Egypt will help in the control of the disease and can potentially prevent a possible pandemic.
Collapse
Key Words
- ELISA, Enzyme linked immunosorbent assay
- Egypt
- H5N1
- H9N2
- HA, hemagglutinin
- HI, hemagglutination inhibition test
- HPAIV, highly pathogenic avian influenza viruses
- IAV, influenza A viruses
- LBM, live bird markets
- LPAIV, low pathogenic avian influenza viruses
- M, matrix
- NA, neuraminidase
- NAMRU-3, Naval Medical Research Unit–3
- NLQP, National Laboratory for Veterinary Quality Control on Poultry Production
- NS, non-structural
- PA, acidic polymerase
- PB, basic polymerase
- WHO, World Health Organization
- epidemiology
- influenza
- pandemic
- reassortment
- virulence
Collapse
Affiliation(s)
- E M Abdelwhab
- a National Laboratory for Veterinary Quality Control on Poultry Production ; Animal Health Research Institute ; Dokki , Giza , Egypt
| | | |
Collapse
|
23
|
Rohaim MA, El-Naggar RF, Hamoud MM, Nasr SA, Ismael E, Laban SE, Ahmed HA, Munir M. Re-Emergence of a Novel H5N1 Avian Influenza Virus Variant Subclade 2.2.1.1 in Egypt During 2014. Transbound Emerg Dis 2016; 64:1306-1312. [DOI: 10.1111/tbed.12472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- M. A. Rohaim
- Department of Virology; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - R. F. El-Naggar
- Department of Virology; Faculty of Veterinary Medicine; University of Sadat City; Giza Egypt
| | - M. M. Hamoud
- Department of Poultry and Rabbit Diseases; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - S. A. Nasr
- Department of Animal Hygiene and Veterinary Management; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - E. Ismael
- Department of Animal Hygiene and Veterinary Management; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - S. E. Laban
- Department of Animal Hygiene and Veterinary Management; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - H. A. Ahmed
- Department of Virology; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - M. Munir
- Avian Viral Diseases Programme; The Pirbright Institute; Woking Surrey UK
| |
Collapse
|
24
|
Kammon A, Heidari A, Dayhum A, Eldaghayes I, Sharif M, Monne I, Cattoli G, Asheg A, Farhat M, Kraim E. Characterization of Avian Influenza and Newcastle Disease Viruses from Poultry in Libya. Avian Dis 2015; 59:422-30. [PMID: 26478162 DOI: 10.1637/11068-032215-resnote.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
On March 2013, the Libyan poultry industry faced severe outbreaks due to mixed infections of APMV-1 (Newcastle disease) and low pathogenic avian influenza (AI) of the H9N2 subtype which were causing high mortality and great economic losses. APMV-1 and H9N2 were isolated and characterized. Genetic sequencing of the APMV-1/chicken/Libya/13VIR/ 7225-1/2013 isolate revealed the presence of a velogenic APMV-1 belonging to lineage 5 (GRRRQKR*F Lin.5) or genotype VII in class II, according to the nomenclature in use. Three AI viruses of the H9N2 subtype, namely A/avian/Libya/13VIR7225-2/2013, A/avian/Libya/13VIR7225-3/2013, and A/avian/Libya/13VIR7225-5/2013, were isolated and found to belong to the G1 lineage. Analysis of amino acid sequences showed that the analyzed H9N2 viruses contained the amino acid Leu at position 226 (H3 numbering) at the receptor binding site of the HA, responsible for human virus-like receptor specificity. On March 2014, an outbreak of highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was diagnosed in a backyard poultry farm in an eastern region of Libya. The H5N1 isolate (A/chicken/Libya/14VIR2749-16/2014) was detected by real time RT-PCR (rRT-PCR). Genetic characterization of the HA gene revealed that the identified subtype was highly pathogenic, belonged to the 2.2.1 lineage, and clustered with recent Egyptian viruses. This study revealed the presence of a velogenic APMV-1 genotype and of two influenza subtypes, namely HPAI H5N1 and H9N2, which are of major interest for public and animal health. Considering these findings, more investigations must be undertaken to establish and implement adequate influenza surveillance programs; this would allow better study of the epidemiology of APMV-1 genotype VII in Libya and evaluation of the current vaccination strategies.
Collapse
|
25
|
Molia S, Traoré I, Kamissoko B, Diakité A, Sidibé MS, Sissoko KD, Pfeiffer DU. Characteristics of commercial and traditional village poultry farming in Mali with a focus on practices influencing the risk of transmission of avian influenza and Newcastle disease. Acta Trop 2015; 150:14-22. [PMID: 26113175 DOI: 10.1016/j.actatropica.2015.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
We aimed at characterizing commercial and traditional village poultry farming in Mali, with a focus on practices influencing the risk of transmission of avian influenza and Newcastle disease. Surveys were conducted in 2009-2011 in a study area covering approximately 98% of the Malian poultry population. Among the 282 commercial farms investigated, of which 64 had not been known by the government authorities, 83% were located within a 50km radius from the capitals of the country and regions and 54% had low biosecurity standard. Among the 152 randomly selected village household flocks investigated, characteristics were overall similar to those in other African countries but some differences were notable including a large flock size (median 44 poultry), a low presence of ducks and geese (11% and 1.1% of flocks, respectively), vaccination against Newcastle disease being common (49% of flocks), a low proportion of households selling sick and dead birds (0.7% and 0%, respectively) and limited cohabitation between poultry and humans at night. Our recommendations to limit the risk of disease transmission include (1) for commercial farms, to introduce compulsory farm registration and accreditation, to increase technical proficiency and access to credit for farms with low biosecurity, and to support poultry producer associations; (2) for village poultry, to promote better quarantine and management of sick and dead birds. Such detailed knowledge of country-specific characteristics of poultry production systems is essential to be able to develop more efficient disease risk management policies.
Collapse
|
26
|
Development of broadly reactive H5N1 vaccine against different Egyptian H5N1 viruses. Vaccine 2015; 33:2670-7. [DOI: 10.1016/j.vaccine.2015.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 03/18/2015] [Accepted: 04/10/2015] [Indexed: 11/24/2022]
|
27
|
Arafa AS, Naguib MM, Luttermann C, Selim AA, Kilany WH, Hagag N, Samy A, Abdelhalim A, Hassan MK, Abdelwhab EM, Makonnen Y, Dauphin G, Lubroth J, Mettenleiter TC, Beer M, Grund C, Harder TC. Emergence of a novel cluster of influenza A(H5N1) virus clade 2.2.1.2 with putative human health impact in Egypt, 2014/15. ACTA ACUST UNITED AC 2015; 20:2-8. [PMID: 25860390 DOI: 10.2807/1560-7917.es2015.20.13.21085] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A distinct cluster of highly pathogenic avian influenzaviruses of subtype A(H5N1) has been found to emergewithin clade 2.2.1.2 in poultry in Egypt since summer2014 and appears to have quickly become predominant.Viruses of this cluster may be associated withincreased incidence of human influenza A(H5N1) infectionsin Egypt over the last months.
Collapse
Affiliation(s)
- A S Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza, Egypt
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Marzouk E, Abd El-Hamid HS, Awad AM, Zessin KH, Abdelwhab EM, Hafez HM. In vitro inactivation of two Egyptian A/H5N1 viruses by four commercial chemical disinfectants. Avian Dis 2015; 58:462-7. [PMID: 25518443 DOI: 10.1637/10771-011614-resnote.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The highly pathogenic H5N1 avian influenza virus (A/H5N1) devastated the poultry industry and posed a serious health threat. Cleaning and disinfection are essential parts of preventative and postoutbreak management of A/H5N1 infections in poultry. In this preliminary study, we used suspension and carrier tests to evaluate the impact of concentration, time of exposure, surface porosity, and organic matter on the ability of four commercial chemical disinfectants to inactivate two A/H5N1 viruses of clade 2.2.1 isolated in 2006 and 2010 from broiler flocks in Egypt. Viruses were incubated with 0.5%, 1%, and 2% of formalin, glutaraldehyde, TH4, and Virkon S for 15, 30, 60, and 120 min at room temperature (22 +/- 2 C). In suspension tests, in the absence of organic matter, all disinfectants, at each concentration, except Virkon S 0.5%, effectively inactivated virus suspensions after a 15-min exposure time. In the presence of organic matter, the use of low concentrations of formalin (0.5%), glutaraldehyde (0.5%), or Virkon S (0.5%) was not sufficient to inactivate the viruses after 15 min. In gauze carrier tests, only formalin at any concentration for 15 min was sufficient to inactivate the viruses, whereas different concentrations or exposure times were required for glutaraldehyde (0.5% for 60 min), TH4 (0.5% for 30 min), and Virkon S (0.5% for 60 min or 1% for 30 min). In wood carrier tests, total inactivation of the virus was obtained at concentrations of 0.5% for 30 min (formalin and TH4) or 60 min (glutaraldehyde and Virkon S). This study emphasizes the need to use high concentrations of and/or extended time of exposure to disinfectants for efficient inactivation of A/H5N1, particularly in the presence of organic matter or different surfaces, which are common in poultry operations. In addition, it seemed that the virus isolated in 2010 was more resistant to disinfectants than the isolate from 2006 when wood was used as a carrier.
Collapse
|
29
|
Bird to human transmission biases and vaccine escape mutants in H5N1 infections. PLoS One 2014; 9:e100754. [PMID: 24988306 PMCID: PMC4079711 DOI: 10.1371/journal.pone.0100754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/30/2014] [Indexed: 11/24/2022] Open
Abstract
Background The avian influenza A H5N1 virus occasionally infects humans, with high mortality rates. Although all current human infections are from avian-to-human transmission, it has been shown that H5N1 can be evolved to transmit between mammals, and is therefore a pandemic threat. For H5N1 surveillance, it is of interest to identify the avian isolates most likely to infect humans. In this study, we develop a method to identify mutations significantly associated with avian to human transmission. Method Using protein sequences for the surface glycoprotein hemagglutinin from avian and human H5N1 isolates in China, Egypt, and Indonesia from the years 1996–2011, we used Principle Component Analysis and a Maximum Likelihood Multinomial method to identify mutations associated with avian to human transmission. In each geographic region, transmission bias residues were identified using two signatures: a) significantly different amino-acid frequencies in human isolates compared to avian isolates from the same year, and b) significantly low probability of neutral evolution of the human isolates from the avian viral pool of the previous year. Results In each geographic region, we find specific transmission bias mutations associated with human infections. These mutations are located in antigenic regions and receptor binding, glycosylation and polybasic cleavage sites of HA. We show that human isolates derive from a limited, subset of the avian pool characterized by geography specific mutations. In Egypt, two of three PCA clusters have very few human isolates but are highly enriched in mutations associated with a vaccine escape mutant H5N1 avian sub-clade that is known to be resistant to the Mexican H5N2 vaccine Furthermore, at these transmission bias associated residues, the mutations characteristic of these two clusters are distinct from those associated with the cluster enriched in human isolates, suggesting that vaccine resistant avian strains are unable to infect humans. Our results are relevant for surveillance and vaccination strategies for human H5N1 infections.
Collapse
|
30
|
El-Sayed A, Prince A, Fawzy A, Nadra-Elwgoud, Abdou MI, Omar L, Fayed A, Salem M. Sero-prevalence of avian influenza in animals and human in Egypt. Pak J Biol Sci 2014; 16:524-9. [PMID: 24498821 DOI: 10.3923/pjbs.2013.524.529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In opposite to most countries, avian influenza virus H5N1 became endemic in Egypt. Since, its first emerge in 2006 in Egypt, the virus could infect different species of birds and animals and even human. Beside the great economic losses to the local poultry industry in Egypt, the virus infected 166 confirmed human cases, 59 cases ended fatally. In the present study, the persistence of the avian influenza in the Egyptian environment was studied. For this purpose, serum samples were collected from human, cattle, buffaloes, sheep, goat, horses, donkeys, swine, sewage rats, stray dogs and stray cats. The sera were collected from Cairo and the surrounding governorates to be examined for the presence of anti-H5N1 antibodies by Haemagglutination Inhibition Test (HI) and ELISA test. Clear differences in the seroprevalence were noticed among different species and also between the results obtained by both techniques indicating the difference in test accuracy. The present data indicate wide spread of the H5N1 virus in the Egyptian environment.
Collapse
Affiliation(s)
- A El-Sayed
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - A Prince
- Agricultural Research Service, USDA, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA
| | - A Fawzy
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Nadra-Elwgoud
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - M I Abdou
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - L Omar
- Central Laboratories for Evaluation of Veterinary Biologics, Abbasia, Cairo, Egypt
| | - A Fayed
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - M Salem
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
31
|
Sitaras I, Kalthoff D, Beer M, Peeters B, de Jong MCM. Immune escape mutants of Highly Pathogenic Avian Influenza H5N1 selected using polyclonal sera: identification of key amino acids in the HA protein. PLoS One 2014; 9:e84628. [PMID: 24586231 PMCID: PMC3934824 DOI: 10.1371/journal.pone.0084628] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 11/16/2013] [Indexed: 11/19/2022] Open
Abstract
Evolution of Avian Influenza (AI) viruses--especially of the Highly Pathogenic Avian Influenza (HPAI) H5N1 subtype--is a major issue for the poultry industry. HPAI H5N1 epidemics are associated with huge economic losses and are sometimes connected to human morbidity and mortality. Vaccination (either as a preventive measure or as a means to control outbreaks) is an approach that splits the scientific community, due to the risk of it being a potential driving force in HPAI evolution through the selection of mutants able to escape vaccination-induced immunity. It is therefore essential to study how mutations are selected due to immune pressure. To this effect, we performed an in vitro selection of mutants from HPAI A/turkey/Turkey/1/05 (H5N1), using immune pressure from homologous polyclonal sera. After 42 rounds of selection, we identified 5 amino acid substitutions in the Haemagglutinin (HA) protein, most of which were located in areas of antigenic importance and suspected to be prone to selection pressure. We report that most of the mutations took place early in the selection process. Finally, our antigenic cartography studies showed that the antigenic distance between the selected isolates and their parent strain increased with passage number.
Collapse
Affiliation(s)
- Ioannis Sitaras
- Quantitative Veterinary Epidemiology, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
- Department of Virology, Central Veterinary Institute of Wageningen University and Research Centre, Lelystad, The Netherlands
| | - Donata Kalthoff
- Institute of Diagnostic Virology, Friedrich-Loeffler Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler Institut, Greifswald-Insel Riems, Germany
| | - Ben Peeters
- Department of Virology, Central Veterinary Institute of Wageningen University and Research Centre, Lelystad, The Netherlands
| | - Mart C. M. de Jong
- Quantitative Veterinary Epidemiology, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
32
|
Phylogeography of influenza A H5N1 clade 2.2.1.1 in Egypt. BMC Genomics 2013; 14:871. [PMID: 24325606 PMCID: PMC3878885 DOI: 10.1186/1471-2164-14-871] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/04/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza A H5N1 has killed millions of birds and raises serious public health concern because of its potential to spread to humans and cause a global pandemic. While the early focus was in Asia, recent evidence suggests that Egypt is a new epicenter for the disease. This includes characterization of a variant clade 2.2.1.1, which has been found almost exclusively in Egypt.We analyzed 226 HA and 92 NA sequences with an emphasis on the H5N1 2.2.1.1 strains in Egypt using a Bayesian discrete phylogeography approach. This allowed modeling of virus dispersion between Egyptian governorates including the most likely origin. RESULTS Phylogeography models of hemagglutinin (HA) and neuraminidase (NA) suggest Ash Sharqiyah as the origin of virus spread, however the support is weak based on Kullback-Leibler values of 0.09 for HA and 0.01 for NA. Association Index (AI) values and Parsimony Scores (PS) were significant (p-value < 0.05), indicating that dispersion of H5N1 in Egypt was geographically structured. In addition, the Ash Sharqiyah to Al Gharbiyah and Al Fayyum to Al Qalyubiyah routes had the strongest statistical support. CONCLUSION We found that the majority of routes with strong statistical support were in the heavily populated Delta region. In particular, the Al Qalyubiyah governorate appears to represent a popular location for virus transition as it represented a large portion of branches in both trees. However, there remains uncertainty about virus dispersion to and from this location and thus more research needs to be conducted in order to examine this.Phylogeography can highlight the drivers of H5N1 emergence and spread. This knowledge can be used to target public health efforts to reduce morbidity and mortality. For Egypt, future work should focus on using data about vaccination and live bird markets in phylogeography models to study their impact on H5N1 diffusion within the country.
Collapse
|
33
|
Sonnberg S, Webby RJ, Webster RG. Natural history of highly pathogenic avian influenza H5N1. Virus Res 2013; 178:63-77. [PMID: 23735535 PMCID: PMC3787969 DOI: 10.1016/j.virusres.2013.05.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 05/03/2013] [Accepted: 05/20/2013] [Indexed: 12/27/2022]
Abstract
The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in Southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans.
Collapse
Affiliation(s)
- Stephanie Sonnberg
- Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA
| | - Richard J. Webby
- Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA
| | - Robert G. Webster
- corresponding author, Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA Tel +1 901 595 3400 Fax +1 901 595 8559
| |
Collapse
|
34
|
Cross-clade protection against H5N1 HPAI strains recently isolated from commercial poultry in Egypt with a single dose of a baculovirus based vaccine. Vaccine 2013; 31:5075-81. [DOI: 10.1016/j.vaccine.2013.08.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/19/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022]
|
35
|
Ibrahim M, Eladl AH, Sultan HA, Arafa AS, Abdel Razik AG, Abd El Rahman S, El-Azm KIA, Saif YM, Lee CW. Antigenic analysis of H5N1 highly pathogenic avian influenza viruses circulating in Egypt (2006-2012). Vet Microbiol 2013; 167:651-61. [PMID: 24139721 DOI: 10.1016/j.vetmic.2013.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/25/2022]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 in Egypt circulated continuously after its introduction in February 2006 with substantial economic losses and frequent human infections. Phylogenetic analysis of the available HA sequences revealed the presence of two main sublineages; the classic 2.2.1 and the variant 2.2.1.1. The classic 2.2.1 had subdivided into two clusters of viruses; cluster C1 contained the originally introduced virus and isolates from 2006 to 2009 and cluster C2 emerged in 2007 and continues to circulate. The variant 2.2.1.1 represents the isolates mainly from chickens and subdivided into two clusters; cluster V1 contains isolates from 2007 to 2009 and cluster V2 contains isolates from 2008 to 2011. Sequence analysis revealed 28 amino acid mutations in the previously reported antigenic sites and high evolution rate which may be due to selective pressure from vaccination and/or natural infection. Antigenic analysis of 18 H5N1 isolates from 2006 to 2012 that represent different clusters was conducted using hemagglutination inhibition (HI) and virus neutralization (VN) assays using hyperimmune sera produced by immunizing SPF chickens with inactivated whole-virus. Antigenic relatedness of ancestral Egyptian H5N1 isolate (459-3/06) with other isolates ranged from 30.7% to 79.1% indicating significant antigenic drift of the H5N1 viruses from the ancestral strains. The antigenic relatedness between C2 and V2 clusters ranged from 28.9% to 68% supporting the need for vaccine seed strains from both clusters. Interestingly, A/CK/EG/1709-6/2008 H5N1 strain showed a broad cross reactivity against viruses in different H5N1 clusters (antigenic relatedness ranged from 63.9% to 85.8%) demonstrating a potential candidate as a vaccine strain. Antigenic cartography which facilitates a quantitative interpretation and easy visualization of serological data was constructed based on HI results and further demonstrated the several antigenic groups among Egyptian H5N1 viruses. In conclusion, the cross reactivity between the co-circulating H5N1 strains may not be adequate for protection against each other and it is recommended to test vaccines that contain isolates from different antigenic groups in experimental infection trials for the selection of vaccine seed strain. Furthermore, the continuous monitoring for detecting the emerging variants followed by detailed antigenic analysis for updating vaccines is warranted.
Collapse
Affiliation(s)
- Mahmoud Ibrahim
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, United States; Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Sadat City, Menoufia, Egypt
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
El-Zoghby EF, Aly MM, Nasef SA, Hassan MK, Arafa AS, Selim AA, Kholousy SG, Kilany WH, Safwat M, Abdelwhab EM, Hafez HM. Surveillance on A/H5N1 virus in domestic poultry and wild birds in Egypt. Virol J 2013; 10:203. [PMID: 23799999 PMCID: PMC3699397 DOI: 10.1186/1743-422x-10-203] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/13/2013] [Indexed: 11/27/2022] Open
Abstract
Background The endemic H5N1 high pathogenicity avian influenza virus (A/H5N1) in poultry in Egypt continues to cause heavy losses in poultry and poses a significant threat to human health. Methods Here we describe results of A/H5N1 surveillance in domestic poultry in 2009 and wild birds in 2009–2010. Tracheal and cloacal swabs were collected from domestic poultry from 22024 commercial farms, 1435 backyards and 944 live bird markets (LBMs) as well as from 1297 wild birds representing 28 different types of migratory birds. Viral RNA was extracted from a mix of tracheal and cloacal swabs media. Matrix gene of avian influenza type A virus was detected using specific real-time reverse-transcription polymerase chain reaction (RT-qPCR) and positive samples were tested by RT-qPCR for simultaneous detection of the H5 and N1 genes. Results In this surveillance, A/H5N1 was detected from 0.1% (n = 23/) of examined commercial poultry farms, 10.5% (n = 151) of backyard birds and 11.4% (n = 108) of LBMs but no wild bird tested positive for A/H5N1. The virus was detected from domestic poultry year-round with higher incidence in the warmer months of summer and spring particularly in backyard birds. Outbreaks were recorded mostly in Lower Egypt where 95.7% (n = 22), 68.9% (n = 104) and 52.8% (n = 57) of positive commercial farms, backyards and LBMs were detected, respectively. Higher prevalence (56%, n = 85) was reported in backyards that had mixed chickens and waterfowl together in the same vicinity and LBMs that had waterfowl (76%, n = 82). Conclusion Our findings indicated broad circulation of the endemic A/H5N1 among poultry in 2009 in Egypt. In addition, the epidemiology of A/H5N1 has changed over time with outbreaks occurring in the warmer months of the year. Backyard waterfowl may play a role as a reservoir and/or source of A/H5N1 particularly in LBMs. The virus has been established in poultry in the Nile Delta where major metropolitan areas, dense human population and poultry stocks are concentrated. Continuous surveillance, tracing the source of live birds in the markets and integration of multifaceted strategies and global collaboration are needed to control the spread of the virus in Egypt.
Collapse
Affiliation(s)
- Elham F El-Zoghby
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, PO Box 246, Giza 12618, Egypt
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hassan MK, Jobre Y, Arafa A, Abdelwhab EM, Kilany WH, Khoulosy SG, Bakry NR, Baile E, Ali A, Ankers P, Lubroth J. Detection of A/H5N1 virus from asymptomatic native ducks in mid-summer in Egypt. Arch Virol 2013; 158:1361-5. [PMID: 23381391 DOI: 10.1007/s00705-012-1599-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/29/2012] [Indexed: 11/27/2022]
Abstract
In spite of all the efforts to control H5N1 in Egypt, the virus still circulates endemically, causing significant economic losses in the poultry industry and endangering human health. This study aimed to elucidate the role of clinically healthy ducks in perpetuation of H5N1 virus in Egypt in mid-summer, when the disease prevalence is at its lowest level. A total of 927 cloacal swabs collected from 111 household and 71 commercial asymptomatic duck flocks were screened by using a real-time reverse transcription polymerase chain reaction. Only five scavenging ducks from a native breed in three flocks were found infected with H5N1 virus. This study indicates that H5N1 virus can persist in free-range ducks in hot weather, in contrast to their counterparts confined in household or commercial settings. Surveillance to identify other potential reservoirs is essential.
Collapse
Affiliation(s)
- M K Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production, P.O. Box 246, Dokki, Giza 12618, Egypt.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|