1
|
Iqbal Z, Masood M, Shafiq M, Briddon RW. Temporal changes in the levels of virus and betasatellite DNA in B. tabaci feeding on CLCuD affected cotton during the growing season. Front Microbiol 2024; 15:1410568. [PMID: 38841073 PMCID: PMC11150673 DOI: 10.3389/fmicb.2024.1410568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Cotton, a key source of income for Pakistan, has suffered significantly by cotton leaf curl disease (CLCuD) since 1990. This disease is caused by a complex of phylogenetically-related begomovirus (genus Begomovirus, family Geminiviridae) species and a specific betasatellite (genus Betasatellite, family Tolecusatellitidae), cotton leaf curl Multan betasatellite. Additionally, another DNA satellite called alphasatellite (family Alphasatellitidae), is also frequently associated. All these virus components are vectored by a single species of whitefly (Bemisia tabaci). While many factors affect cotton productivity, including cotton variety, sowing time, and environmental cues such as temperature, humidity, and rainfall, CLCuD is a major biotic constraint. Although the understanding of begomoviruses transmission by whiteflies has advanced significantly over the past three decades, however, the in-field seasonal dynamics of the viruses in the insect vector remained an enigma. This study aimed to assess the levels of virus and betasatellite in whiteflies collected from cotton plants throughout the cotton growing season from 2014 to 2016. Notably, begomovirus levels showed no consistent pattern, with minimal variations, ranging from 0.0017 to 0.0074 ng.μg-1 of the genomic DNA in 2014, 0.0356 to 0.113 ng.μg-1 of the genomic DNA in 2015, and 0.0517 to 0.0791 ng.μg-1 of the genomic DNA in 2016. However, betasatellite levels exhibited a distinct pattern. During 2014 and 2015, it steadily increased throughout the sampling period (May to September). While 2016 showed a similar trend from the start of sampling (July) to September but a decline in October (end of sampling). Such a study has not been conducted previously, and could potentially provide valuable insights about the epidemiology of the virus complex causing CLCuD and possible means of controlling losses due to it.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mariyam Masood
- Department of Zoology, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Shafiq
- Department of Biotechnology, University of Management and Technology, Sialkot Campus, Sialkot, Pakistan
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
2
|
Nalla MK, Schafleitner R, Pappu HR, Barchenger DW. Current status, breeding strategies and future prospects for managing chilli leaf curl virus disease and associated begomoviruses in Chilli ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1223982. [PMID: 37936944 PMCID: PMC10626458 DOI: 10.3389/fpls.2023.1223982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Chilli leaf curl virus disease caused by begomoviruses, has emerged as a major threat to global chilli production, causing severe yield losses and economic harm. Begomoviruses are a highly successful and emerging group of plant viruses that are primarily transmitted by whiteflies belonging to the Bemisia tabaci complex. The most effective method for mitigating chilli leaf curl virus disease losses is breeding for host resistance to Begomovirus. This review highlights the current situation of chilli leaf curl virus disease and associated begomoviruses in chilli production, stressing the significant issues that breeders and growers confront. In addition, the various breeding methods used to generate begomovirus resistant chilli cultivars, and also the complicated connections between the host plant, vector and the virus are discussed. This review highlights the importance of resistance breeding, emphasising the importance of multidisciplinary approaches that combine the best of traditional breeding with cutting-edge genomic technologies. subsequently, the article highlights the challenges that must be overcome in order to effectively deploy begomovirus resistant chilli varieties across diverse agroecological zones and farming systems, as well as understanding the pathogen thus providing the opportunities for improving the sustainability and profitability of chilli production.
Collapse
Affiliation(s)
- Manoj Kumar Nalla
- World Vegetable Center, South and Central Asia Regional Office, Hyderabad, India
| | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
3
|
Ataie Kachoie E, Behjatnia SAA, Kharazmi S. Expression of Human Immunodeficiency Virus type 1 (HIV-1) coat protein genes in plants using cotton leaf curl Multan betasatellite-based vector. PLoS One 2018; 13:e0190403. [PMID: 29304063 PMCID: PMC5755781 DOI: 10.1371/journal.pone.0190403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022] Open
Abstract
It has already been demonstrated that a betasatellite associated with cotton leaf curl Multan virus (CLCuMB) can be used as a plant and animal gene delivery vector to plants. To examine the ability of CLCuMB as a tool to transfer coat protein genes of HIV-1 to plants, two recombinant CLCuMB constructs in which the CLCuMB βC1 ORF was replaced with two HIV-1 genes fractions including a 696 bp DNA fragment related to the HIV-1 p24 gene and a 1501 bp DNA fragment related to the HIV-1 gag gene were constructed. Gag is the HIV-1 coat protein gene and p24 is a component of the particle capsid. Gag and p24 are used for vaccine production. Recombinant constructs were inoculated to Nicotiana glutinosa and N. benthamiana plants in the presence of an Iranian isolate of Tomato yellow leaf curl virus (TYLCV-[Ab]) as a helper virus. PCR analysis of inoculated plants indicated that p24 gene was successfully replicated in inoculated plants, but the gag gene was not. Real-time PCR and ELISA analysis of N. glutinosa and N. benthamiana plants containing the replicative forms of recombinant construct of CLCuMB/p24 indicated that p24 was expressed in these plants. This CLCuMB-based expression system offers the possibility of mass production of recombinant HIV-1 p24 protein in plants.
Collapse
Affiliation(s)
| | | | - Sara Kharazmi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Anabestani A, Behjatnia SAA, Izadpanah K, Tabein S, Accotto GP. Seed Transmission of Beet Curly Top Virus and Beet Curly Top Iran Virus in a Local Cultivar of Petunia in Iran. Viruses 2017; 9:v9100299. [PMID: 29035342 PMCID: PMC5691650 DOI: 10.3390/v9100299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/08/2017] [Accepted: 10/13/2017] [Indexed: 12/26/2022] Open
Abstract
Beet curly top virus (BCTV) and beet curly top Iran virus (BCTIV) are known as the causal agents of curly top disease in beet and several other dicotyledonous plants in Iran. These viruses are transmitted by Circulifer species, and until now, there has been no confirmed report of their seed transmission. A percentage (38.2–78.0%) of the seedlings developed from the seeds of a petunia local cultivar under insect-free conditions showed stunting, interveinal chlorosis, leaf curling, and vein swelling symptoms, and were infected by BCTV when tested by PCR. Presence of BCTV in seed extracts of petunia local cultivar was confirmed by PCR and IC-PCR, followed by sequencing. Agroinoculation of curly top free petunia plants with a BCTV infectious clone resulted in BCTV infection of plants and their developed seeds. These results show the seed infection and transmission of BCTV in a local cultivar of petunia. Similar experiments performed with BCTIV showed that this virus is also seed transmissible in the same cultivar of petunia, although with a lower rate (8.8–18.5%). Seed transmission of curly top viruses may have significant implications in the epidemiology of these viruses.
Collapse
Affiliation(s)
- Ameneh Anabestani
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran.
| | - Seyed Ali Akbar Behjatnia
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran.
| | - Keramat Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran.
| | - Saeid Tabein
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran.
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), 10135 Torino, Italy.
| |
Collapse
|
5
|
Zubair M, Zaidi SSEA, Shakir S, Amin I, Mansoor S. An Insight into Cotton Leaf Curl Multan Betasatellite, the Most Important Component of Cotton Leaf Curl Disease Complex. Viruses 2017; 9:E280. [PMID: 28961220 PMCID: PMC5691632 DOI: 10.3390/v9100280] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
Cotton leaf curl disease (CLCuD) is one of the most economically important diseases and is a constraint to cotton production in major producers, Pakistan and India. CLCuD is caused by monopartite plant viruses belonging to the family Geminiviridae (genus Begomovirus), in association with an essential, disease-specific satellite, Cotton leaf curl Multan betasatellite (CLCuMuB) belonging to a newly-established family Tolecusatellitidae (genus Betasatellite). CLCuMuB has a small genome (ca. 1350 nt) with a satellite conserved region, an adenine-rich region and a single gene that encodes for a multifunctional βC1 protein. CLCuMuB βC1 protein has a major role in pathogenicity and symptom determination, and alters several host cellular functions like autophagy, ubiquitination, and suppression of gene silencing, to assist CLCuD infectivity. Efficient trans-replication ability of CLCuMuB with several monopartite and bipartite begomoviruses, is also associated with the rapid evolution and spread of CLCuMuB. In this article we comprehensively reviewed the role of CLCuMuB in CLCuD, focusing on the βC1 functions and its interactions with host proteins.
Collapse
Affiliation(s)
- Muhammad Zubair
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650 Islamabad, Pakistan.
| | - Syed Shan-E-Ali Zaidi
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650 Islamabad, Pakistan.
- AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Sara Shakir
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA.
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, 38000 Faisalabad, Pakistan.
| |
Collapse
|
6
|
Hassan I, Orílio AF, Fiallo-Olivé E, Briddon RW, Navas-Castillo J. Infectivity, effects on helper viruses and whitefly transmission of the deltasatellites associated with sweepoviruses (genus Begomovirus, family Geminiviridae). Sci Rep 2016; 6:30204. [PMID: 27453359 PMCID: PMC4958995 DOI: 10.1038/srep30204] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/30/2016] [Indexed: 11/08/2022] Open
Abstract
Begomoviruses (family Geminiviridae) are whitefly-transmitted viruses with single-stranded DNA genomes that are frequently associated with DNA satellites. These satellites include non-coding satellites, for which the name deltasatellites has been proposed. Although the first deltasatellite was identified in the late 1990s, little is known about the effects they have on infections of their helper begomoviruses. Recently a group of deltasatellites were identified associated with sweepoviruses, a group of phylogenetically distinct begomoviruses that infect plants of the family Convolvulaceae including sweet potato. In this work, the deltasatellites associated with sweepoviruses are shown to be transreplicated and maintained in plants by the virus with which they were identified, sweet potato leaf curl virus (SPLCV). These deltasatellites were shown generally to reduce symptom severity of the virus infection by reducing virus DNA levels. Additionally they were shown to be maintained in plants, and reduce the symptoms induced by two Old World monopartite begomoviruses, tomato yellow leaf curl virus and tomato yellow leaf curl Sardinia virus. Finally one of the satellites was shown to be transmitted plant-to-plant in the presence of SPLCV by the whitefly vector of the virus, Bemisia tabaci, being the first time a deltasatellite has been shown to be insect transmitted.
Collapse
Affiliation(s)
- Ishtiaq Hassan
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental “La Mayora”, 29750 Algarrobo-Costa, Málaga, Spain
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Anelise F. Orílio
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental “La Mayora”, 29750 Algarrobo-Costa, Málaga, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental “La Mayora”, 29750 Algarrobo-Costa, Málaga, Spain
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental “La Mayora”, 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
7
|
Lozano G, Trenado HP, Fiallo-Olivé E, Chirinos D, Geraud-Pouey F, Briddon RW, Navas-Castillo J. Characterization of Non-coding DNA Satellites Associated with Sweepoviruses (Genus Begomovirus, Geminiviridae) - Definition of a Distinct Class of Begomovirus-Associated Satellites. Front Microbiol 2016; 7:162. [PMID: 26925037 PMCID: PMC4756297 DOI: 10.3389/fmicb.2016.00162] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
Begomoviruses (family Geminiviridae) are whitefly-transmitted, plant-infecting single-stranded DNA viruses that cause crop losses throughout the warmer parts of the World. Sweepoviruses are a phylogenetically distinct group of begomoviruses that infect plants of the family Convolvulaceae, including sweet potato (Ipomoea batatas). Two classes of subviral molecules are often associated with begomoviruses, particularly in the Old World; the betasatellites and the alphasatellites. An analysis of sweet potato and Ipomoea indica samples from Spain and Merremia dissecta samples from Venezuela identified small non-coding subviral molecules in association with several distinct sweepoviruses. The sequences of 18 clones were obtained and found to be structurally similar to tomato leaf curl virus-satellite (ToLCV-sat, the first DNA satellite identified in association with a begomovirus), with a region with significant sequence identity to the conserved region of betasatellites, an A-rich sequence, a predicted stem–loop structure containing the nonanucleotide TAATATTAC, and a second predicted stem–loop. These sweepovirus-associated satellites join an increasing number of ToLCV-sat-like non-coding satellites identified recently. Although sharing some features with betasatellites, evidence is provided to suggest that the ToLCV-sat-like satellites are distinct from betasatellites and should be considered a separate class of satellites, for which the collective name deltasatellites is proposed.
Collapse
Affiliation(s)
- Gloria Lozano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas Algarrobo-Costa, Spain
| | - Helena P Trenado
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas Algarrobo-Costa, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas Algarrobo-Costa, Spain
| | | | | | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering Faisalabad, Pakistan
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas Algarrobo-Costa, Spain
| |
Collapse
|