1
|
Zhai Y, Roy A, Peng H, Mullendore DL, Kaur G, Mandal B, Mukherjee SK, Pappu HR. Identification and Functional Analysis of Four RNA Silencing Suppressors in Begomovirus Croton Yellow Vein Mosaic Virus. FRONTIERS IN PLANT SCIENCE 2022; 12:768800. [PMID: 35069624 PMCID: PMC8777275 DOI: 10.3389/fpls.2021.768800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/30/2021] [Indexed: 06/01/2023]
Abstract
Croton yellow vein mosaic virus (CYVMV), a species in the genus Begomovirus, is a prolific monopartite begomovirus in the Indian sub-continent. CYVMV infects multiple crop plants to cause leaf curl disease. Plants have developed host RNA silencing mechanisms to defend the threat of viruses, including CYVMV. We characterized four RNA silencing suppressors, namely, V2, C2, and C4 encoded by CYVMV and betasatellite-encoded C1 protein (βC1) encoded by the cognate betasatellite, croton yellow vein betasatellite (CroYVMB). Their silencing suppressor functions were verified by the ability of restoring the β-glucuronidase (GUS) activity suppressed by RNA silencing. We showed here for the first time that V2 was capable of self-interacting, as well as interacting with the V1 protein, and could be translocalized to the plasmodesmata in the presence of CYVMV. The knockout of either V2 or V1 impaired the intercellular mobility of CYVMV, indicating their novel coordinated roles in the cell-to-cell movement of the virus. As pathogenicity determinants, each of V2, C2, and C4 could induce typical leaf curl symptoms in Nicotiana benthamiana plants even under transient expression. Interestingly, the transcripts and proteins of all four suppressors could be detected in the systemically infected leaves with no correlation to symptom induction. Overall, our work identifies four silencing suppressors encoded by CYVMV and its cognate betasatellite and reveals their subcellular localizations, interaction behavior, and roles in symptom induction and intercellular virus movement.
Collapse
Affiliation(s)
- Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Anirban Roy
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Hao Peng
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Daniel L. Mullendore
- Franceschi Microscopy and Imaging Center, Washington State University, Pullman, WA, United States
| | - Gurpreet Kaur
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Sunil Kumar Mukherjee
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
2
|
Maliano MR, Macedo MA, Rojas MR, Gilbertson RL. Weed-infecting viruses in a tropical agroecosystem present different threats to crops and evolutionary histories. PLoS One 2021; 16:e0250066. [PMID: 33909644 PMCID: PMC8081230 DOI: 10.1371/journal.pone.0250066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 01/21/2023] Open
Abstract
In the Caribbean Basin, malvaceous weeds commonly show striking golden/yellow mosaic symptoms. Leaf samples from Malachra sp. and Abutilon sp. plants with these symptoms were collected in Hispaniola from 2014 to 2020. PCR tests with degenerate primers revealed that all samples were infected with a bipartite begomovirus, and sequence analyses showed that Malachra sp. plants were infected with tobacco leaf curl Cuba virus (TbLCuCV), whereas the Abutilon sp. plants were infected with a new bipartite begomovirus, tentatively named Abutilon golden yellow mosaic virus (AbGYMV). Phylogenetic analyses showed that TbLCuCV and AbGYMV are distinct but closely related species, which are most closely related to bipartite begomoviruses infecting weeds in the Caribbean Basin. Infectious cloned DNA-A and DNA-B components were used to fulfilled Koch's postulates for these diseases of Malachra sp. and Abutilon sp. In host range studies, TbLCuCV also induced severe symptoms in Nicotiana benthamiana, tobacco and common bean plants; whereas AbGYMV induced few or no symptoms in plants of these species. Pseudorecombinants generated with the infectious clones of these viruses were highly infectious and induced severe symptoms in N. benthamiana and Malachra sp., and both viruses coinfected Malachra sp., and possibly facilitating virus evolution via recombination and pseudorecombination. Together, our results suggest that TbLCuCV primarily infects Malachra sp. in the Caribbean Basin, and occasionally spills over to infect and cause disease in crops; whereas AbGYMV is well-adapted to an Abutilon sp. in the Dominican Republic and has not been reported infecting crops.
Collapse
Affiliation(s)
- Minor R. Maliano
- Department of Plant Pathology, University of California, Davis, California, United States of America
| | - Mônica A. Macedo
- Department of Plant Pathology, University of California, Davis, California, United States of America
- Federal Institute of Education, Science and Technology Goiano, Campus Urutaí, Goias, Brazil
| | - Maria R. Rojas
- Department of Plant Pathology, University of California, Davis, California, United States of America
| | - Robert L. Gilbertson
- Department of Plant Pathology, University of California, Davis, California, United States of America
| |
Collapse
|
3
|
Melgarejo TA, Rojas MR, Gilbertson RL. A Bipartite Begomovirus Infecting Boerhavia erecta (Family Nyctaginaceae) in the Dominican Republic Represents a Distinct Phylogenetic Lineage and has a High Degree of Host Specificity. PHYTOPATHOLOGY 2019; 109:1464-1474. [PMID: 30995160 DOI: 10.1094/phyto-02-19-0061-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Boerhavia erecta plants in and around agricultural fields in the Azua Valley of the southeastern Dominican Republic often show striking golden mosaic symptoms. Leaf samples from B. erecta plants showing these symptoms were collected in 2012 and 2013, and PCR tests with degenerate primers revealed begomovirus DNA-A and DNA-B components. The complete sequences of the DNA-A and DNA-B components of four isolates show a high degree of sequence identity (>96%) and a genome organization typical of New World (NW) bipartite begomoviruses. Sequence comparisons and phylogenetic analyses revealed that these isolates composed a new phylogenetic lineage of NW bipartite begomoviruses. The most closely related begomovirus is Merremia mosaic virus, a weed-infecting species from Puerto Rico. Because DNA-A sequence identities are well below the 91% threshold, these isolates represent a new begomovirus species, for which the name Boerhavia golden mosaic virus (BoGMV) is proposed. Infectious cloned BoGMV DNA-A and DNA-B components induced golden mosaic symptoms in agroinoculated B. erecta plants, thereby fulfilling Koch's postulates for this disease. Agroinoculation and mechanical transmission experiments revealed that BoGMV has an unusually narrow host range, limited to members of the family Nyctaginaceae and not including the permissive host Nicotiana benthamiana. The inability of BoGMV to infect N. benthamiana was due to a deficiency in cell-to-cell movement but not to a unique amino acid residue in the movement protein.
Collapse
Affiliation(s)
- Tomas A Melgarejo
- 1Department of Plant Pathology, University of California, Davis, One Shield Ave., CA 95616, U.S.A
- 2Departamento de Fitopatologia, Universidad Nacional Agraria La Molina, Av. La Molina s/n La Molina, Lima, Peru
| | - Maria R Rojas
- 1Department of Plant Pathology, University of California, Davis, One Shield Ave., CA 95616, U.S.A
| | - Robert L Gilbertson
- 1Department of Plant Pathology, University of California, Davis, One Shield Ave., CA 95616, U.S.A
| |
Collapse
|
4
|
A new variant of Croton yellow vein mosaic virus naturally infecting wild sunflower in India. Virusdisease 2018; 29:513-519. [PMID: 30539055 DOI: 10.1007/s13337-018-0495-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/20/2018] [Indexed: 10/27/2022] Open
Abstract
During 2015-2016, wild sunflower (Verbesina encelioides) was observed with bright yellow vein mosaic symptims in Noida, Uttar Pradesh, India. The initial analysis by PCR with a pair of coat protein based primers revealed the association of a begomovirus. Further, the virus was identified by rolling circle amplification and cloning of the complete genome. The DNA-A (2671 nucleotides, MH359168) with the genome organisation typical of the Old World begomovirus shared 98% sequence identity with that of Croton yellow vein mosaic virus (CYVMV) reported from India. The betasatellite (MH359169) associated with the disease shared 92% sequence identity with papaya leaf curl betasatellite (KY825245). The results showed that the wild sunflower is a new alternate host of CYVMV. The study also revealed a natural association of heterologous betasatellite with CYVMV in wild sunflower exhibiting yellow vein mosaic symptoms.
Collapse
|
5
|
Jeske H. Barcoding of Plant Viruses with Circular Single-Stranded DNA Based on Rolling Circle Amplification. Viruses 2018; 10:E469. [PMID: 30200312 PMCID: PMC6164888 DOI: 10.3390/v10090469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023] Open
Abstract
The experience with a diagnostic technology based on rolling circle amplification (RCA), restriction fragment length polymorphism (RFLP) analyses, and direct or deep sequencing (Circomics) over the past 15 years is surveyed for the plant infecting geminiviruses, nanoviruses and associated satellite DNAs, which have had increasing impact on agricultural and horticultural losses due to global transportation and recombination-aided diversification. Current state methods for quarantine measures are described to identify individual DNA components with great accuracy and to recognize the crucial role of the molecular viral population structure as an important factor for sustainable plant protection.
Collapse
Affiliation(s)
- Holger Jeske
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany.
| |
Collapse
|
6
|
Kumar A, Bag MK, Singh R, Jailani AAK, Mandal B, Roy A. Natural infection of croton yellow vein mosaic virus and its cognate betasatellite in germplasm of different Crambe spp in India. Virus Res 2018; 243:60-64. [PMID: 29031475 DOI: 10.1016/j.virusres.2017.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/23/2022]
Abstract
Crambe is an important crop grown worldwide for industrial oil and seed meal. Besides the fungal and bacterial diseases, the crop is reported to be infected by tobacco mosaic virus, beet western yellows virus and turnip mosaic virus under experimental condition. Till now, there was no report of natural infection of any begomovirus in this crop. In the present study, a leaf curl disease was observed in germplasm accessions of three species of Crambe (C. abyssinica, C. glabrata and C. hispanica). Based on the symptoms and presence of whitefly population in the field, begomovirus infection was suspected. Molecular characterization through RCA approach, indicated presence of croton yellow vein mosaic virus (CYVMV, KJ747958) and croton yellow vein mosaic betasatellite (CroYVMB, KM229762). Co-agroinoculation of partial dimeric construct of CYVMV with complete dimeric construct of CroYVMB, produced typical leaf curl symptoms in C. abyssinica, whereas, agroinoculation of partial dimeric construct of CYVMV alone could not produce symptoms in the same plant. In contrast, the CYVMV construct alone could produce symptom in Nicotiana benthamiana, a model host for plant virus studies. In N. benthamiana co-inoculation of CroYVMV with CYVMV construct develop more severe symptoms. However, neither the CYVMV construct alone nor the co-inoculation with CroYVMB produce any symptom in Arabidopsis thaliana even with different methods of inoculation. Inoculated Arabidopsis thaliana also did not yield any amplification of the virus as assessed through PCR and rolling circle amplification (RCA). Thus it confirmed that for successful infection in crambe, CYVMV requires betasatellite, while in N. benthamiana, it does not require betasatellite for symptom induction and in Arabidopsis thaliana CYVMV alone or in presence of betasatellite did not replicate and produce any symptom. This study constitutes the first confirmed record of natural infection of a begomovirus in crambe and further confirmed that cognate betasatellite of CYVMV has differential role in infectivity in different hosts.
Collapse
Affiliation(s)
- Alok Kumar
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India
| | - Manas Kumar Bag
- Germplasm Evaluation Division, ICAR-National Bureau of Plant Genetic Resources, New Delhi - 110012, India
| | - Ranbir Singh
- Germplasm Evaluation Division, ICAR-National Bureau of Plant Genetic Resources, New Delhi - 110012, India
| | - A Abdul Kader Jailani
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India
| | - Anirban Roy
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi - 110012, India.
| |
Collapse
|
7
|
Jailani AAK, Kumar A, Mandal B, Sivasudha T, Roy A. Agroinfection of tobacco by croton yellow vein mosaic virus and designing of a replicon vector for expression of foreign gene in plant. Virusdisease 2016; 27:277-286. [PMID: 28466040 PMCID: PMC5394710 DOI: 10.1007/s13337-016-0326-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 01/18/2023] Open
Abstract
Croton yellow vein mosaic virus (CYVMV, genus Begomovirus family Geminiviridae) is a proliferating begomovirus in the Indian sub-continent. The infectious constructs in binary vector was developed against the CYVMV genome and its associated betasatellite. Agroinoculation of the genomic construct of CYVMV produced leaf curl symptoms alone in three species of tobacco, Nicotiana tabacum, N. benthamiana and N. glutinosa. Co-inoculation of betasatellite enhanced the severity of the disease and reduced the incubation time. Based on the infectious clone, a replicon vector pCro, with only the ability to replicate inside the plant was developed. In pCro vector, CP and V2 ORFs from genome of CYVMV was deleted, which resulted localised replication of the molecule with no visible symptoms. Besides the partial CYVMV genome, pCro also has a cassette containing a double 35S promoter, multiple cloning sites and a NOS terminator to overexpress any foreign protein in plant. Episomal release of the replicon from the binary vector backbone after agroinoculation was detected by PCR. A GFP gene was cloned in pCro vector (pCro-GFP) and agroinoculated to N. tabacum resulted in localized expression of GFP at 5 dpi. The CYVMV replicon vector will be a useful tool for studying functional genomics, vaccine expression and gene silencing in plant.
Collapse
Affiliation(s)
- A. Abdul Kader Jailani
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024 Tamil Nadu India
| | - Alok Kumar
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - T. Sivasudha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024 Tamil Nadu India
| | - Anirban Roy
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
8
|
Shilpi S, Kumar A, Biswas S, Roy A, Mandal B. A recombinant Tobacco curly shoot virus causes leaf curl disease in tomato in a north-eastern state of India and has potentiality to trans-replicate a non-cognate betasatellite. Virus Genes 2015; 50:87-96. [PMID: 25410052 DOI: 10.1007/s11262-014-1141-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/01/2014] [Indexed: 01/19/2023]
Abstract
Leaf curl disease is a serious constraint in tomato production throughout India. Several begomoviruses were reported from different parts of the country; however, identity of begomovirus associated with leaf curl disease in tomato in north-eastern states of India was obscured. In the present study, the complete genome of an isolate (To-Ag-1) of begomovirus was generated from a leaf curl sample collected from Tripura state. However, no DNA-B and betasatellite were detected in the field samples. The genome of To-Ag-1 isolate contained 2,755 nucleotides that shared 94.7 % sequence identity with Tobacco curly shoot virus (TbCSV) and 71.3-90.1 % sequence identity with the other tomato-infecting begomoviruses occurring in the Indian subcontinent. Several inter-specific recombination events among different tomato-infecting begomoviruses from India and intra-specific recombination among different isolates of TbCSV reported from China were observed in the genome of To-Ag-1 isolate. Agroinoculation of the virus alone produced leaf curl symptoms in tomato and Nicotiana benthamiana. However, co-inoculation with a non-cognate betasatellite, Croton yellow vein mosaic betasatellite (CroYVMB) with the TbCSV resulted in increased severity of the symptoms both in tomato and N. benthamiana. Systemic distribution of the TbCSV and CroYVMB was detected in the newly developed leaves of tobacco and tomato, which showed ability of TbCSV to trans-replicate CroYVMB. The present study for the first time provides evidence of occurrence of TbCSV in tomato in north-eastern region of India and showed increased virulence of TbCSV with a non-cognate betasatellite.
Collapse
Affiliation(s)
- S Shilpi
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | | | | | | |
Collapse
|
9
|
Tuo D, Shen W, Yang Y, Yan P, Li X, Zhou P. Development and validation of a multiplex reverse transcription PCR assay for simultaneous detection of three papaya viruses. Viruses 2014; 6:3893-906. [PMID: 25337891 PMCID: PMC4213569 DOI: 10.3390/v6103893] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/13/2014] [Accepted: 10/13/2014] [Indexed: 11/16/2022] Open
Abstract
Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay's specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya.
Collapse
Affiliation(s)
- Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Yong Yang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
10
|
Jyothsna P, Haq QMI, Jayaprakash P, Malathi VG. Molecular Evidence for the Occurrence of Abutilon mosaic virus, A New World Begomovirus in India. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:284-8. [PMID: 24426288 PMCID: PMC3784915 DOI: 10.1007/s13337-013-0139-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
During an investigation in the year 2010, on the weed reservoir of begomovirus, Abutilon pictum showing bright yellow mosaic symptoms was observed in Udhagamandalam, Tamil Nadu, India. The complete bipartite genome of a begomovirus was cloned and sequenced which revealed association of Abutilon mosaic virus (AbMV). Nicotiana benthamiana plants inoculated biolistically with the concatemers generated through rolling circle amplification of the cloned DNAs were asymptomatic; however three out of nine plants showed presence of viral DNA A. A recombination event in the ORF BC1 with ToLCNDV DNA B (HM989846) was detected. This is the first molecular evidence of AbMV in India.
Collapse
Affiliation(s)
- P. Jyothsna
- />Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Q. M. I. Haq
- />Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - P. Jayaprakash
- />Plant Breeding, IARI, Regional Station, Wellington, 643231 India
| | - V. G. Malathi
- />Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| |
Collapse
|
11
|
Natural association of two different betasatellites with Sweet potato leaf curl virus in wild morning glory (Ipomoea purpurea) in India. Virus Genes 2013; 47:184-8. [PMID: 23529301 DOI: 10.1007/s11262-013-0901-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
Abstract
Wild morning glory (Ipomoea purpurea) was observed to be affected by leaf curl and yellow vein diseases during summer-rainy season of 2009 in New Delhi, India. The virus was experimentally transmitted through whitefly, Bemisia tabaci to I. purpurea that reproduced the two distinct symptoms. Sequence analysis of multiple full-length clones obtained through rolling circle amplification from the leaf curl and yellow vein samples showed 91.8-95.3% sequence identity with Sweet potato leaf curl virus (SPLCV) and the isolates were phylogenetically distinct from those reported from Brazil, China, Japan and USA. Interestingly, two different betasatellites, croton yellow vein mosaic betasatellite and papaya leaf curl betasatellite were found with SPLCV in leaf curl and yellow vein diseases of I. purpurea, respectively. This study is the first report of occurrence of SPLCV in wild morning glory in India. SPLCV was known to infect other species of morning glory; our study revealed that I. purpurea, a new species of morning glory was a natural host of SPLCV. To date, betasatellite associated with SPLCV in Ipomoea spp. is not known. Our study provides evidence of natural association of two different betasatellites with SPLCV in leaf curl and yellow vein diseases of I. purpurea.
Collapse
|