1
|
Yu ML, Wang CY, Lee MH, Ou HY, Cheng PN, Tu ST, Huang JF, Chen JF, Hu TH, Hsu CC, Kao JH, Chen CJ, Lin HC, Huang CN. TASL, TADE, and DAROC consensus for the screening and management of hepatitis C in patients with diabetes. J Formos Med Assoc 2023; 122:202-220. [PMID: 36750398 DOI: 10.1016/j.jfma.2023.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/09/2023] Open
Abstract
Diabetes mellitus (DM) and hepatitis C virus (HCV) infection are prevalent diseases globally and emerging evidence demonstrates the bidirectional association between the two diseases. Direct-acting antivirals (DAAs) for HCV have a high treatment success rate and can significantly reduce the risks of short and long-term complications of HCV infection. However, despite the evidence of the association between diabetes and HCV and the benefits of anti-HCV treatment, previously published guidelines did not focus on the universal HCV screening for patients with diabetes and their subsequent management once confirmed as having HCV viremia. Nonetheless, screening for HCV among patients with diabetes will contribute to the eradication of HCV infection. Thus, the three major Taiwan medical associations of diabetes and liver diseases endorsed a total of 14 experts in the fields of gastroenterology, hepatology, diabetology, and epidemiology to convene and formulate a consensus statement on HCV screening and management among patients with diabetes. Based on recent studies and guidelines as well as from real-world clinical experiences, the Taiwan experts reached a consensus that provides a straightforward approach to HCV screening, treatment, and monitoring of patients with diabetes.
Collapse
Affiliation(s)
- Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chih-Yuan Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Horng-Yih Ou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng-Kung University Medical College and Hospital, Tainan, Taiwan
| | - Pin-Nan Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Te Tu
- Department of Endocrinology and Metabolism, Changhua Christian Hospital, Changhua, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung-Fu Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsung-Hui Hu
- Department of Internal Medicine, Kaohsiung, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jia-Horng Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Chien-Ning Huang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Ferdek PE, Krzysztofik D, Stopa KB, Kusiak AA, Paw M, Wnuk D, Jakubowska MA. When healing turns into killing ‐ the pathophysiology of pancreatic and hepatic fibrosis. J Physiol 2022; 600:2579-2612. [DOI: 10.1113/jp281135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/12/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Pawel E. Ferdek
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Daria Krzysztofik
- Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Kinga B. Stopa
- Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Agnieszka A. Kusiak
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Milena Paw
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | - Dawid Wnuk
- Department of Cell Biology Faculty of Biochemistry Biophysics and Biotechnology Jagiellonian University Krakow Poland
| | | |
Collapse
|
3
|
Moretti R, Giuffrè M, Merli N, Caruso P, Di Bella S, Tiribelli C, Crocè LS. Hepatitis C Virus-Related Central and Peripheral Nervous System Disorders. Brain Sci 2021; 11:1569. [PMID: 34942871 PMCID: PMC8699483 DOI: 10.3390/brainsci11121569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C Virus (HCV), despite being a hepatotropic virus, is the causative agent of many systemic disorders, such as vasculitis, autoimmune diseases, lymphoproliferative disorders, and a broad spectrum of neurological and psychiatric manifestations. Although symptoms have been misdiagnosed or underdiagnosed, only recently, evidence of direct (inflammatory) or indirect (immune-mediated) HCV-dependent cerebral effects has been established. HCV infection can promote acute inflammatory response, pro-coagulative status and ischemic disorders, and neurodegeneration. These effects rely on cerebral HCV replication, possibly mediated by blood-brain barrier alterations. Further study is needed to better understand the HCV-related mechanisms of brain damage.
Collapse
Affiliation(s)
- Rita Moretti
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| | - Mauro Giuffrè
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| | - Nicola Merli
- Department Neurological Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Paola Caruso
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| | - Stefano Di Bella
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| | | | - Lory Saveria Crocè
- Department Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (R.M.); (P.C.); (S.D.B.); (L.S.C.)
| |
Collapse
|
4
|
Ding Y, Li G, Zhou Z, Deng T. Molecular mechanisms underlying hepatitis C virus infection-related diabetes. Metabolism 2021; 121:154802. [PMID: 34090869 DOI: 10.1016/j.metabol.2021.154802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Diabetes is a noncommunicable widespread disease that poses the risk of severe complications in patients, with certain complications being life-threatening. Hepatitis C is an infectious disease that mainly causes liver damage, which is also a profound threat to human health. Hepatitis C virus (HCV) infection has many extrahepatic manifestations, including diabetes. Multiple mechanisms facilitate the strong association between HCV and diabetes. HCV infection can affect the insulin signaling pathway in liver and pancreatic tissue and change the profiles of circulating microRNAs, which may further influence the occurrence and development of diabetes. This review describes how HCV infection causes diabetes and discusses the current research progress with respect to HCV infection-related diabetes.
Collapse
Affiliation(s)
- Yujin Ding
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410011, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China; Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
5
|
The anti-rotavirus effect of baicalin via the gluconeogenesis-related p-JNK-PDK1-AKT-SIK2 signaling pathway. Eur J Pharmacol 2021; 897:173927. [PMID: 33567320 DOI: 10.1016/j.ejphar.2021.173927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Rotavirus (RV) infection is a leading cause of severe, dehydrating gastroenteritis in children < 5 years of age, and by now, the prevention and treatment of RV are still the major public health problems due to a lack of specific clinical drugs. Thus, the aims of this study are to explore the anti-RV effect of baicalin and its influence on glucose metabolism. Here, we demonstrated for the first time that baicalin had an anti-RV attachment effect with the strongest effect at a concentration of 100 μM, and also inhibited the replication of RV at concentrations of 100, 125, 150, 175, and 200 μM. Moreover, baicalin helped to overcome the weight loss and reduced the diarrhea rate and score with the best therapeutic effect at a concentration of 0.3 mg/g in RV-infected neonatal mice. Interestingly, baicalin decreased glucose consumption in RV-infected Caco-2 cells with the optimal concentration of 125 μM. Next, metabolomic analysis indicated that there were 68 differentially expressed metabolites, including an increase in pyruvic acid, asparagine, histidine and serine, and a decrease in dihydroxyacetone phosphate, which suggested that the underlying signaling pathway was gluconeogenesis. Further studies demonstrated that baicalin inhibited gluconeogenesis via improving glucose 6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxylase (PEPCK). Moreover, baicalin upregulated the potential gluconeogenesis proteins named salt inducible kinase 2, pyruvate dehydrogenase kinase 1, AKT serine/threonine kinase 1 and down-regulated phosphorylated c-Jun NH2-terminal kinase, which are associated with G-6-Pase and PEPCK expressions. Therefore, baicalin improved the gluconeogenesis disruption caused by RV.
Collapse
|
6
|
Abstract
Liver cancer is a global problem and hepatocellular carcinoma (HCC) accounts for about 85% of this cancer. In the USA, etiologies and risk factors for HCC include chronic hepatitis C virus (HCV) infection, diabetes, non-alcoholic steatohepatitis (NASH), obesity, excessive alcohol drinking, exposure to tobacco smoke, and genetic factors. Chronic HCV infection appears to be associated with about 30% of HCC. Chronic HCV infection induces multistep changes in liver, involving metabolic disorders, steatosis, cirrhosis and HCC. Liver carcinogenesis requires initiation of neoplastic clones, and progression to clinically diagnose malignancy. Tumor progression associates with profound exhaustion of tumor-antigen-specific CD8+T cells, and accumulation of PD-1hi CD8+T cells and Tregs. In this chapter, we provide a brief description of HCV and environmental/genetic factors, immune regulation, and highlight mechanisms of HCV associated HCC. We also underscore HCV treatment and recent paradigm of HCC progression, highlighted the current treatment and potential future therapeutic opportunities.
Collapse
|
7
|
Cázares-Cortazar A, Uribe-Noguez LA, Mata-Marín JA, Gaytán-Martínez J, de la Luz Martínez-Rodríguez M, Villavicencio-Ferrel PE, Chapararro-Sánchez A, Mauss S, Ocaña-Mondragón A. A decrease in hepatitis C virus RNA to undetectable levels in chronic hepatitis C patients after PegIFNα + RVB or sofosbuvir + NS5A inhibitor treatment is associated with decreased insulin resistance and persistent oxidative stress. Arch Virol 2020; 165:2759-2766. [PMID: 32885325 DOI: 10.1007/s00705-020-04797-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress (OS) and insulin resistance (IR) induced by hepatitis C virus (HCV) infection, are involved in the development of chronic hepatitis C (CHC) complications and progression to hepatocellular carcinoma. The aim of this study was to investigate the effect of pegylated interferon alpha (IFNα) + ribavirin (PegIFNα+RVB) or sofosbuvir + NS5A inhibitor (SOF+InNS5A) on IR and the components of OS. HCV was genotyped in 20 CHC patients grouped by treatment with either PegIFNα+RVB (n = 10) or SOF+InNS5A (n = 10). The treatment's effect on OS-induced damage to lipids (HNE-HDL), proteins (advanced glycation end products [AGEs]), and DNA (8-OHdG) as well as the concentrations of proinflammatory cytokines (IL-2, TNFα, IFNγ), ALT, AST, GSH and platelets was determined. Superoxide dismutase (SOD) and catalase activity as well as IR, determined by the HOMA1-IR index, was evaluated. The HCV genotypes (GT) found were GT1b (45%), GT1a (30%), GT2b (20%), and GT2a (5%). Viral RNA became undetectable by week 12 with SOF+InNS5A in 100% of the cases and with PegIFNα+RVB in 70% of the cases. After viral RNA became undetectable, regardless of treatment and GT, a significant increase in the platelet concentration and SOD activity was observed, whereas ALT, insulin, and IR decreased (p < 0.05). However, only for the SOF+InNS5A treated group was there an increase in oxidative damage to lipids (p < 0.017) and proteins (p < 0.05). None of the other parameters demonstrated any differences. These data confirm that OS persisted after treatment with either SOF+InNS5A or PegIFNα+RVB. IR could be considered a response biomarker to treatment with direct-acting antivirals.
Collapse
Affiliation(s)
- Allison Cázares-Cortazar
- Laboratorio Central de Epidemiología, División de Laboratorios de Vigilancia e Investigación Epidemiológica, Instituto Mexicano del Seguro Social, IMSS, Calzada vallejo s/n Col. La Raza, Del. Azcapotzalco, CP 02990, México City, México
| | - Luis A Uribe-Noguez
- Laboratorio Central de Epidemiología, División de Laboratorios de Vigilancia e Investigación Epidemiológica, Instituto Mexicano del Seguro Social, IMSS, Calzada vallejo s/n Col. La Raza, Del. Azcapotzalco, CP 02990, México City, México
| | - José Antonio Mata-Marín
- Departamento de Enfermedades Infecciosas, Hospital de Infectología, Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, IMSS, México City, México
| | - Jesús Gaytán-Martínez
- Departamento de Enfermedades Infecciosas, Hospital de Infectología, Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, IMSS, México City, México
| | - María de la Luz Martínez-Rodríguez
- Departamento de Enfermedades Infecciosas, Hospital de Infectología, Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, IMSS, México City, México
| | - Pedro Esteban Villavicencio-Ferrel
- Laboratorio de Medicina Nuclear, Unidad Médica de Alta Especialidad, Hospital de Especialidades, CMN "La Raza", Instituto Mexicano del Seguro Social, IMSS, México City, México
| | - Alberto Chapararro-Sánchez
- Departamento de Enfermedades Infecciosas, Hospital de Infectología, Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, IMSS, México City, México
| | - Stefan Mauss
- Center for HIV and Hepatogastroenterology, Düsseldorf, Germany
| | - Alicia Ocaña-Mondragón
- Laboratorio Central de Epidemiología, División de Laboratorios de Vigilancia e Investigación Epidemiológica, Instituto Mexicano del Seguro Social, IMSS, Calzada vallejo s/n Col. La Raza, Del. Azcapotzalco, CP 02990, México City, México.
| |
Collapse
|
8
|
ElFihry R, Elmessaoudi-Idrissi M, Jadid FZ, Zaidane I, Chihab H, Tahiri M, Kabine M, Badre W, Chemin I, Marchio A, Pineau P, Ezzikouri S, Benjelloun S. Effect of Peroxisome Proliferator-Activated Receptor-γ Coactivator-1 Alpha Variants on Spontaneous Clearance and Fibrosis Progression during Hepatitis C Virus Infection in Moroccan Patients. Virol Sin 2020; 35:566-574. [PMID: 32297157 DOI: 10.1007/s12250-020-00220-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/08/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) is still one of the main causes of liver disease worldwide. Metabolic disorders, including non-alcoholic fatty liver disease (NAFLD), induced by HCV have been shown to accelerate the progression of fibrosis to cirrhosis and to increase the risk of hepatocellular carcinoma. An optimal peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) activity is crucial to prevent NAFLD installation. The present study aims to investigate the associations between two common PPARGC1A polymorphisms (rs8192678 and rs12640088) and the outcomes of HCV infection in a North African context. A series of 592 consecutive Moroccan subjects, including 292 patients with chronic hepatitis C (CHC), 100 resolvers and 200 healthy controls were genotyped using a TaqMan allelic discrimination assay. PPARGC1A variations at rs8192678 and rs12640088 were not associated with spontaneous clearance of HCV infection (adjusted ORs = 0.76 and 0.79 respectively, P > 0.05, for both). Furthermore, multivariable logistic regression analysis showed that both SNPs were not associated with fibrosis progression (OR = 0.71; 95% CI 0.20-2.49; P = 0.739; OR = 1.28; 95% CI 0.25-6.54; P = 0.512, respectively). We conclude that, in the genetic context of South Mediterranean patients, rs8192678 and rs12640088 polymorphisms of PPARGC1A are neither associated with spontaneous clearance nor with disease progression in individuals infected with HCV.
Collapse
Affiliation(s)
- Raouia ElFihry
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
- Laboratoire Santé et Environnement, département de Biologie, Faculté des Sciences Ain Chock, University Hassan II of Casablanca, 20360, Casablanca, Morocco
| | | | - Fatima-Zahra Jadid
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
| | - Imane Zaidane
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
| | - Hajar Chihab
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
| | - Mohamed Tahiri
- Service d'Hépato-Gastro-Entérologie, CHU Ibn Rochd, 20360, Casablanca, Morocco
| | - Mostafa Kabine
- Laboratoire Santé et Environnement, département de Biologie, Faculté des Sciences Ain Chock, University Hassan II of Casablanca, 20360, Casablanca, Morocco
| | - Wafaa Badre
- Service d'Hépato-Gastro-Entérologie, CHU Ibn Rochd, 20360, Casablanca, Morocco
| | - Isabelle Chemin
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon Cedex 03, France
| | - Agnes Marchio
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, 75015, Paris, France
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, 75015, Paris, France
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 20360, Casablanca, Morocco.
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 20360, Casablanca, Morocco.
| |
Collapse
|
9
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019. [PMID: 30889843 DOI: 10.3390/ijms] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
10
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019; 20:ijms20061358. [PMID: 30889843 PMCID: PMC6470669 DOI: 10.3390/ijms20061358] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/23/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
11
|
Lerat H, Imache MR, Polyte J, Gaudin A, Mercey M, Donati F, Baudesson C, Higgs MR, Picard A, Magnan C, Foufelle F, Pawlotsky JM. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice. J Biol Chem 2017; 292:12860-12873. [PMID: 28559285 DOI: 10.1074/jbc.m117.785030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans.
Collapse
Affiliation(s)
- Hervé Lerat
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France; Université Paris-Est Créteil Val de Marne, 94010 Créteil, France.
| | - Mohamed Rabah Imache
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Jacqueline Polyte
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Aurore Gaudin
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Marion Mercey
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Flora Donati
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Camille Baudesson
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Martin R Higgs
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Alexandre Picard
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, 75013 Paris, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, 75013 Paris, France
| | - Fabienne Foufelle
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Jean-Michel Pawlotsky
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France; Université Paris-Est Créteil Val de Marne, 94010 Créteil, France; National Reference Center for Viral Hepatitis B, C and Delta, Department of Virology, Hôpital Henri Mondor, AP-HP, 94010 Créteil, France
| |
Collapse
|
12
|
Patil R, Ghosh A, Sun Cao P, Sommer RD, Grice KA, Waris G, Patil S. Novel 5-arylthio-5H-chromenopyridines as a new class of anti-fibrotic agents. Bioorg Med Chem Lett 2017; 27:1129-1135. [PMID: 28190633 DOI: 10.1016/j.bmcl.2017.01.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a critical wound healing response to chronic liver injury such as hepatitis C virus (HCV) infection. If persistent, liver fibrosis can lead to cirrhosis and hepatocellular carcinoma (HCC). The development of new therapies for preventing liver fibrosis and its progression to cancer associated with HCV infection remains a critical challenge. Identification of novel anti-fibrotic compounds will provide opportunities for innovative therapeutic intervention of HCV-mediated liver fibrosis. We designed and synthesized a focused set of 5-arylthio-5H-chromenopyridines as a new class of anti-fibrotic agents. Liver fibrosis assays demonstrated that the compounds 3a and 3c show inhibitory activity towards human hepatic stellate cells (LX2) activation at 10μM. The HCV NS3 and NS5A proteins in HCV subgenome-expressing cells were also significantly reduced in cells treated with 3a and 3c, suggesting the possible inhibitory role of the compounds in HCV translation/replication activities. We have also examined the reactivity of these compounds with medicinally-relevant metal compounds such as platinum and gold. The reactivity of these complexes with metals and during Mass Spectrometry suggests that CS bond cleavage is relatively facile.
Collapse
Affiliation(s)
- Renukadevi Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, United States
| | - Anandita Ghosh
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, United States
| | - Phoebus Sun Cao
- Department of Chemistry, College of Science and Health, DePaul University, Chicago, IL 60614, United States
| | - Roger D Sommer
- X-ray Crystallography Facility, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Kyle A Grice
- Department of Chemistry, College of Science and Health, DePaul University, Chicago, IL 60614, United States.
| | - Gulam Waris
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, United States.
| | - Shivaputra Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, United States.
| |
Collapse
|
13
|
Manickam C, Wachtman L, Martinot AJ, Giavedoni LD, Reeves RK. Metabolic Dysregulation in Hepacivirus Infection of Common Marmosets (Callithrix jacchus). PLoS One 2017; 12:e0170240. [PMID: 28085952 PMCID: PMC5234844 DOI: 10.1371/journal.pone.0170240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis C has been associated with metabolic syndrome that includes insulin resistance, hepatic steatosis and obesity. These metabolic aberrations are risk factors for disease severity and treatment outcome in infected patients. Experimental infection of marmosets with GBV-B serves as a tangible, small animal model for human HCV infection, and while virology and pathology are well described, a full investigation of clinical disease and the metabolic milieu is lacking. In this study six marmosets were infected intravenously with GBV-B and changes in hematologic, serum biochemical and plasma metabolic measures were investigated over the duration of infection. Infected animals exhibited signs of lymphocytopenia, but platelet and RBC counts were generally stable or even increased. Although most animals showed a transient decline in blood glucose, infection resulted in several fold increases in plasma insulin, glucagon and glucagon-like peptide 1 (GLP-1). All infected animals experienced transient weight loss within the first 28 days of infection, but also became hypertriglyceridemic and had up to 10-fold increases in adipocytokines such as resistin and plasminogen activator inhibitor 1 (PAI-1). In liver, moderate to severe cytoplasmic changes associated with steatotic changes was observed microscopically at 168 days post infection. Collectively, these results suggest that GBV-B infection is accompanied by hematologic, biochemical and metabolic abnormalities that could lead to obesity, diabetes, thrombosis and atherosclerosis, even after virus has been cleared. Our findings mirror those found in HCV patients, suggesting that metabolic syndrome could be conserved among hepaciviruses, and both mechanistic and interventional studies for treating HCV-induced metabolic complications could be evaluated in this animal model.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Lynn Wachtman
- New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
| | - Amanda J. Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Luis D. Giavedoni
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
| |
Collapse
|
14
|
Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H. PGC-1α, glucose metabolism and type 2 diabetes mellitus. J Endocrinol 2016; 229:R99-R115. [PMID: 27094040 DOI: 10.1530/joe-16-0021] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by glucose metabolic disturbance. A number of transcription factors and coactivators are involved in this process. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is an important transcription coactivator regulating cellular energy metabolism. Accumulating evidence has indicated that PGC-1α is involved in the regulation of T2DM. Therefore, a better understanding of the roles of PGC-1α may shed light on more efficient therapeutic strategies. Here, we review the most recent progress on PGC-1α and discuss its regulatory network in major glucose metabolic tissues such as the liver, skeletal muscle, pancreas and kidney. The significant associations between PGC-1α polymorphisms and T2DM are also discussed in this review.
Collapse
Affiliation(s)
- Haijiang Wu
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Xinna Deng
- Departments of Oncology & ImmunotherapyHebei General Hospital, Shijiazhuang, China
| | - Yonghong Shi
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Ye Su
- Mathew Mailing Centre for Translational Transplantation StudiesLawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada Departments of Medicine and PathologyUniversity of Western Ontario, London, Ontario, Canada
| | - Jinying Wei
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Huijun Duan
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| |
Collapse
|
15
|
Chang ML. Metabolic alterations and hepatitis C: From bench to bedside. World J Gastroenterol 2016; 22:1461-1476. [PMID: 26819514 PMCID: PMC4721980 DOI: 10.3748/wjg.v22.i4.1461] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/14/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
In addition to causing cirrhosis and hepatocellular carcinoma, hepatitis C virus (HCV) is thought to cause hypolipidemia, hepatic steatosis, insulin resistance, metabolic syndrome, and diabetes. The viral life cycle of HCV depends on cholesterol metabolism in host cells. HCV core protein and nonstructural protein 5A perturb crucial lipid and glucose pathways, such as the sterol regulatory element-binding protein pathway and the protein kinase B/mammalian target of rapamycin/S6 kinase 1 pathway. Although several lines of transgenic mice expressing core or full HCV proteins exhibit hepatic steatosis and/or dyslipidemia, whether they completely reflect the metabolic alterations in humans with HCV infection remains unknown. Many cross-sectional studies have demonstrated increased prevalences of metabolic alterations and cardiovascular events in patients with chronic hepatitis C (CHC); however, conflicting results exist, primarily due to unavoidable individual variations. Utilizing anti-HCV therapy, most longitudinal cohort studies of CHC patients have demonstrated the favorable effects of viral clearance in attenuating metabolic alterations and cardiovascular risks. To determine the risks of HCV-associated metabolic alterations and associated complications in patients with CHC, it is necessary to adjust for crucial confounders, such as HCV genotype and host baseline glucose metabolism, for a long follow-up period after anti-HCV treatment. Adipose tissue is an important endocrine organ due to its release of adipocytokines, which regulate lipid and glucose metabolism. However, most data on HCV infection and adipocytokine alteration are inconclusive. A comprehensive overview of HCV-associated metabolic and adipocytokine alterations, from bench to bedside, is presented in this topic highlight.
Collapse
|
16
|
Ress C, Kaser S. Mechanisms of intrahepatic triglyceride accumulation. World J Gastroenterol 2016; 22:1664-1673. [PMID: 26819531 PMCID: PMC4721997 DOI: 10.3748/wjg.v22.i4.1664] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/20/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatic steatosis defined as lipid accumulation in hepatocytes is very frequently found in adults and obese adolescents in the Western World. Etiologically, obesity and associated insulin resistance or excess alcohol intake are the most frequent causes of hepatic steatosis. However, steatosis also often occurs with chronic hepatitis C virus (HCV) infection and is also found in rare but potentially life-threatening liver diseases of pregnancy. Clinical significance and outcome of hepatic triglyceride accumulation are highly dependent on etiology and histological pattern of steatosis. This review summarizes current concepts of pathophysiology of common causes of hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease, chronic HCV infections, drug-induced forms of hepatic steatosis, and acute fatty liver of pregnancy. Regarding the pathophysiology of NAFLD, this work focuses on the close correlation between insulin resistance and hepatic triglyceride accumulation, highlighting the potential harmful effects of systemic insulin resistance on hepatic metabolism of fatty acids on the one side and the role of lipid intermediates on insulin signalling on the other side. Current studies on lipid droplet morphogenesis have identified novel candidate proteins and enzymes in NAFLD.
Collapse
|
17
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
18
|
Characterization of α-taxilin as a novel factor controlling the release of hepatitis C virus. Biochem J 2015; 473:145-55. [PMID: 26527738 DOI: 10.1042/bj20150717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/02/2015] [Indexed: 01/07/2023]
Abstract
Although it is well established that the release of HCV (hepatitis C virus) occurs through the secretory pathway, many aspects concerning the control of this process are not yet fully understood. α-Taxilin was identified as a novel binding partner of syntaxin-4 and of other members of the syntaxin family, which are part of SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) complexes and so are involved in intracellular vesicle traffic. Since α-taxilin prevents t-SNARE (target SNARE) formation by binding exclusively to free syntaxin-4, it exerts an inhibitory effect on the vesicular transport. HCV-replicating Huh7.5 cells and HCV-infected primary human hepatocytes and liver samples of patients suffering from chronic HCV contain significantly less α-taxilin compared with the controls. HCV impairs the expression of α-taxilin via NS5A-dependent interruption of the Raf/MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] signal transduction cascade. Moreover, the half-life of α-taxilin is significantly reduced in HCV-replicating cells. Whereas modulation of α-taxilin expression does not significantly affect genome replication, the overexpression of α-taxilin prevents the release of HCV. In contrast with this, silencing of α-taxilin expression leads to increased release of infectious viral particles. This is due to the negative effect of α-taxilin on t-SNARE formation that leads to impaired vesicular trafficking. Accordingly, overexpression of the t-SNARE component syntaxin-4 increases release of HCV, whereas silencing leads to an impaired release. These data identify α-taxilin as a novel factor that controls the release of HCV and reveal the mechanism by which HCV controls the activity of α-taxilin.
Collapse
|
19
|
González-Reimers E, Quintero-Platt G, Rodríguez-Gaspar M, Alemán-Valls R, Pérez-Hernández O, Santolaria-Fernández F. Liver steatosis in hepatitis C patients. World J Hepatol 2015; 7:1337-1346. [PMID: 26052379 PMCID: PMC4450197 DOI: 10.4254/wjh.v7.i10.1337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/31/2015] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
There is controversy regarding some aspects of hepatitis C virus (HCV) infection-associated liver steatosis, and their relationship with body fat stores. It has classically been found that HCV, especially genotype 3, exerts direct metabolic effects which lead to liver steatosis. This supports the existence of a so called viral steatosis and a metabolic steatosis, which would affect HCV patients who are also obese or diabetics. In fact, several genotypes exert metabolic effects which overlap with some of those observed in the metabolic syndrome. In this review we will analyse the pathogenic pathways involved in the development of steatosis in HCV patients. Several cytokines and adipokines also become activated and are involved in “pure” steatosic effects, in addition to inflammation. They are probably responsible for the evolution of simple steatosis to steatohepatitis, making it difficult to explain why such alterations only affect a proportion of steatosic patients.
Collapse
|
20
|
Cellular stress responses in hepatitis C virus infection: Mastering a two-edged sword. Virus Res 2015; 209:100-17. [PMID: 25836277 DOI: 10.1016/j.virusres.2015.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection affects chronically more than 150 million humans worldwide. Chronic HCV infection causes severe liver disease and hepatocellular carcinoma. While immune response-mediated events are major players in HCV pathogenesis, the impact that viral replication has on cellular homeostasis is increasingly recognized as a necessary contributor to pathological manifestations of HCV infection such as steatosis, insulin-resistance or liver cancer. In this review, we will briefly overview the different cellular stress pathways that are induced by hepatitis C virus infection, the response that the cell promotes to attempt regaining homeostasis or to induce dysfunctional cell death, and how the virus co-opts these response mechanisms to promote both viral replication and survival of the infected cell. We will review the role of unfolded protein and oxidative stress responses as well as the role of auto- and mitophagy in HCV infection. Finally, we will discuss the recent discovery of a cellular chaperone involved in stress responses, the sigma-1 receptor, as a cellular factor required at the onset of HCV infection and the potential molecular events underlying the proviral role of this cellular factor in HCV infection.
Collapse
|
21
|
Gao TT, Qin ZL, Ren H, Zhao P, Qi ZT. Inhibition of IRS-1 by hepatitis C virus infection leads to insulin resistance in a PTEN-dependent manner. Virol J 2015; 12:12. [PMID: 25645159 PMCID: PMC4323155 DOI: 10.1186/s12985-015-0241-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/15/2015] [Indexed: 12/18/2022] Open
Abstract
Background Hepatitis C virus (HCV) infection was recently recognized as an independent risk factor for insulin resistance (IR), the onset phase of type 2 diabetes mellitus (T2DM). Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates PI3K/Akt signaling pathway, which is critical for IR development and progression of cirrhosis to hepatocellular carcinoma (HCC). Here, we investigate the role of PTEN in HCV-associated IR and explored the mechanisms by which HCV regulates PTEN. Methods Western blotting was used to detect the levels of insulin signaling pathway components, including insulin receptor substrate-1 (IRS-1), phosphorylated IRS-1 (pIRS-1) at serine 307 (Ser307), both phosphorylated Akt (pAkt) and total Akt. A time-course experiment measuring activation of the insulin signaling pathway was performed to assess the effect of HCV infection on insulin sensitivity by examining the phosphorylation levels of Akt and GSK3β, a downstream target of Akt. Huh7.5.1 cells were transduced with a lentiviral vector expressing PTEN or PTEN shRNA, and IRS-1 and pIRS-1 (Ser307) levels were determined in both HCV-infected and uninfected cells. The pc-JFH1-core plasmid was constructed to explore the underlying mechanisms by which HCV regulated PTEN and therefore IRS-1 levels. Results HCV infection inhibited the insulin signaling pathway by reducing the levels of IRS-1 and pAkt/Akt while increasing phosphorylation of IRS-1 Ser307. In addition, HCV infection decreased the sensitivity to insulin-induced stimulation by inhibiting Akt and GSK3β phosphorylation. Furthermore, PTEN mRNA and protein levels were reduced upon HCV infection as well as transfection with the pc-JFH1-core plasmid. The reduction in IRS-1 level observed in HCV-infected cells was rescued to a limited extent by overexpression of PTEN, which in turn slightly reduced pIRS-1 (Ser307) level. In contrast, IRS-1 level were significantly decreased and phosphorylation of IRS-1 at Ser-307 was strongly enhanced by PTEN knockdown, suggesting that both reduction in IRS-1 level and increase in IRS-1 phosphorylation at Ser307 upon HCV infection occurred in a PTEN-dependent manner. Conclusions HCV infection suppresses the insulin signaling pathway and promotes IR by repressing PTEN, subsequently leading to decreased levels of IRS-1 and increased levels of pIRS-1 at Ser307. The findings provide new insight on the mechanism of HCV-associated IR.
Collapse
Affiliation(s)
- Ting-ting Gao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, 200433, China.
| | - Zhao-ling Qin
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, 200433, China.
| | - Hao Ren
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, 200433, China.
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, 200433, China.
| | - Zhong-tian Qi
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
22
|
Hepatitis C virus and lipid droplets: finding a niche. Trends Mol Med 2014; 21:34-42. [PMID: 25496657 DOI: 10.1016/j.molmed.2014.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/11/2014] [Accepted: 11/17/2014] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) causes serious liver disease in chronically infected individuals. Infectious virions are released from hepatocytes as lipoprotein complexes, indicating that the virus interacts with very low density lipoprotein (VLDL) assembly to propagate. The primary source of lipid for incorporation into VLDL is cytoplasmic lipid droplets (LDs). This organelle is targeted by two virus-encoded proteins as part of a process essential for virion morphogenesis. Moreover, LDs regulate infection. A common condition in HCV-infected individuals is steatosis, characterized by an accumulation of LDs. The mechanisms underlying development of steatosis include direct effects of the virus on lipid metabolism. This review reveals new insights into HCV infection and a further twist to the growing list of functions performed by LDs.
Collapse
|