1
|
Grimwood RM, Reyes EMR, Cooper J, Welch J, Taylor G, Makan T, Lim L, Dubrulle J, McInnes K, Holmes EC, Geoghegan JL. From islands to infectomes: host-specific viral diversity among birds across remote islands. BMC Ecol Evol 2024; 24:84. [PMID: 38926829 PMCID: PMC11209962 DOI: 10.1186/s12862-024-02277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Accelerating biodiversity loss necessitates monitoring the potential pathogens of vulnerable species. With a third of New Zealand's avifauna considered at risk of extinction, a greater understanding of the factors that influence microbial transmission in this island ecosystem is needed. We used metatranscriptomics to determine the viruses, as well as other microbial organisms (i.e. the infectomes), of seven bird species, including the once critically endangered black robin (Petroica traversi), on two islands in the remote Chatham Islands archipelago, New Zealand. RESULTS We identified 19 likely novel avian viruses across nine viral families. Black robins harboured viruses from the Flaviviridae, Herpesviridae, and Picornaviridae, while introduced starlings (Sturnus vulgaris) and migratory seabirds (Procellariiformes) carried viruses from six additional viral families. Potential cross-species virus transmission of a novel passerivirus (family: Picornaviridae) between native (black robins and grey-backed storm petrels) and introduced (starlings) birds was also observed. Additionally, we identified bacterial genera, apicomplexan parasites, as well as a novel megrivirus linked to disease outbreaks in other native New Zealand birds. Notably, island effects were outweighed by host taxonomy as a significant driver of viral composition, even among sedentary birds. CONCLUSIONS These findings underscore the value of surveillance of avian populations to identify and minimise escalating threats of disease emergence and spread in these island ecosystems. Importantly, they contribute to our understanding of the potential role of introduced and migratory birds in the transmission of microbes and associated diseases, which could impact vulnerable island-endemic species.
Collapse
Affiliation(s)
- Rebecca M Grimwood
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Enzo M R Reyes
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Jamie Cooper
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Jemma Welch
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Graeme Taylor
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Troy Makan
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Lauren Lim
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jérémy Dubrulle
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Kate McInnes
- Department of Conservation/Te Papa Atawhai, Nelson, New Zealand
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand.
- Institute of Environmental Science and Research, Wellington, 5018, New Zealand.
| |
Collapse
|
2
|
Abaeva IS, Pestova TV, Hellen CUT. Genetic mechanisms underlying the structural elaboration and dissemination of viral internal ribosomal entry sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.590008. [PMID: 38883778 PMCID: PMC11178006 DOI: 10.1101/2024.04.17.590008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Viral internal ribosomal entry sites (IRESs) form several classes that use distinct mechanisms to mediate end-independent initiation of translation. The origin of viral IRESs is a longstanding question. The simplest IRESs comprise tandem pseudoknots and occur in the intergenic region (IGR) of Dicistroviridae genomes (order Picornavirales ). Larger IGR IRESs contain additional elements that determine specific properties such as binding to the head of the ribosoma l 40S subunit. Metagenomic analyses reported here identified novel groups of structurally distinct IGR-like IRESs. The smallest of these (∼120nt long) comprise three pseudoknots and bind directly to the ribosomal P site. Others are up to 260nt long: insertions occurred at specific loci, possibly reflecting non-templated nucleotide insertion during replication. Various groups can be arranged in order, differing by the cumulative addition of single structural elements, suggesting an accretion mechanism for the structural elaboration of IRESs. Identification of chimeric IRESs implicates recombinational exchange of domains as a second mechanism for the diversification of IRES structure. Recombination likely also accounts for the presence of IGR-like IRESs at the 5'-end of some dicistrovirus-like genomes (e.g. Hangzhou dicistrovirus 3) and in the RNA genomes of Tombusviridae (order Tolivirales ), Marnaviridae (order Picornavirale s), and the 'Ripiresk' picorna-like clade (order Picornavirale s).
Collapse
|
3
|
Mwakibete L, Greening SS, Kalantar K, Ahyong V, Anis E, Miller EA, Needle DB, Oglesbee M, Thomas WK, Sevigny JL, Gordon LM, Nemeth NM, Ogbunugafor CB, Ayala AJ, Faith SA, Neff N, Detweiler AM, Baillargeon T, Tanguay S, Simpson SD, Murphy LA, Ellis JC, Tato CM, Gagne RB. Metagenomics for Pathogen Detection During a Mass Mortality Event in Songbirds. J Wildl Dis 2024; 60:362-374. [PMID: 38345467 DOI: 10.7589/jwd-d-23-00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/02/2024] [Indexed: 04/06/2024]
Abstract
Mass mortality events in wildlife can be indications of an emerging infectious disease. During the spring and summer of 2021, hundreds of dead passerines were reported across the eastern US. Birds exhibited a range of clinical signs including swollen conjunctiva, ocular discharge, ataxia, and nystagmus. As part of the diagnostic investigation, high-throughput metagenomic next-generation sequencing was performed across three molecular laboratories on samples from affected birds. Many potentially pathogenic microbes were detected, with bacteria forming the largest proportion; however, no singular agent was consistently identified, with many of the detected microbes also found in unaffected (control) birds and thus considered to be subclinical infections. Congruent results across laboratories have helped drive further investigation into alternative causes, including environmental contaminants and nutritional deficiencies. This work highlights the utility of metagenomic approaches in investigations of emerging diseases and provides a framework for future wildlife mortality events.
Collapse
Affiliation(s)
| | - Sabrina S Greening
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
| | | | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Eman Anis
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
- Department of Pathobiology, PADLS New Bolton Center, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
| | - Erica A Miller
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
| | - David B Needle
- New Hampshire Veterinary Diagnostic Lab, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Michael Oglesbee
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - W Kelley Thomas
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Joseph L Sevigny
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Lawrence M Gordon
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Nicole M Nemeth
- Southeastern Cooperative Wildlife Disease Study and Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Georgia 30602, USA
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Andrea J Ayala
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Seth A Faith
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | | | - Tessa Baillargeon
- New Hampshire Veterinary Diagnostic Lab, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Stacy Tanguay
- New Hampshire Veterinary Diagnostic Lab, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Stephen D Simpson
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Lisa A Murphy
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
- Department of Pathobiology, PADLS New Bolton Center, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
| | - Julie C Ellis
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
| | - Cristina M Tato
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Roderick B Gagne
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania 19348, USA
| |
Collapse
|
4
|
Williams RAJ, Sánchez-Llatas CJ, Doménech A, Madrid R, Fandiño S, Cea-Callejo P, Gomez-Lucia E, Benítez L. Emerging and Novel Viruses in Passerine Birds. Microorganisms 2023; 11:2355. [PMID: 37764199 PMCID: PMC10536639 DOI: 10.3390/microorganisms11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
There is growing interest in emerging viruses that can cause serious or lethal disease in humans and animals. The proliferation of cloacal virome studies, mainly focused on poultry and other domestic birds, reveals a wide variety of viruses, although their pathogenic significance is currently uncertain. Analysis of viruses detected in wild birds is complex and often biased towards waterfowl because of the obvious interest in avian influenza or other zoonotic viruses. Less is known about the viruses present in the order Passeriformes, which comprises approximately 60% of extant bird species. This review aims to compile the most significant contributions on the DNA/RNA viruses affecting passerines, from traditional and metagenomic studies. It highlights that most passerine species have never been sampled. Especially the RNA viruses from Flaviviridae, Orthomyxoviridae and Togaviridae are considered emerging because of increased incidence or avian mortality/morbidity, spread to new geographical areas or hosts and their zoonotic risk. Arguably poxvirus, and perhaps other virus groups, could also be considered "emerging viruses". However, many of these viruses have only recently been described in passerines using metagenomics and their role in the ecosystem is unknown. Finally, it is noteworthy that only one third of the viruses affecting passerines have been officially recognized.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
| | - Ana Doménech
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Ricardo Madrid
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Sergio Fandiño
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo Cea-Callejo
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Esperanza Gomez-Lucia
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| |
Collapse
|
5
|
Arhab Y, Miścicka A, Pestova TV, Hellen CUT. Horizontal gene transfer as a mechanism for the promiscuous acquisition of distinct classes of IRES by avian caliciviruses. Nucleic Acids Res 2021; 50:1052-1068. [PMID: 34928389 PMCID: PMC8789048 DOI: 10.1093/nar/gkab1243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
In contrast to members of Picornaviridae which have long 5'-untranslated regions (5'UTRs) containing internal ribosomal entry sites (IRESs) that form five distinct classes, members of Caliciviridae typically have short 5'UTRs and initiation of translation on them is mediated by interaction of the viral 5'-terminal genome-linked protein (VPg) with subunits of eIF4F rather than by an IRES. The recent description of calicivirus genomes with 500-900nt long 5'UTRs was therefore unexpected and prompted us to examine them in detail. Sequence analysis and structural modelling of the atypically long 5'UTRs of Caliciviridae sp. isolate yc-13 and six other caliciviruses suggested that they contain picornavirus-like type 2 IRESs, whereas ruddy turnstone calicivirus (RTCV) and Caliciviridae sp. isolate hwf182cal1 calicivirus contain type 4 and type 5 IRESs, respectively. The suggestion that initiation on RTCV mRNA occurs by the type 4 IRES mechanism was confirmed experimentally using in vitro reconstitution. The high sequence identity between identified calicivirus IRESs and specific picornavirus IRESs suggests a common evolutionary origin. These calicivirus IRESs occur in a single phylogenetic branch of Caliciviridae and were likely acquired by horizontal gene transfer.
Collapse
Affiliation(s)
- Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn NY 11203, USA
| |
Collapse
|
6
|
Courtillon C, Briand FX, Allée C, Contrant M, Beven V, Lucas P, Blanchard Y, Mouchel S, Eterradossi N, Delforterie Y, Grasland B, Brown P. Description of the first isolates of guinea fowl corona and picornaviruses obtained from a case of guinea fowl fulminating enteritis. Avian Pathol 2021; 50:507-521. [PMID: 34545751 DOI: 10.1080/03079457.2021.1976725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Guinea fowl fulminating enteritis has been reported in France since the 1970s. In 2014, a coronavirus was identified and appeared as a possible viral pathogen involved in the disease. In the present study, intestinal content from a guinea fowl involved in a new case of the disease in 2017 was analysed by deep sequencing, revealing the presence of a guinea fowl coronavirus (GfCoV) and a picornavirus (GfPic). Serial passage assays into the intra-amniotic cavity of 13-day-old specific pathogen-free chicken eggs and 20-day-old conventional guinea fowl eggs were attempted. In chicken eggs, isolation assays failed, but in guinea fowl eggs, both viruses were successfully obtained. Furthermore, two GfCoV and two GfPic isolates were obtained from the same bird but from different sections of its intestines. This shows that using eggs of the same species, in which the virus has been detected, can be the key for successful isolation. The consensus sequence of the full-length genomes of both GfCoV isolates was highly similar, and correlated to those previously described in terms of genome organization, ORF length and phylogenetic clustering. According to full-length genome analysis and the structure of the Internal Ribosome Entry Site, both GfPic isolates belong to the Anativirus genus and specifically the species Anativirus B. The availability of the first isolates of GfCoV and GfPic will now provide a means of assessing their pathogenicity in guinea fowl in controlled experimental conditions and to assess whether they are primary viral pathogens of the disease "guinea fowl fulminating enteritis".RESEARCH HIGHLIGHTSFirst isolation of guinea fowl coronaviruses and picornaviruses.Eggs homologous to the infected species are key for isolation.Isolates available to precisely evaluate the virus roles in fulminating enteritis.First full-length genome sequences of guinea fowl picornaviruses.
Collapse
Affiliation(s)
- Céline Courtillon
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - François-Xavier Briand
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - Chantal Allée
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - Maud Contrant
- GVB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - Véronique Beven
- GVB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - Pierrick Lucas
- GVB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - Yannick Blanchard
- GVB Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | | | - Nicolas Eterradossi
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | | | - Béatrice Grasland
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| | - Paul Brown
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire (Anses), Laboratoire de Ploufragan-Plouzané-Niort Ploufragan, France
| |
Collapse
|
7
|
Comparative Metagenomics of Palearctic and Neotropical Avian Cloacal Viromes Reveal Geographic Bias in Virus Discovery. Microorganisms 2020; 8:microorganisms8121869. [PMID: 33256173 PMCID: PMC7761369 DOI: 10.3390/microorganisms8121869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/11/2023] Open
Abstract
Our understanding about viruses carried by wild animals is still scarce. The viral diversity of wildlife may be best described with discovery-driven approaches to the study of viral diversity that broaden research efforts towards non-canonical hosts and remote geographic regions. Birds have been key organisms in the transmission of viruses causing important diseases, and wild birds are threatened by viral spillovers associated with human activities. However, our knowledge of the avian virome may be biased towards poultry and highly pathogenic diseases. We describe and compare the fecal virome of two passerine-dominated bird assemblages sampled in a remote Neotropical rainforest in French Guiana (Nouragues Natural Reserve) and a Mediterranean forest in central Spain (La Herrería). We used metagenomic data to quantify the degree of functional and genetic novelty of viruses recovered by examining if the similarity of the contigs we obtained to reference sequences differed between both locations. In general, contigs from Nouragues were significantly less similar to viruses in databases than contigs from La Herrería using Blastn but not for Blastx, suggesting that pristine regions harbor a yet unknown viral diversity with genetically more singular viruses than more studied areas. Additionally, we describe putative novel viruses of the families Picornaviridae, Reoviridae and Hepeviridae. These results highlight the importance of wild animals and remote regions as sources of novel viruses that substantially broaden the current knowledge of the global diversity of viruses.
Collapse
|
8
|
Arhab Y, Bulakhov AG, Pestova TV, Hellen CU. Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Viruses 2020; 12:E612. [PMID: 32512856 PMCID: PMC7354566 DOI: 10.3390/v12060612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 5'-untranslated region (5'UTR) of their genomes. Each class of IRES has a conserved structure and promotes 5'-end-independent initiation of translation by a different mechanism. Picornavirus 5'UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity. Their dissemination between viruses by horizontal gene transfer has unexpectedly emerged as an important facet of viral evolution.
Collapse
Affiliation(s)
| | | | | | - Christopher U.T. Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (Y.A.); (A.G.B.); (T.V.P.)
| |
Collapse
|
9
|
de Souza WM, Fumagalli MJ, Martin MC, de Araujo J, Orsi MA, Sanfilippo LF, Modha S, Durigon EL, Proença-Módena JL, Arns CW, Murcia PR, Figueiredo LTM. Pingu virus: A new picornavirus in penguins from Antarctica. Virus Evol 2019; 5:vez047. [PMID: 31850147 PMCID: PMC6908804 DOI: 10.1093/ve/vez047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Picornaviridae family comprises single-stranded, positive-sense RNA viruses distributed into forty-seven genera. Picornaviruses have a broad host range and geographic distribution in all continents. In this study, we applied a high-throughput sequencing approach to examine the presence of picornaviruses in penguins from King George Island, Antarctica. We discovered and characterized a novel picornavirus from cloacal swab samples of gentoo penguins (Pygoscelis papua), which we tentatively named Pingu virus. Also, using RT-PCR we detected this virus in 12.9 per cent of cloacal swabs derived from P. papua, but not in samples from adélie penguins (Pygoscelis adeliae) or chinstrap penguins (Pygoscelis antarcticus). Attempts to isolate the virus in a chicken cell line and in embryonated chicken eggs were unsuccessful. Our results expand the viral diversity, host range, and geographical distribution of the Picornaviridae.
Collapse
Affiliation(s)
- William Marciel de Souza
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| | - Marcílio Jorge Fumagalli
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| | - Matheus Cavalheiro Martin
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Jansen de Araujo
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - Maria Angela Orsi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Luiz Francisco Sanfilippo
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK
| | - Edison Luiz Durigon
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 - Butantã, São Paulo - SP, 05508-900 Brazil
| | - José Luiz Proença-Módena
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Clarice Weis Arns
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-862 Brazil
| | - Pablo Ramiro Murcia
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK
| | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900 Brazil
| |
Collapse
|
10
|
Malik YS, Verma AK, Kumar N, Touil N, Karthik K, Tiwari R, Bora DP, Dhama K, Ghosh S, Hemida MG, Abdel-Moneim AS, Bányai K, Vlasova AN, Kobayashi N, Singh RK. Advances in Diagnostic Approaches for Viral Etiologies of Diarrhea: From the Lab to the Field. Front Microbiol 2019; 10:1957. [PMID: 31608017 PMCID: PMC6758846 DOI: 10.3389/fmicb.2019.01957] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/08/2019] [Indexed: 12/25/2022] Open
Abstract
The applications of correct diagnostic approaches play a decisive role in timely containment of infectious diseases spread and mitigation of public health risks. Nevertheless, there is a need to update the diagnostics regularly to capture the new, emergent, and highly divergent viruses. Acute gastroenteritis of viral origin has been identified as a significant cause of mortality across the globe, with the more serious consequences seen at the extremes of age groups (young and elderly) and immune-compromised individuals. Therefore, significant advancements and efforts have been put in the development of enteric virus diagnostics to meet the WHO ASSURED criteria as a benchmark over the years. The Enzyme-Linked Immunosorbent (ELISA) and Polymerase Chain Reaction (PCR) are the basic assays that provided the platform for development of several efficient diagnostics such as real-time RT-PCR, loop-mediated isothermal amplification (LAMP), polymerase spiral reaction (PSR), biosensors, microarrays and next generation sequencing. Herein, we describe and discuss the applications of these advanced technologies in context to enteric virus detection by delineating their features, advantages and limitations.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, India
| | - Atul Kumar Verma
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, India
| | - Naveen Kumar
- ICAR-National Institute of High Security Animal Diseases, OIE Reference Laboratory for Avian Influenza, Bhopal, India
| | - Nadia Touil
- Laboratoire de Biosécurité et de Recherche, Hôpital Militaire d’Instruction Mohammed V, Rabat, Morocco
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology & Immunology, College of Veterinary Sciences, DUVASU, Mathura, India
| | - Durlav Prasad Bora
- Department of Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, India
| | - Souvik Ghosh
- Department of Biomedical Sciences, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Maged Gomaa Hemida
- Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al-Hufuf, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed S. Abdel-Moneim
- Department of Microbiology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Beni Suef University, Beni Suef, Egypt
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anastasia N. Vlasova
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, CFAES, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | | | - Raj Kumar Singh
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|