1
|
He JH, Han D, Meng X, Li L, Hu B, Yan M, Wang ZA, Weng S, He J, Xu X. Claudin2 is involved in the interaction between Megalocytivirus-induced virus-mock basement membrane (VMBM) and lymphatic endothelial cells. Vet Res 2024; 55:143. [PMID: 39506812 DOI: 10.1186/s13567-024-01404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/19/2024] [Indexed: 11/08/2024] Open
Abstract
The genus Megalocytivirus, belonging to the family Iridoviridae, is one of the most detrimental virus groups to fish aquaculture. Megalocytivirus creates a virus-mock basement membrane (VMBM) on the surface of infected cells. This membrane provides attachment sites for lymphatic endothelial cells (LECs), disrupting fish's endothelial cell-extracellular matrix system. This disruption triggers injury to the vascular system and can result in death. Exploring the VMBM-cell interaction mechanism is crucial for uncovering the pathogenesis of Megalocytivirus and identifying therapeutic targets. Claudins, a class of tetra transmembrane proteins, play a key role in creating tight junctions between endothelial or epithelial cells. In this study, we demonstrated that the expression of Claudin2, a member of the Claudin family in fish, was significantly up-regulated by Megalocytivirus infection. Claudin2 was found in LECs attached to the surface of infected cells. It interacted with the VMBM viral components VP23R, VP08R, and VP33L at multiple binding sites through its two extracellular loops. However, it did not interact with the host basement membrane's nidogen. Therefore, Claudin2 is involved in the interaction of LEC with VMBM and plays a role in the disturbed distribution of extracellular matrix and endothelial cells in Megalocytivirus-infected fish tissues. This study aims to uncover the molecular mechanisms by which Megalocytivirus infection leads to pathological changes in the vascular system.
Collapse
Affiliation(s)
- Jian-Hui He
- State Key Laboratory of Biocontrol, School of Life Sciences/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Deyu Han
- State Key Laboratory of Biocontrol, School of Life Sciences/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Xianyu Meng
- State Key Laboratory of Biocontrol, School of Life Sciences/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Lingling Li
- State Key Laboratory of Biocontrol, School of Life Sciences/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Bangping Hu
- State Key Laboratory of Biocontrol, School of Life Sciences/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Muting Yan
- State Key Laboratory of Biocontrol, School of Life Sciences/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Zi-Ang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/ China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Sun Yat-Sen University, Guangzhou, China.
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
Pan W, Fu J, Zeng R, Liang M, You Y, Zhan Z, Lu Z, Weng S, Guo C, He J. Evaluation of a Low-Temperature Immersion Immunization Strategy for the Infectious Spleen and Kidney Necrosis Virus orf037l Gene-Deleted Attenuated Vaccine. Vaccines (Basel) 2024; 12:1170. [PMID: 39460336 PMCID: PMC11511343 DOI: 10.3390/vaccines12101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Infectious spleen and kidney necrosis virus (ISKNV) poses a significant threat to aquaculture sustainability, particularly affecting mandarin fish (Siniperca chuatsi) and causing significant economic losses. METHODS To address this challenge, this study developed an ISKNV Δorf037l vaccine strain, where the orf037l gene was knocked out. Infection assays conducted at 28 °C showed that the knocking out the orf037l gene decreased the virulence of ISKNV and reduced lethality against mandarin fish by 26.7% compared to wild-type ISKNV. To further diminish residual virulence, the effect of low-temperature (22 °C) immersion immunization was evaluated. RESULTS The results indicate that low temperature significantly diminished the virulence of the Δorf037l vaccine strain, elevating the survival rate of mandarin fish to 90%. Furthermore, the vaccine strain effectively triggered the expression of crucial immune-related genes, such as IFN-h, IL-1, IκB, Mx, TNF-α, and Viperin, while inducing the production of specific neutralizing antibodies. Low-temperature immersion with Δorf037l achieved a high relative percentage of survival of 92.6% (n = 30) in mandarin fish, suggesting the potential of Δorf037l as a promising immersion vaccine candidate. CONCLUSIONS These findings contribute to advancing fish immersion vaccine development and demonstrate the importance and broad applicability of temperature optimization strategies in vaccine development. Our work carries profound implications for both the theoretical understanding and practical application in aquaculture disease control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Changjun Guo
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals/Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China; (W.P.); (J.F.); (Z.Z.)
| | | |
Collapse
|
3
|
Ma Y, Xu J, Hao L, Wang G, Huang W, Liu Z. MiR-181a Negatively Regulates Claudin-3 to Facilitate Lateolabrax maculatus Iridovirus Replication in Lateolabrax maculatus Astroglia Cells. Viruses 2024; 16:1589. [PMID: 39459923 PMCID: PMC11512373 DOI: 10.3390/v16101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Lateolabrax maculatus iridovirus (LMIV) is a variant strain of red sea bream iridovirus (RSIV), causing serious economic losses in aquaculture. Claudins (CLDNs) are major components of tight junctions (TJs) forming an important line of defense against pathogens. Our pilot miRNA-mRNA joint analysis indicated the degradation of CLDN3, as well as its interaction with miR-181a during LMIV infection. To elucidate the miR-181a/CLDN3/LMIV interactions, in vitro assays were carried out on LMB-L cells. We first confirmed that LMIV infection could decrease the expression of CLDN3, accompanied by the enhancement of permeability, suggesting the dysfunction of TJs. Contrary to the inhibition of CLDN3, the activation of miR-181a was proved, presenting a negative correlation between miR-181a and CLDN3 (Pearson r = -0.773 and p < 0.01). In addition, the influence of CLDN3 on LMIV replication was analyzed by knockdown and over-expression of CLDN3. When CLDN3 was silenced in LMB-L cells with siCLDN3-623 at 9 days post transfection (dpt), LMIV copies and titers were significantly up-regulated by 1.59-fold and 13.87-fold, respectively. By contrast, LMIV replication in LMB-L cells was reduced by 60% and 71%, post transfection with pcDNA3.1-CLDN3 over-expressed plasmid at 6 dpt and 9 dpt, respectively. Ultimately, the regulatory relationship between miR-181a and CLDN3 was further validated by dual luciferase reporter assays. Taking into account the above-described results, we proposed a "miR-181a/CLDN3/LMIV" regulatory relationship. This study provides a new insight for understanding the mechanism of LMIV replication.
Collapse
Affiliation(s)
- Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| | - Jingjing Xu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| | - Gang Wang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| | - Wen Huang
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.M.); (J.X.); (L.H.); (G.W.)
- Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
4
|
Ma B, Li F, Fu X, Luo X, Lin Q, Liang H, Niu Y, Li N. Asparagine Availability Is a Critical Limiting Factor for Infectious Spleen and Kidney Necrosis Virus Replication. Viruses 2024; 16:1540. [PMID: 39459874 PMCID: PMC11512393 DOI: 10.3390/v16101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) has brought huge economic loss to the aquaculture industry. Through interfering with the viral replication and proliferation process that depends on host cells, its pathogenicity can be effectively reduced. In this study, we investigated the role of asparagine metabolites in ISKNV proliferation. The results showed that ISKNV infection up-regulated the expression of some key enzymes of the asparagine metabolic pathway in Chinese perch brain (CPB) cells. These key enzymes, including glutamic oxaloacetic transaminase 1/2 (GOT1/2) and malate dehydrogenase1/2 (MDH1/2) associated with the malate-aspartate shuttle (MAS) pathway and asparagine synthetase (ASNS) involved in the asparagine biosynthesis pathway, were up-regulated during ISKNV replication and release stages. In addition, results showed that the production of ISKNV was significantly reduced by inhibiting the MAS pathway or reducing the expression of ASNS by 1.3-fold and 0.6-fold, respectively, indicating that asparagine was a critical limiting metabolite for ISKNV protein synthesis. Furthermore, when asparagine was added to the medium without glutamine, ISKNV copy number was restored to 92% of that in the complete medium, indicating that ISKNV could be fully rescued from the absence of glutamine by supplementing asparagine. The above results indicated that asparagine was a critical factor in limiting the effective replication of ISKNV, which provided a new idea for the treatment of aquatic viral diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune and Sustainable Aquaculture, Guangzhou 510380, China
| |
Collapse
|
5
|
Alathari S, Chaput DL, Bolaños LM, Joseph A, Jackson VLN, Verner-Jeffreys D, Paley R, Tyler CR, Temperton B. A Multiplexed, Tiled PCR Method for Rapid Whole-Genome Sequencing of Infectious Spleen and Kidney Necrosis Virus (ISKNV) in Tilapia. Viruses 2023; 15:v15040965. [PMID: 37112945 PMCID: PMC10145788 DOI: 10.3390/v15040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Tilapia farming is one of the most important sectors in aquaculture worldwide and of major importance to global food security. Infectious spleen and kidney necrosis virus (ISKNV) has been identified as an agent of high morbidity and mortality, threatening tilapia aquaculture. ISKNV was detected in Lake Volta, Ghana, in September 2018 and spread rapidly, with mortality rates between 60 and 90% and losses of more than 10 tonnes of fish per day. Understanding the spread and evolution of viral pathogens is important for control strategies. Here, we developed a tiled-PCR sequencing approach for the whole-genome sequencing of ISKNV, using long read sequencing to enable field-based, real-time genomic surveillance. This work represents the first use of tiled-PCR for whole genome recovery of viruses in aquaculture, with the longest genome target (>110 kb dsDNA) to date. Our protocol was applied to field samples collected from the ISKNV outbreaks from four intensive tilapia cage culture systems across Lake Volta, between October 2018 and May 2022. Despite the low mutation rate of dsDNA viruses, 20 single nucleotide polymorphisms accumulated during the sampling period. Droplet digital PCR identified a minimum requirement of template in a sample to recover 50% of an ISKNV genome at 275 femtograms (2410 viral templates per 5 µL sequencing reaction). Overall, tiled-PCR sequencing of ISKNV provides an informative tool to assist in disease control in aquaculture.
Collapse
Affiliation(s)
- Shayma Alathari
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Dominique L Chaput
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Luis M Bolaños
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Andrew Joseph
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth DT4 8UB, UK
| | - Victoria L N Jackson
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - David Verner-Jeffreys
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth DT4 8UB, UK
- Sustainable Aquaculture Futures Centre, University of Exeter, Exeter EX4 4QD, UK
| | - Richard Paley
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth DT4 8UB, UK
| | - Charles R Tyler
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
- Sustainable Aquaculture Futures Centre, University of Exeter, Exeter EX4 4QD, UK
| | - Ben Temperton
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
6
|
Fonseca AA, Laguardia-Nascimento M, Ferreira APS, Pinto CDA, da Silva Gonçalves VL, Barbosa AAS, Rivetti Junior AV, Camargos MF. Genetic differentiation of Megalocytivirus by real time PCR and sequencing. Mol Biol Rep 2023; 50:3439-3450. [PMID: 36757549 DOI: 10.1007/s11033-023-08282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Megalocytiviruses (MCV) are double-stranded DNA viruses that infect fish. Two species within the genus are epidemiologically important for fish farming: red sea bream iridovirus (RSIV) and infectious spleen and kidney necrosis virus (ISKNV). The objective of this work was to study regions that allow the differentiation and correct diagnosis of RSIV and ISKNV. METHODS The regions ORF450L, ORF342L, ORF077, and the intergenic region between ORF37 and ORF42R were sequenced and compared with samples from the database. RESULTS The tree constructed using the sequencing of the PCR product Megalocytivirus. ORF077 separated the three major clades of MCV. RISV genotypes were well divided, but not ISKNV. All qPCRs tests showed acceptable repeatability values, that is, less than 5%. CONCLUSION Two qPCRs for ISKNV detection and two for RSIV were considered suitable for use in the diagnosis and typing of MCV. The results of this study demonstrate the importance of an accurate evaluation of methodologies for the differentiation of MCV.
Collapse
Affiliation(s)
- Antônio Augusto Fonseca
- Laboratório Federal de Defesa Agropecuária de Minas Gerais, Pedro Leopoldo, Brazil. .,UNIFEMM - Centro Universitário, Sete Lagoas, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|