1
|
Amin HA, Younes HA, Shafie RM, Fathallah MM. Molecular characterization and evolution of the resident population of some alfalfa mosaic virus (AMV) isolates in Egypt. BMC Microbiol 2023; 23:261. [PMID: 37723462 PMCID: PMC10506327 DOI: 10.1186/s12866-023-03003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Alfalfa mosaic virus (AMV) is an important virus affecting many vegetable crops in Egypt. In this study, virus isolates were collected from naturally infected potato, tomato, alfalfa and clover plants that showed suspected symptoms of AMV in different locations of Beheira and Alexandria governorates during the 2019-2020 growing season. The relative incidence of the virus ranged from 11-25% based on visual observations of symptoms and ELISA testing. A total of 41 samples were tested by ELISA using polyclonal antisera for AMV. Four AMV isolates collected from different host plants, named AM1 from potato, AM2 from tomato, AM3 from alfalfa and AM4 from alfalfa, were maintained on Nicotiana glutinosa plants for further characterization of AMV. RESULTS Electron micrographs of the purified viral preparation showed spheroidal particles with a diameter of 18 nm and three bacilliform particles with lengths of roughly 55, 68, and 110 nm and diameters identical to those of the spheroidal particles. The CP gene sequence comparisons of four AMV isolates (AM1, AM2, AM3 and AM4) showed the highest nucleotide identity of 99.7% with the Gomchi isolate from South Korea infecting Gomchi (Ligularia fischeri) plants. Phylogenetic analysis showed that the present isolates were grouped together into a distinct separate clade (GPI) along with the Gomchi isolate from South Korea. Similarly, the deduced amino acid sequence comparisons of Egyptian AMV isolates revealed that amino acids Q29, S30, T34, V92 and V175 were conserved among the Egyptian isolates in GPI. CONCLUSION The present study found strong evolutionary evidence for the genetic diversity of AMV isolates by the identification of potential recombination events involving parents from GPI and GPII lineages. Additionally, the study found that Egyptian AMV isolates are genetically stable with low nucleotide diversity. Genetic analysis of the AMV population suggested that the AMV populations differ geographically, and AMV CP gene is under mild purifying selection. Furthermore, the study proposed that the Egyptian AMV population had common evolutionary ancestors with the Asian AMV population. Antioxidant enzymes activity was assessed on N. glutinosa plants in response to infection with each AMV isolate studied, and the results revealed that the enzyme activity varied.
Collapse
Affiliation(s)
- Hala A Amin
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), P.O. Box 12619, Giza, Egypt.
| | - H A Younes
- Agricultural Botany Department, Faculty of Agriculture, Alexandria University, Saba Basha, Alexandria, Egypt
| | - Radwa M Shafie
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), P.O. Box 12619, Giza, Egypt
| | - Mervat M Fathallah
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), P.O. Box 12619, Giza, Egypt
| |
Collapse
|
2
|
Dell’Olmo E, Tiberini A, Sigillo L. Leguminous Seedborne Pathogens: Seed Health and Sustainable Crop Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:2040. [PMID: 37653957 PMCID: PMC10221191 DOI: 10.3390/plants12102040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
Pulses have gained popularity over the past few decades due to their use as a source of protein in food and their favorable impact on soil fertility. Despite being essential to modern agriculture, these species face a number of challenges, such as agronomic crop management and threats from plant seed pathogens. This review's goal is to gather information on the distribution, symptomatology, biology, and host range of seedborne pathogens. Important diagnostic techniques are also discussed as a part of a successful process of seed health certification. Additionally, strategies for sustainable control are provided. Altogether, the data collected are suggested as basic criteria to set up a conscious laboratory approach.
Collapse
Affiliation(s)
- Eliana Dell’Olmo
- Council for Agricultural Research and Economics, Research Center for Vegetable and Ornamental Crops (CREA-OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Antonio Tiberini
- Council for Agricultural Research and Economics, Research Center for Plant Protection and Certification (CREA-DC), Via C. G. Bertero, 22, 00156 Rome, Italy
| | - Loredana Sigillo
- Council for Agricultural Research and Economics, Research Center for Vegetable and Ornamental Crops (CREA-OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
3
|
Wang X, Liu C, Tan Z, Zhang J, Wang R, Wang Y, Jiang X, Wu B. Population genetics and phylogeography of alfalfa mosaic virus in China and a comparison with other regional epidemics based on the cp gene. FRONTIERS IN PLANT SCIENCE 2023; 13:1105198. [PMID: 36865945 PMCID: PMC9971725 DOI: 10.3389/fpls.2022.1105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Alfalfa mosaic virus (AMV) is the most pervasive epidemic virus affecting alfalfa production. However, detailed investigations on the molecular population genetics and evolutionary dynamics of AMV are scarce. This study aimed to report on a large-scale long-term survey of genetic variability in AMV populations from China and perform a comparative analysis of AMV population genetics in the three most thoroughly studied countries to date: China, Iran, and Spain. The study was based on the analysis of the coat protein gene (cp) using two analytical approaches: an analysis of molecular variance (AMOVA) and a Bayesian Markov Chain Monte Carlo approach that investigates the association between geographical origin and phylogeny. Both analytical approaches found significant genetic differentiation within localities, but not among localities nor among provinces. This observation might result from inappropriate agronomical practices involving extensive exchange of plant materials followed by rapid viral diversification within localities. In the Chinese population, both methods found that genetic diversification in AMV was strongly associated with different bioclimatic zones. Rates of molecular evolution were similar in the three countries. The estimated epidemic exponential population size and growth rate suggest that the epidemics grew faster and with higher incidence in Iran, followed by Spain and China. Estimates of the time to the most recent common ancestors suggest that AMV was first seen in Spain by the beginning of the twentieth century and later on in eastern and central Eurasia. After ruling out the existence of recombination breakpoints within the cp gene, a codon-based selection analysis per population was performed and identified many codons under significant negative selection and a few under significant positive selection; the latter varied among countries, suggesting regional differences in selective pressures.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Protection, College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Chenchen Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaoyan Tan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiantai Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Protection, College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
- People's Congress Standing Committee Office, Xiuzhou District, Jiaxing, Zhejiang, China
| | - Rongqun Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanhong Wang
- Department of Plant Protection, College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Xiliang Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Beilei Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Gao Y, Fan G, Cheng S, Zhang W, Bai Y. Evolutionary history and global spatiotemporal pattern of alfalfa mosaic virus. Front Microbiol 2022; 13:1051834. [PMID: 36620025 PMCID: PMC9812523 DOI: 10.3389/fmicb.2022.1051834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
Alfalfa mosaic virus (AMV) is an important plant virus causing considerable economic loss to alfalfa production. Knowledge of the evolutionary and demographic history of the pathogen is limited but essential to the development of effective and sustainable pathogen management schemes. In this study, we performed worldwide phylodynamic analyses of AMV based on 154 nucleotide sequences of the coat protein gene, sampled from 1985 to 2020, to understand the epidemiology of this pathogen. Bayesian phylogenetic reconstruction estimates that the crown group of AMV dates back to 1840 (95% credibility interval, 1687-1955). We revealed that AMV continuously evolves at a rate of 4.14 × 10-4 substitutions/site/year (95% credibility interval, 1.04 × 10-4 - 6.68 × 10-4). Our phylogeographic analyses identified multiple migration links between Europe and other regions, implying that Europe played a key role in spreading the virus worldwide. Further analyses showed that the clustering pattern of AMV isolates is significantly correlated to geographic regions, indicating that geography-driven adaptation may be a factor that affects the evolution of AMV. Our findings may be potentially used in the development of effective control strategies for AMV.
Collapse
Affiliation(s)
- Yanling Gao
- Industrial Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guoquan Fan
- Industrial Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shengqun Cheng
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Wei Zhang
- Industrial Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yanju Bai
- Industrial Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China,*Correspondence: Yanju Bai,
| |
Collapse
|
5
|
Parrella G, Troiano E. A New Ilarvirus Found in French Hydrangea. PLANTS 2022; 11:plants11070944. [PMID: 35406923 PMCID: PMC9002526 DOI: 10.3390/plants11070944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
In this study, a new virus was identified in French hydrangea plants, exhibiting chlorotic vein banding and necrotic ring spots on older leaves. The virus was mechanically transmitted to herbaceous hosts, in which it induced local and systemic or only local symptoms. The genome of the new virus was characterized and consisted of three RNA sequences that were 3422 (RNA 1), 2905 (RNA 2) and 2299 (RNA 3) nucleotides long, with five predicted open reading frames; RNA2 was bicistronic and contained conserved domains and motifs typical of ilarviruses. The phylogenetic analysis of the predicted proteins—p1, p2a, p3a and p3b—revealed its close relationship to recognized members of subgroup 2 within the genus Ilarvirus. Homologous antiserum was effective in the detection of the virus in plant extracts and no cross reactions with two other distinct members of subgroup 2 were observed. Overall, the biological features, phylogenetic relationships and serological data suggest that this virus is a new member of the genus, for which we propose the name hydrangea vein banding virus (HdVBV).
Collapse
|
6
|
Hasan ZM, Salem NM, Ismail ID, Akel EH, Ahmad AY. First Report of Tomato Brown Rugose Fruit Virus on Greenhouse Tomato in Syria. PLANT DISEASE 2022; 106:PDIS07211356PDN. [PMID: 34472966 DOI: 10.1094/pdis-07-21-1356-pdn] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Z M Hasan
- Department of Plant Protection, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - N M Salem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - I D Ismail
- Department of Plant Protection, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - E H Akel
- General Commission for Scientific Agricultural Research (GCSAR), Syria
| | - A Y Ahmad
- General Commission for Scientific Agricultural Research (GCSAR), Syria
| |
Collapse
|
7
|
Abdelkhalek A, Qari SH, Abu-Saied MAAR, Khalil AM, Younes HA, Nehela Y, Behiry SI. Chitosan Nanoparticles Inactivate Alfalfa Mosaic Virus Replication and Boost Innate Immunity in Nicotiana glutinosa Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2701. [PMID: 34961172 PMCID: PMC8703458 DOI: 10.3390/plants10122701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 06/01/2023]
Abstract
Plant viral infection is one of the most severe issues in food security globally, resulting in considerable crop production losses. Chitosan is a well-known biocontrol agent against a variety of plant infections. However, research on combatting viral infections is still in its early stages. The current study investigated the antiviral activities (protective, curative, and inactivation) of the prepared chitosan/dextran nanoparticles (CDNPs, 100 µg mL-1) on Nicotiana glutinosa plants. Scanning electron microscope (SEM) and dynamic light scattering analysis revealed that the synthesized CDNPs had a uniform, regular sphere shapes ranging from 20 to 160 nm in diameter, with an average diameter of 91.68 nm. The inactivation treatment was the most effective treatment, which resulted in a 100% reduction in the alfalfa mosaic virus (AMV, Acc# OK413670) accumulation level. On the other hand, the foliar application of CDNPs decreased disease severity and significantly reduced viral accumulation levels by 70.43% and 61.65% in protective and curative treatments, respectively, under greenhouse conditions. Additionally, the induction of systemic acquired resistance, increasing total carbohydrates and total phenolic contents, as well as triggering the transcriptional levels of peroxidase, pathogen-related protein-1, and phenylalanine ammonia-lyase were observed. In light of the results, we propose that the potential application of CDNPs could be an eco-friendly approach to enhance yield and a more effective therapeutic elicitor for disease management in plants upon induction of defense systems.
Collapse
Affiliation(s)
- Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Alexandria, Egypt
| | - Sameer H. Qari
- Biology Department, Al-Jumum University College, Umm Al-Qura University, Mecca 25376, Saudi Arabia;
| | - Mohamed Abd Al-Raheem Abu-Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt;
| | - Abdallah Mohamed Khalil
- Plant Botany Department, Faculty of Science, Omar Al-Mukhtar University, Al Bayda 00218-84, Libya;
| | - Hosny A. Younes
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt;
- Citrus Research and Education Center, Department of Plant Pathology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| |
Collapse
|
8
|
Parrella G, Troiano E, Faure C, Marais A, Candresse T. First Report of Alfalfa mosaic virus in Chayote in Italy. PLANT DISEASE 2020; 105:698-698. [PMID: 33135992 DOI: 10.1094/pdis-10-20-2117-pdn] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chayote (Sechium edule (Jacq.) Sw.) is a vigorous perennial and climbing cucurbits, native to Mesoamerica, and cultivated for alimentary purposes in the American continent, Australia, New Zealand, South Europe, Asia and Africa. During spring 2019, some chayote plants showing bright yellow vein banding rings and lines were observed in a private garden in South Italy (Campania region). Symptoms coalesced in some leaves, covering almost the whole foliar area. Double-stranded RNAs were extracted from symptomatic leaves of a single chayote plant and reverse-transcribed, randomly amplified, and submitted to Illumina sequencing (Marais et al., 2018). Reads were assembled using CLC Genomics Workbench 11.1 (http://www.clcbio.com). Contigs were then annotated by Blastn and Blastx comparison with the Genbank database, which allowed the identification of eight contigs of between 380 and 980 nucleotides sharing significant identity with alfalfa mosaic virus (AMV) genomic RNAs. No other viral contigs were identified. Mapping of reads on AMV genomic RNAs identified 4,209 AMV reads (1.26% of total reads) and allowed the scaffolding of the contigs into three scaffolds corresponding to the three AMV genomic RNAs. To complete the sequence of the AMV chayote isolate genome (named See-1), primers were designed from the contig sequences and used to amplify RACE PCR products spanning the 5' and 3' terminal regions of the three genomic RNAs using the SMARTer™ RACE cDNA Amplification Kit (Clontech, China). All amplicons were cloned into the pGEM-T vector (Promega, USA) and sequenced (three clones for each amplicon) by Microsynth Seqlab (Microsynth AG, Switzerland). Finally, the complete genomic sequences of the three RNAs were assembled by MacVector 17.5 (MacVector Inc., USA). The RNA1, RNA2 and RNA3 of See-1 are 3,643, 2,593 and 2,037 nt respectively (GenBank accession Nos. MT093209 to MT093211), and share the highest nt sequence identity with the RNA1 and RNA3 of AMV isolate (HZ) from tobacco (99.5% for RNA1, HQ316635; 98.7% for RNA3, HQ316637) and with the RNA2 of isolate AMV-Gym from Gynostemma pentaphyllum (98.1%, MH332898), both from China. AMV isolate See-1 was classified as belonging to subgroup I based on the presence of a BamH I and two AvaII sites in the CP ORF (Parrella et al., 2000). Reverse transcription polymerase chain reaction, using primers targeting the CP gene (Parrella et al., 2000), confirmed AMV infection in three symptomatic cayote plants including that used for Illumina sequencing, with 100% of nt sequence identity of amplicons. Three plants each of Chenopodium amaranticolor, Nicotiana benthamiana and Solanum lycopersicon were mechanically inoculated with sap from isolate See-1 infected plant, leading to the appearance of typical AMV symptoms in all three hosts ten days post-inoculation (Jaspars & Bos, 1980). This note describes the first detection of AMV in cayote in Italy and, to the best of our knowledge, in the world. In some areas of Southern Italy, climatic conditions are favorable enough to allow chayote development in the wild. Further studies would be desirable to determine the distribution and incidence of AMV in chayote and to understand the possibility that this species may play a role in AMV epidemiology, representing a threat to other susceptible crops.
Collapse
Affiliation(s)
- Giuseppe Parrella
- Istituto per la Protezione Sostenibile delle Piante del CNR, Via Università 133, Portici (NA), Italy, 80055;
| | - Elisa Troiano
- Istituto per la Protezione Sostenibile delle Piante del CNR, 80055 Portici (NA), Italy, Italy;
| | - Chantal Faure
- INRAE, Univ. Bordeaux, UMR BFP, CS 20032, 33882 Villenave d'Ornon CEDEX, France, France;
| | - Armelle Marais
- INRAE, Univ. Bordeaux, UMR BFP, CS 20032, 33882 Villenave d'Ornon CEDEX, France, France;
| | - Thierry Candresse
- INRAE, Univ. Bordeaux, UMR BFP, CS 20032, 33882 Villenave d'Ornon CEDEX, France, France;
| |
Collapse
|
9
|
Nie X, Dickison V, Singh M, De Koeyer D, Xu H, Bai Y, Hawkins G. Potato Tuber Necrosis Induced by Alfalfa Mosaic Virus Depends on Potato Cultivar Rather Than on Virus Strain. PLANT DISEASE 2020; 104:340-347. [PMID: 31809255 DOI: 10.1094/pdis-04-19-0827-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alfalfa mosaic virus (AMV) was identified as the causal agent of internal tuber necrosis in the potato cultivar Innovator in New Brunswick, Canada. Further pathological characterization of the isolate (designated as isolate CaM) was performed on six potato cultivars and one breeding clone. Upon mechanical inoculation, four cultivars (Innovator, Yukon Gold, Rochdale Gold-Dorée, and Shepody) showed needle-sized necrotic spots and increasing calico symptoms on new leaves, whereas the remaining cultivars only developed calico symptoms on new leaves. All tubers of CaM-infected Innovator and Shepody plants developed sporadic internal necrotic spots, as did ca. 23 and 8% tubers of CaM-infected Yukon Gold and Rochdale Gold-Dorée, respectively. Sequence analysis of the CP gene of CaM with AMV isolates from potato, all presumed belonging to the "non-necrotic" strain and retrieved from GenBank, indicated that CaM shared >97.1% sequence identity with all but four Egyptian isolates. At the complete genome level, phylogenetic analysis of all available sequences demonstrated that RNA 1 and RNA 3 can be grouped into three major clades each, whereas RNA 2 can be clustered into two clades. CaM and Ca175-1, an AMV isolate that was deemed non-necrotic in a previous study, had different phylogenetic clade patterns, indicating different RNA 1-RNA 2-RNA 3 haplotypes: IA-I-IB (CaM) versus Ca175-1 (IB-II-IA). Despite the difference in haplotype composition, CaM and Ca175-1 induced similar levels of internal necrosis in tubers of Innovator and its parent Shepody. The results suggest that the internal necrosis in AMV-infected tubers depends on potato cultivar rather than on AMV strain/haplotype, and CaM is just a "regular" isolate of AMV.
Collapse
Affiliation(s)
- Xianzhou Nie
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, Canada E3B 4Z7
| | - Virginia Dickison
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, Canada E3B 4Z7
| | - Mathuresh Singh
- Agricultural Certification Services, 1030 Lincoln Road, Fredericton, New Brunswick, Canada E3B 8B7
| | - David De Koeyer
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, Canada E3B 4Z7
| | - Huimin Xu
- Canadian Food Inspection Agency, Charlottetown Laboratory, 93 Mount Edward Road, Charlottetown, Prince Edward Island, Canada C1A 5T1
| | - Yanju Bai
- Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, China
| | - Gary Hawkins
- McCain Foods, 8734 Main Street, Unit 1, Florenceville, NB, Canada E7L 3G6
| |
Collapse
|
10
|
Abdel Aleem EE, Taha RM, Fattouh FA. Biodiversity and full genome sequence of potato viruses Alfalfa mosaic virus and potato leaf roll virus in Egypt. Z NATURFORSCH C 2018; 73:423-438. [PMID: 30067514 DOI: 10.1515/znc-2018-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/12/2018] [Indexed: 11/15/2022]
Abstract
Solanum tuberosum (potato) is the second most important vegetable crop in Egypt. It is locally consumed, manufactured or supplied for export to Europe and other Arab countries. Potato is subject to infection by a number of plant viruses, which affect its yield and quality. Potato virus Y (PVY), potato leaf roll virus (PLRV), and Alfalfa mosaic virus (AMV) were detected in major potato-growing areas surveyed. Multiplex-RT-PCR assay was used for the detection of these three viruses in one reaction using three specific primer pairs designed to amplify genomic parts of each virus (1594 bp for PLRV, 795 bp for AMV, 801 bp for PVY). All three viruses were detected in a single reaction mixture in naturally infected field-grown potatoes. Multiplex RT-PCR improved sensitivity necessary for the early detection of infection. Incidence of single, double, or triple infection has been recorded in some locations. Full-length sequencing has been performed for an Egyptian FER isolate of PLRV. Through phylogenetic analysis, it was shown to occupy the same clade with isolate JokerMV10 from Germany. Complete nucleotide sequence of an Egyptian FER isolate of AMV and phylogenetic analysis was also performed; we propose that it is a new distinct strain of AMV belonging to a new subgroup IIC. This is the first complete nucleotide sequence of an Egyptian isolate of AMV. Genetic biodiversity of devastating potato viruses necessitates continuous monitoring of new genetic variants of such viruses.
Collapse
Affiliation(s)
- Engy E Abdel Aleem
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt, Phone: (+203) 3922918 - Ext.: 1098, Mobile: (+2) 01002804461
| | - Radwa M Taha
- Botany Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Faiza A Fattouh
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Salem N, Mansour A, Ciuffo M, Falk BW, Turina M. A new tobamovirus infecting tomato crops in Jordan. Arch Virol 2015; 161:503-6. [PMID: 26586328 DOI: 10.1007/s00705-015-2677-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/04/2015] [Indexed: 11/28/2022]
Abstract
In this study, we completed the whole genome sequence of a new tobamovirus isolated from tomato plants grown in greenhouses in Jordan during the spring of 2015. The 6393-nt single-stranded RNA (ssRNA) genome encodes four proteins, as do other tobamoviruses: two replication-related proteins of 126 kDa and 183 kDa, a 30-kDa movement protein (MP) and a 17.5-kDa coat protein (CP). Phylogenetic analysis showed that this virus does not group with either the tomato mosaic virus (ToMV) or the tobacco mosaic virus (TMV) clades. Instead, it stems from a branch leading to the TMV clade. Analysis of possible recombination events between this virus and representative isolates of closely related tomato-infecting tobamoviruses showed that at least one region originated by recombination. We provide evidence that we have identified a new tobamovirus, for which we propose the name "tomato brown rugose fruit virus".
Collapse
Affiliation(s)
- N Salem
- Department of Plant Protection, Faculty of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - A Mansour
- Department of Plant Protection, Faculty of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - M Ciuffo
- Istituto per la Protezione Sostenibile delle Piante, Sez. di Torino, CNR, Strada delle Cacce 73, 10135, Turin, Italy
| | - B W Falk
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - M Turina
- Istituto per la Protezione Sostenibile delle Piante, Sez. di Torino, CNR, Strada delle Cacce 73, 10135, Turin, Italy.
| |
Collapse
|
12
|
Multiple functions of capsid proteins in (+) stranded RNA viruses during plant–virus interactions. Virus Res 2015; 196:140-9. [DOI: 10.1016/j.virusres.2014.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/18/2022]
|
13
|
Bergua M, Luis-Arteaga M, Escriu F. Genetic Diversity, Reassortment, and Recombination in Alfalfa mosaic virus Population in Spain. PHYTOPATHOLOGY 2014; 104:1241-1250. [PMID: 24779352 DOI: 10.1094/phyto-11-13-0309-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The variability and genetic structure of Alfalfa mosaic virus (AMV) in Spain was evaluated through the molecular characterization of 60 isolates collected from different hosts and different geographic areas. Analysis of nucleotide sequences in four coding regions--P1, P2, movement protein (MP), and coat protein (CP)--revealed a low genetic diversity and different restrictions to variation operating on each coding region. Phylogenetic analysis of Spanish isolates along with previously reported AMV sequences showed consistent clustering into types I and II for P1 and types I, IIA, and IIB for MP and CP regions. No clustering was observed for the P2 region. According to restriction fragment length polymorphism analysis, the Spanish AMV population consisted of seven haplotypes, including two haplotypes generated by reassortment and one involving recombination. The most frequent haplotypes (types for P1, MP, and CP regions, respectively) were I-I-I (37%), II-IIB-IIB (30%), and one of the reassortants, II-I-I (17%). Distribution of haplotypes was not uniform, indicating that AMV population was structured according to the geographic origin of isolates. Our results suggest that agroecological factors are involved in the maintenance of AMV genetic types, including the reassortant one, and in their geographic distribution.
Collapse
|
14
|
Trucco V, de Breuil S, Bejerman N, Lenardon S, Giolitti F. Complete nucleotide sequence of Alfalfa mosaic virus isolated from alfalfa (Medicago sativa L.) in Argentina. Virus Genes 2014; 48:562-5. [PMID: 24510307 DOI: 10.1007/s11262-014-1045-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/25/2014] [Indexed: 11/27/2022]
Abstract
The complete nucleotide sequence of an Alfalfa mosaic virus (AMV) isolate infecting alfalfa (Medicago sativa L.) in Argentina, AMV-Arg, was determined. The virus genome has the typical organization described for AMV, and comprises 3,643, 2,593, and 2,038 nucleotides for RNA1, 2 and 3, respectively. The whole genome sequence and each encoding region were compared with those of other four isolates that have been completely sequenced from China, Italy, Spain and USA. The nucleotide identity percentages ranged from 95.9 to 99.1 % for the three RNAs and from 93.7 to 99 % for the protein 1 (P1), protein 2 (P2), movement protein and coat protein (CP) encoding regions, whereas the amino acid identity percentages of these proteins ranged from 93.4 to 99.5 %, the lowest value corresponding to P2. CP sequences of AMV-Arg were compared with those of other 25 available isolates, and the phylogenetic analysis based on the CP gene was carried out. The highest percentage of nucleotide sequence identity of the CP gene was 98.3 % with a Chinese isolate and 98.6 % at the amino acid level with four isolates, two from Italy, one from Brazil and the remaining one from China. The phylogenetic analysis showed that AMV-Arg is closely related to subgroup I of AMV isolates. To our knowledge, this is the first report of a complete nucleotide sequence of AMV from South America and the first worldwide report of complete nucleotide sequence of AMV isolated from alfalfa as natural host.
Collapse
Affiliation(s)
- Verónica Trucco
- Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 cuadras Km. 5.5, X5020ICA, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
15
|
AL-Saleh MA, Amer MA. Biological and Molecular Variability of Alfalfa mosaic virus Affecting Alfalfa Crop in Riyadh Region. THE PLANT PATHOLOGY JOURNAL 2013; 29:410-7. [PMID: 25288969 PMCID: PMC4174816 DOI: 10.5423/ppj.oa.05.2013.0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/10/2013] [Accepted: 07/13/2013] [Indexed: 06/03/2023]
Abstract
In 2011-2012, sixty nine samples were collected from alfalfa plants showing viral infection symptoms in Riyadh region. Mechanical inoculation with sap prepared from two collected samples out of twenty five possitive for Alfalfa mosaic virus (AMV) by ELISA were produced systemic mosaic on Vigna unguiculata and Nicotiana tabacum, local lesion on Chenopodium amaranticolor and C. quinoa. Vicia faba indicator plants that induce mosaic and mottle with AMV-Sagir isolate and no infection with AMV-Wadi aldawasser isolate. Approximately 700-bp was formed by RT-PCR using AMV coat protein specific primer. Samples from infected alfalfa gave positive results, while healthy plant gave negative result using dot blot hybridization assay. The nucleotide sequences of the Saudi isolates were compared with corresponding viral nucleotide sequences reported in GenBank. The obtained results showed that the AMV from Australia, Brazil, Puglia and China had the highest similarity with AMV-Sajer isolate. While, the AMV from Spain and New Zealaland had the lowest similarity with AMV-Sajer and Wadi aldawasser isolates. The data obtained in this study has been deposited in the GenBank under the accession numbers KC434083 and KC434084 for AMV-Sajer and AMV- Wadialdawasser respectively. This is the first report regarding the gnetic make up of AMV in Saudi Arabia.
Collapse
Affiliation(s)
- Mohammed A. AL-Saleh
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Kingdom of Saudi Arabia. Box 2460, Riyadh 11451
| | - Mahmoud A. Amer
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Kingdom of Saudi Arabia. Box 2460, Riyadh 11451
- Viruses and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
16
|
Khatabi B, He B, Hajimorad MR. Diagnostic Potential of Polyclonal Antibodies Against Bacterially Expressed Recombinant Coat Protein of Alfalfa mosaic virus. PLANT DISEASE 2012; 96:1352-1357. [PMID: 30727159 DOI: 10.1094/pdis-08-11-0683-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alfalfa mosaic virus (AMV), a pathogen of a wide range of plant species, including Glycine max (soybean), is poorly immunogenic. Polyclonal antibodies were generated against bacterially expressed recombinant coat proteins (rCPs) of two biologically distinct AMV strains in rabbits and compared with those raised against native and glutaraldehyde-treated virions of the same strains. Analyses showed that sera against rCPs had comparable antibody titers in indirect enzyme-linked immunosorbent assay with those raised against virions when soybean sap containing homologous viruses served as antigens. Polyclonal antibodies against rCPs were specific, sensitive, and detected all AMV isolates that originated from soybean fields from geographically different regions of the United States. Comparison of CP genes of these isolates showed 96 to 99 and 96 to 100% nucleotide and amino acid sequence identities, respectively, suggesting that they are all closely related. This was further confirmed by phylogenetic analysis where they were all clustered together along with representative AMV strains belonging to group I. Collectively, our data demonstrate that, despite poor immunogenicity of AMV, polyclonal antibodies against rCP are effective probes for detection and diagnosis of the virus.
Collapse
Affiliation(s)
- B Khatabi
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville 37996
| | - B He
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville 37996
| | - M R Hajimorad
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville 37996
| |
Collapse
|
17
|
Abstract
Lettuce is frequently attacked by several viruses causing disease epidemics and considerable yield losses along the Mediterranean basin. Aphids are key pests and the major vectors of plant viruses in lettuce fields. Lettuce mosaic virus (LMV) is probably the most important because it is seed-transmitted in addition to be transmissible by many aphid species that alight on the crop. Tomato spotted wilt virus (TSWV) is another virus that causes severe damage since the introduction of its major vector, the thrips Frankliniella occidentalis. In regions with heavy and humid soils, Lettuce Mirafiori big-vein virus (LMBVV) can also produce major yield losses.
Collapse
Affiliation(s)
- Aranzazu Moreno
- Department of Plant Protection, Instituto de Ciencias Agrarias, ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
18
|
Molecular breeding of transgenic white clover (Trifolium repens L.) with field resistance to Alfalfa mosaic virus through the expression of its coat protein gene. Transgenic Res 2011; 21:619-32. [PMID: 21947755 DOI: 10.1007/s11248-011-9557-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
Viral diseases, such as Alfalfa mosaic virus (AMV), cause significant reductions in the productivity and vegetative persistence of white clover plants in the field. Transgenic white clover plants ectopically expressing the viral coat protein gene encoded by the sub-genomic RNA4 of AMV were generated. Lines carrying a single copy of the transgene were analysed at the molecular, biochemical and phenotypic level under glasshouse and field conditions. Field resistance to AMV infection, as well as mitotic and meiotic stability of the transgene, were confirmed by phenotypic evaluation of the transgenic plants at two sites within Australia. The T(0) and T(1) generations of transgenic plants showed immunity to infection by AMV under glasshouse and field conditions, while the T(4) generation in an agronomically elite 'Grasslands Sustain' genetic background, showed a very high level of resistance to AMV in the field. An extensive biochemical study of the T(4) generation of transgenic plants, aiming to evaluate the level and composition of natural toxicants and key nutritional parameters, showed that the composition of the transgenic plants was within the range of variation seen in non-transgenic populations.
Collapse
|
19
|
Complete nucleotide sequence of a Spanish isolate of alfalfa mosaic virus: evidence for additional genetic variability. Arch Virol 2011; 156:1049-52. [PMID: 21327783 DOI: 10.1007/s00705-011-0941-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
Alfalfa mosaic virus (AMV) is a plant virus that is distributed worldwide and can induce necrosis and/or yellow mosaic on a large variety of plant species, including commercially important crops. It is the only virus of the genus Alfamovirus in the family Bromoviridae. AMV isolates can be clustered into two genetic groups that correlate with their geographic origin. Here, we report for the first time the complete nucleotide sequence of a Spanish isolate of AMV found infecting Cape honeysuckle (Tecoma capensis) and named Tec-1. The tripartite genome of Tec-1 is composed of 3643 nucleotides (nt) for RNA1, 2594 nt for RNA2 and 2037 nt for RNA3. Comparative sequence analysis of the coat protein gene revealed that the isolate Tec-1 is distantly related to subgroup I of AMV and more closely related to subgroup II, although forming a distinct phylogenetic clade. Therefore, we propose to split subgroup II of AMV into two subgroups, namely IIA, comprising isolates previously included in subgroup II, and IIB, including the novel Spanish isolate Tec-1.
Collapse
|
20
|
Xu H, Nie J. Identification, Characterization, and Molecular Detection of Alfalfa mosaic virus in Potato. PHYTOPATHOLOGY 2006; 96:1237-1242. [PMID: 18943961 DOI: 10.1094/phyto-96-1237] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Alfalfa mosaic virus (AMV) was detected in potato fields in several provinces in Canada and characterized by bioassay, enzyme-linked immunosorbent assay, and reverse-transcription polymerase chain reaction (RT-PCR). The identity of eight Canadian potato AMV isolates was confirmed by sequence analysis of their coat protein (CP) gene. Sequence and phylogenetic analysis indicated that these eight AMV potato isolates fell into one strain group, whereas a slight difference between Ca175 and the other Canadian AMV isolates was revealed. The Canadian AMV isolates, except Ca175, clustered together among other strains based on alignment of the CP gene sequence. To detect the virus, a pair of primers, AMV-F and AMV-R, specific to the AMV CP gene, was designed based on the nucleotide sequence alignment of known AMV strains. Evaluations showed that RT-PCR using this primer set was specific and sensitive for detecting AMV in potato leaf and tuber samples. AMV RNAs were easily detected in composite samples of 400 to 800 potato leaves or 200 to 400 tubers. Restriction analysis of PCR amplicons with SacI was a simple method for the confirmation of PCR tests. Thus, RT-PCR followed by restriction fragment length polymorphism analysis may be a useful approach for screening potato samples on a large scale for the presence of AMV.
Collapse
|
21
|
Shah DA, Dillard HR, Mazumdar-Leighton S, Gonsalves D, Nault BA. Incidence, Spatial Patterns, and Associations Among Viruses in Snap Bean and Alfalfa in New York. PLANT DISEASE 2006; 90:203-210. [PMID: 30786413 DOI: 10.1094/pd-90-0203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent epidemics in snap bean (Phaseolus vulgaris) characterized by virus-like symptoms prompted a survey of commercial fields for Alfalfa mosaic virus (AMV), Cucumber mosaic virus (CMV), and the Bean yellow mosaic virus (BYMV)/Clover yellow vein virus (ClYVV) complex in 2002 and 2003. Snap bean fields were either remote from or adjacent to alfalfa (Medicago sativa), a putative source of these viruses. Bean fields were sampled at the bloom stage in both years. Model-adjusted mean incidences of infection by AMV, BYMV/ClYVV, and CMV were 41.96, 6.56, and 6.69%, respectively, in alfalfa, and 6.66, 6.38, and 17.20% in snap bean. In 2002, 25.9% of snap bean plants were infected by more than one virus; <1% had more than one virus in 2003. Virus incidences did not differ between snap bean adjacent to or remote from alfalfa, but incidence of infection by AMV and BYMV/ClYVV was significantly higher in snap bean planted later in the season rather than earlier. In 2002, there was a positive association between AMV and CMV in the tendency to find both viruses in the same snap bean plant. In some years, infection by aphid-transmitted viruses can become widespread in snap bean in New York.
Collapse
Affiliation(s)
| | | | | | | | - Brian A Nault
- Department of Entomology, New York State Agricultural Experiment Station, Geneva 14456
| |
Collapse
|
22
|
Mitchell EJ, Bond JM. Variation in the coat protein sequence of British isolates of Turnip yellow mosaic virus and comparison with previously published isolates. Arch Virol 2005; 150:2347-55. [PMID: 16052285 DOI: 10.1007/s00705-005-0593-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 05/24/2005] [Indexed: 11/28/2022]
Abstract
Isolates of Turnip yellow mosaic virus (TYMV) were collected from wild cabbage (Brassica oleracea) on a 400 m stretch of Dorset coastline. The coat protein genes of four isolates showed high homology in nucleotide sequence (0.970-1.000, mean 0.987). Lower levels of homology where found to previously published sequences of Australian isolates [10] (0.725-0.775, mean 0.741). The amino acid composition of the Dorset isolates showed high levels of homology (0.964-1.000, mean 0.986). Numerous amino acid substitutions occurred between the Dorset and Australian isolates (0.705-0.819, mean 0.742). Comparison with other isolates showed large genetic distances between the Dorset isolates and both European and Australian isolates.
Collapse
Affiliation(s)
- E J Mitchell
- Centre for Ecology and Hydrology Dorset, Winfrith Technology Centre, Dorchester, UK.
| | | |
Collapse
|
23
|
Parrella G, Moretti A, Gognalons P, Lesage ML, Marchoux G, Gebre-Selassie K, Caranta C. The Am Gene Controlling Resistance to Alfalfa mosaic virus in Tomato Is Located in the Cluster of Dominant Resistance Genes on Chromosome 6. PHYTOPATHOLOGY 2004; 94:345-350. [PMID: 18944110 DOI: 10.1094/phyto.2004.94.4.345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT The dominant gene Am from Lycopersicon hirsutum f. sp. glabratum PI134417 confers resistance to most strains of Alfalfa mosaic virus, including the recently identified necrotic strains. The phenotypic response includes a lack of symptom development following mechanical inoculation of leaves. To study the resistance mechanism controlled by Am, biological (back-inoculation to susceptible hosts), serological (double-antibody sandwich, enzyme-linked immunosorbent assay), and molecular (reverse transcription-polymerase chain reaction and hybridization with specific riboprobes) methods of virus detection have been conducted on mechanically inoculated PI134417 leaves. The virus was never recovered, indicating that Am acts by an inhibition of viral accumulation during the early events of the virus life cycle. Am has been mapped genetically to the short arm of tomato chromosome 6 in the resistance hotspot, which includes the R-genes Mi and Cf-2/Cf-5 and the quantitative resistance factors Ty-1, Ol-1, and Bw-5.
Collapse
|