1
|
Jang SJ, Atyeo N, Mietzsch M, Chae MY, McKenna R, Toth Z, Papp B. Genome-Wide Transcriptional Roles of KSHV Viral Interferon Regulatory Factors in Oral Epithelial Cells. Viruses 2024; 16:846. [PMID: 38932139 PMCID: PMC11209080 DOI: 10.3390/v16060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The viral interferon regulatory factors (vIRFs) of KSHV are known to dysregulate cell signaling pathways to promote viral oncogenesis and to block antiviral immune responses to facilitate infection. However, it remains unknown to what extent each vIRF plays a role in gene regulation. To address this, we performed a comparative analysis of the protein structures and gene regulation of the four vIRFs. Our structure prediction analysis revealed that despite their low amino acid sequence similarity, vIRFs exhibit high structural homology in both their DNA-binding domain (DBD) and IRF association domain. However, despite this shared structural homology, we demonstrate that each vIRF regulates a distinct set of KSHV gene promoters and human genes in epithelial cells. We also found that the DBD of vIRF1 is essential in regulating the expression of its target genes. We propose that the structurally similar vIRFs evolved to possess specialized transcriptional functions to regulate specific genes.
Collapse
Affiliation(s)
- Seung Jin Jang
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Natalie Atyeo
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Min Y. Chae
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
- UF Genetics Institute, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
- UF Genetics Institute, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
- UF Center for Orphaned Autoimmune Disorders, Gainesville, FL 32610, USA
- UF Informatics Institute, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Spires LM, Wind E, Papp B, Toth Z. KSHV RTA utilizes the host E3 ubiquitin ligase complex RNF20/40 to drive lytic reactivation. J Virol 2023; 97:e0138923. [PMID: 37888983 PMCID: PMC10688343 DOI: 10.1128/jvi.01389-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing human herpesvirus that establishes a persistent infection in humans. The lytic viral cycle plays a crucial part in lifelong infection as it is involved in the viral dissemination. The master regulator of the KSHV lytic replication cycle is the viral replication and transcription activator (RTA) protein, which is necessary and sufficient to push the virus from latency into the lytic phase. Thus, the identification of host factors utilized by RTA for controlling the lytic cycle can help to find novel targets that could be used for the development of antiviral therapies against KSHV. Using a proteomics approach, we have identified a novel interaction between RTA and the cellular E3 ubiquitin ligase complex RNF20/40, which we have shown to be necessary for promoting RTA-induced KSHV lytic cycle.
Collapse
Affiliation(s)
- Lauren McKenzie Spires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Eleanor Wind
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- UF Genetics Institute, Gainesville, Florida, USA
- UF Health Cancer Center, Gainesville, Florida, USA
- UF Center for Orphaned Autoimmune Disorders, Gainesville, Florida, USA
- UF Informatics Institute, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- UF Genetics Institute, Gainesville, Florida, USA
- UF Health Cancer Center, Gainesville, Florida, USA
| |
Collapse
|
3
|
Kaposi's Sarcoma-Associated Herpesvirus Fine-Tunes the Temporal Expression of Late Genes by Manipulating a Host RNA Quality Control Pathway. J Virol 2020; 94:JVI.00287-20. [PMID: 32376621 DOI: 10.1128/jvi.00287-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic nuclear DNA virus that expresses its genes using the host cell transcription and RNA processing machinery. As a result, KSHV transcripts are subject to degradation by at least two host-mediated nuclear RNA decay pathways, the PABPN1- and poly(A) polymerase α/γ (PAPα/γ)-mediated RNA decay (PPD) pathway and an ARS2-dependent decay pathway. Here, we present global analyses of viral transcript levels to further understand the roles of these decay pathways in KSHV gene expression. Consistent with our recent report that the KSHV ORF57 protein increases viral transcript stability by impeding ARS2-dependent decay, ARS2 knockdown has only modest effects on viral gene expression 24 h after lytic reactivation of wild-type virus. In contrast, inactivation of PPD has more widespread effects, including premature accumulation of late transcripts. The upregulation of late transcripts does not require the primary late-gene-specific viral transactivation factor, suggesting that cryptic transcription produces the transcripts that then succumb to PPD. Remarkably, PPD inactivation has no effect on late transcripts at their proper time of expression. We show that this time-dependent PPD evasion by late transcripts requires the host factor nuclear RNAi-defective 2 (NRDE2), which has previously been reported to protect cellular RNAs by sequestering decay factors. From these studies, we conclude that KSHV uses PPD to fine-tune the temporal expression of its genes by preventing their premature accumulation.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus that causes Kaposi's sarcoma and other lymphoproliferative disorders. Nuclear expression of KSHV genes results in exposure to at least two host-mediated nuclear RNA decay pathways, the PABPN1- and PAPα/γ-mediated RNA decay (PPD) pathway and an ARS2-mediated decay pathway. Perhaps unsurprisingly, we previously found that KSHV uses specific mechanisms to protect its transcripts from ARS2-mediated decay. In contrast, here we show that PPD is required to dampen the expression of viral late transcripts that are prematurely transcribed, presumably due to cryptic transcription early in infection. At the proper time for their expression, KSHV late transcripts evade PPD through the activity of the host factor NRDE2. We conclude that KSHV fine-tunes the temporal expression of its genes by modulating PPD activity. Thus, the virus both protects from and exploits the host nuclear RNA decay machinery for proper expression of its genes.
Collapse
|
4
|
Yan L, Majerciak V, Zheng ZM, Lan K. Towards Better Understanding of KSHV Life Cycle: from Transcription and Posttranscriptional Regulations to Pathogenesis. Virol Sin 2019; 34:135-161. [PMID: 31025296 PMCID: PMC6513836 DOI: 10.1007/s12250-019-00114-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8 (HHV-8), is etiologically linked to the development of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. These malignancies often occur in immunosuppressed individuals, making KSHV infection-associated diseases an increasing global health concern with persistence of the AIDS epidemic. KSHV exhibits biphasic life cycles between latent and lytic infection and extensive transcriptional and posttranscriptional regulation of gene expression. As a member of the herpesvirus family, KSHV has evolved many strategies to evade the host immune response, which help the virus establish a successful lifelong infection. In this review, we summarize the current research status on the biology of latent and lytic viral infection, the regulation of viral life cycles and the related pathogenesis.
Collapse
Affiliation(s)
- Lijun Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Vladimir Majerciak
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Zhi-Ming Zheng
- National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
5
|
Tunnicliffe RB, Levy C, Ruiz Nivia HD, Sandri-Goldin RM, Golovanov AP. Structural identification of conserved RNA binding sites in herpesvirus ORF57 homologs: implications for PAN RNA recognition. Nucleic Acids Res 2019; 47:1987-2001. [PMID: 30462297 PMCID: PMC6393246 DOI: 10.1093/nar/gky1181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) transcribes a long noncoding polyadenylated nuclear (PAN) RNA, which promotes the latent to lytic transition by repressing host genes involved in antiviral responses as well as viral proteins that support the latent state. KSHV also expresses several early proteins including ORF57 (Mta), a member of the conserved multifunctional ICP27 protein family, which is essential for productive replication. ORF57/Mta interacts with PAN RNA via a region termed the Mta responsive element (MRE), stabilizing the transcript and supporting nuclear accumulation. Here, using a close homolog of KSHV ORF57 from herpesvirus saimiri (HVS), we determined the crystal structure of the globular domain in complex with a PAN RNA MRE, revealing a uracil specific binding site that is also conserved in KSHV. Using solution NMR, RNA binding was also mapped within the disordered N-terminal domain of KSHV ORF57, and showed specificity for an RNA fragment containing a GAAGRG motif previously known to bind a homologous region in HVS ORF57. Together these data located novel differential RNA recognition sites within neighboring domains of herpesvirus ORF57 homologs, and revealed high-resolution details of their interactions with PAN RNA, thus providing insight into interactions crucial to viral function.
Collapse
Affiliation(s)
- Richard B Tunnicliffe
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, UK
| | - Colin Levy
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, UK
| | - Hilda D Ruiz Nivia
- Biomolecular Analysis Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-025, USA
| | - Alexander P Golovanov
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, UK
| |
Collapse
|
6
|
Ruiz JC, Hunter OV, Conrad NK. Kaposi's sarcoma-associated herpesvirus ORF57 protein protects viral transcripts from specific nuclear RNA decay pathways by preventing hMTR4 recruitment. PLoS Pathog 2019; 15:e1007596. [PMID: 30785952 PMCID: PMC6398867 DOI: 10.1371/journal.ppat.1007596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/04/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nuclear RNAs are subject to a number of RNA decay pathways that serve quality control and regulatory functions. As a result, any virus that expresses its genes in the nucleus must have evolved mechanisms that avoid these pathways, but the how viruses evade nuclear RNA decay remains largely unknown. The multifunctional Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 (Mta) protein is required for the nuclear stability of viral transcripts. In the absence of ORF57, we show that viral transcripts are subject to degradation by two specific nuclear RNA decay pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) in which decay factors are recruited through poly(A) tails, and an ARS2-mediated RNA decay pathway dependent on the 5ʹ RNA cap. In transcription pulse chase assays, ORF57 appears to act primarily by inhibiting the ARS2-mediated RNA decay pathway. In the context of viral infection in cultured cells, inactivation of both decay pathways by RNAi is necessary for the restoration of ORF57-dependent viral genes produced from an ORF57-null bacmid. Mechanistically, we demonstrate that ORF57 protects viral transcripts by preventing the recruitment of the exosome co-factor hMTR4. In addition, our data suggest that ORF57 recruitment of ALYREF inhibits hMTR4 association with some viral RNAs, whereas other KSHV transcripts are stabilized by ORF57 in an ALYREF-independent fashion. In conclusion, our studies show that KSHV RNAs are subject to nuclear degradation by two specific host pathways, PPD and ARS2-mediated decay, and ORF57 protects viral transcripts from decay by inhibiting hMTR4 recruitment. Eukaryotic cells contain numerous nuclear RNA quality control (QC) systems that ensure transcriptome fidelity by detecting and degrading aberrant RNAs. Some viral RNAs are also predicted to be degraded by these RNA QC systems, so viruses have evolved mechanisms that counter host RNA QC pathways. Previous studies showed that the Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses the ORF57 protein to protect its RNAs from nuclear decay. However, neither the specific host pathways that degrade KSHV RNAs nor the mechanisms describing ORF57 protection of viral RNAs were known. Our data suggest that ORF57 protects viral RNAs from two different nuclear RNA QC pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) and an ARS2-mediated RNA decay pathway. Mechanistically, we show that ORF57 binds directly to viral RNAs and prevents the recruitment of hMTR4, a cellular factor whose function is to recruit the exosome, the complex responsible for RNA decay, to the transcript. We conclude that by preventing hMTR4 recruitment, ORF57 protects viral RNAs from degradation resulting in robust expression of viral genes.
Collapse
Affiliation(s)
- Julio C. Ruiz
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Olga V. Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicholas K. Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
- * E-mail:
| |
Collapse
|
7
|
Nuclear Innate Immune DNA Sensor IFI16 Is Degraded during Lytic Reactivation of Kaposi's Sarcoma-Associated Herpesvirus (KSHV): Role of IFI16 in Maintenance of KSHV Latency. J Virol 2016; 90:8822-41. [PMID: 27466416 PMCID: PMC5021400 DOI: 10.1128/jvi.01003-16] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/13/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED IFI16 (interferon gamma-inducible protein 16) recognizes nuclear episomal herpesvirus (Kaposi's sarcoma-associated herpesvirus [KSHV], Epstein-Barr virus [EBV], and herpes simplex virus 1 [HSV-1]) genomes and induces the inflammasome and interferon beta responses. It also acts as a lytic replication restriction factor and inhibits viral DNA replication (human cytomegalovirus [HCMV] and human papillomavirus [HPV]) and transcription (HSV-1, HCMV, and HPV) through epigenetic modifications of the viral genomes. To date, the role of IFI16 in the biology of latent viruses is not known. Here, we demonstrate that knockdown of IFI16 in the latently KSHV-infected B-lymphoma BCBL-1 and BC-3 cell lines results in lytic reactivation and increases in levels of KSHV lytic transcripts, proteins, and viral genome replication. Similar results were also observed during KSHV lytic cycle induction in TREX-BCBL-1 cells with the doxycycline-inducible lytic cycle switch replication and transcription activator (RTA) gene. Overexpression of IFI16 reduced lytic gene induction by the chemical agent 12-O-tetradecoylphorbol-13-acetate (TPA). IFI16 protein levels were significantly reduced or absent in TPA- or doxycycline-induced cells expressing lytic KSHV proteins. IFI16 is polyubiquitinated and degraded via the proteasomal pathway. The degradation of IFI16 was absent in phosphonoacetic acid-treated cells, which blocks KSHV DNA replication and, consequently, late lytic gene expression. Chromatin immunoprecipitation assays of BCBL-1 and BC-3 cells demonstrated that IFI16 binds to KSHV gene promoters. Uninfected epithelial SLK and osteosarcoma U2OS cells transfected with KSHV luciferase promoter constructs confirmed that IFI16 functions as a transcriptional repressor. These results reveal that KSHV utilizes the innate immune nuclear DNA sensor IFI16 to maintain its latency and repression of lytic transcripts, and a late lytic KSHV gene product(s) targets IFI16 for degradation during lytic reactivation. IMPORTANCE Like all herpesviruses, latency is an integral part of the life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent for many human cancers. Herpesviruses utilize viral and host factors to successfully evade the host immune system to maintain latency. Reactivation is a complex event where the latent episomal viral genome springs back to active transcription of lytic cycle genes. Our studies reveal that KSHV has evolved to utilize the innate immune sensor IFI16 to keep lytic cycle transcription in dormancy. We demonstrate that IFI16 binds to the lytic gene promoter, acts as a transcriptional repressor, and thereby helps to maintain latency. We also discovered that during the late stage of lytic replication, KSHV selectively degrades IFI16, thus relieving transcriptional repression. This is the first report to demonstrate the role of IFI16 in latency maintenance of a herpesvirus, and further understanding will lead to the development of strategies to eliminate latent infection.
Collapse
|
8
|
Kaposi's sarcoma-associated herpesvirus transactivator Rta induces cell cycle arrest in G0/G1 phase by stabilizing and promoting nuclear localization of p27kip. J Virol 2013; 87:13226-38. [PMID: 24067984 DOI: 10.1128/jvi.02540-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) immediate-early gene, replication, and transcription activator (K-Rta) is a key viral protein that serves as the master regulator for viral lytic replication. In this study, we investigated the role of K-Rta in cell cycle regulation and found that the expression of K-Rta in doxycycline (Dox)-inducible BJAB cells induced cell cycle arrest in G0/G1 phase. Western blot analysis of key cell cycle regulators revealed that K-Rta-mediated cell cycle arrest was associated with a decrease in cyclin A and phosphorylated Rb (pS807/pS811) protein levels, both markers of S phase progression, and an increase in protein levels for p27, a cyclin-dependent kinase inhibitor. Further, we found that K-Rta does not affect the transcription of p27 but regulates p27 at the posttranslational level by inhibiting its proteosomal degradation. Immunofluorescence staining and cell fractionation experiments revealed largely nuclear compartmentalization of p27 in K-Rta-expressing cells, demonstrating that K-Rta not only stabilizes p27 but also modulates its cellular localization. Finally, short hairpin RNA knockdown of p27 significantly abrogates cell cycle arrest in K-Rta-expressing cells, supporting its key role in K-Rta-mediated cell cycle arrest. Our findings are consistent with previous studies which showed that expression of immediate-early genes of several herpesviruses, including herpes simplex virus, Epstein-Barr virus, and cytomegalovirus, results in cell cycle arrest at the G0/G1 phase, possibly to avoid competition for resources needed for host cell replication during the S phase.
Collapse
|
9
|
Guito J, Lukac DM. KSHV Rta Promoter Specification and Viral Reactivation. Front Microbiol 2012; 3:30. [PMID: 22347875 PMCID: PMC3278982 DOI: 10.3389/fmicb.2012.00030] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/18/2012] [Indexed: 11/27/2022] Open
Abstract
Viruses are obligate intracellular pathogens whose biological success depends upon replication and packaging of viral genomes, and transmission of progeny viruses to new hosts. The biological success of herpesviruses is enhanced by their ability to reproduce their genomes without producing progeny viruses or killing the host cells, a process called latency. Latency permits a herpesvirus to remain undetected in its animal host for decades while maintaining the potential to reactivate, or switch, to a productive life cycle when host conditions are conducive to generating viral progeny. Direct interactions between many host and viral molecules are implicated in controlling herpesviral reactivation, suggesting complex biological networks that control the decision. One viral protein that is necessary and sufficient to switch latent Kaposi’s sarcoma-associated herpesvirus (KSHV) into the lytic infection cycle is called K-Rta. K-Rta is a transcriptional activator that specifies promoters by binding DNA directly and interacting with cellular proteins. Among these cellular proteins, binding of K-Rta to RBP-Jk is essential for viral reactivation. In contrast to the canonical model for Notch signaling, RBP-Jk is not uniformly and constitutively bound to the latent KSHV genome, but rather is recruited to DNA by interactions with K-Rta. Stimulation of RBP-Jk DNA binding requires high affinity binding of Rta to repetitive and palindromic “CANT DNA repeats” in promoters, and formation of ternary complexes with RBP-Jk. However, while K-Rta expression is necessary for initiating KSHV reactivation, K-Rta’s role as the switch is inefficient. Many factors modulate K-Rta’s function, suggesting that KSHV reactivation can be significantly regulated post-Rta expression and challenging the notion that herpesviral reactivation is bistable. This review analyzes rapidly evolving research on KSHV K-Rta to consider the role of K-Rta promoter specification in regulating the progression of KSHV reactivation.
Collapse
Affiliation(s)
- Jonathan Guito
- Graduate School of Biomedical Sciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey Newark, NJ, USA
| | | |
Collapse
|
10
|
A cluster of transcripts encoded by KSHV ORF30-33 gene locus. Virus Genes 2011; 44:225-36. [PMID: 22180077 DOI: 10.1007/s11262-011-0698-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 12/01/2011] [Indexed: 12/21/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus ORF30-33 locus encodes four genes with unknown functions. We performed transcriptional mapping of these genes. Northern-hybridization, 5'- and 3'-rapid amplification of cDNA ends, and DNA sequencing identified four transcripts of 3.7, 3.6, 2.7, and 1.4 kb, none of which has alternative splicing. While all transcripts have the same termination site, their start sites vary. All transcripts are not expressed or only weakly expressed in latent cells but can be chemically induced. The 3.7 and 3.6 kb transcripts contain all four genes and are sensitive to cycloheximide (CH) but resistant to phosphonoacetic acid (PAA), indicating that they are early lytic transcripts. The 2.7 kb transcript contains ORF32 and ORF33 genes while the 1.4 kb transcript contains the ORF33 gene. Both transcripts are sensitive to CH and PAA, indicating that they are late lytic transcripts. Furthermore, we identified four promoters with functional TATA boxes, none of which is directly transactivated by RTA. Examination of the 5' untranslated region of ORF31 failed to identify any functional internal ribosome entry sites. These results define the transcriptional patterns of the ORF30-33 locus, which should help the delineation of its function.
Collapse
|
11
|
Kaposi's sarcoma-associated herpesvirus Rta tetramers make high-affinity interactions with repetitive DNA elements in the Mta promoter to stimulate DNA binding of RBP-Jk/CSL. J Virol 2011; 85:11901-15. [PMID: 21880753 DOI: 10.1128/jvi.05479-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 [HHV-8]) is the etiologic agent of Kaposi's sarcoma (KS) and lymphoproliferative diseases. We previously demonstrated that the KSHV lytic switch protein Rta stimulates DNA binding of the cellular RBP-Jk/CSL protein, the nuclear component of the Notch pathway, on Rta target promoters. In the current study, we define the promoter requirements for formation of transcriptionally productive Rta/RBP-Jk/DNA complexes. We show that highly pure Rta footprints 7 copies of a previously undescribed repetitive element in the promoter of the essential KSHV Mta gene. We have termed this element the "CANT repeat." CANT repeats are found on both strands of DNA and have a consensus sequence of ANTGTAACANT(A/T)(A/T)T. We demonstrate that Rta tetramers make high-affinity interactions (i.e., nM) with 64 bp of the Mta promoter but not single CANT units. The number of CANT repeats, their presence in palindromes, and their positions relative to the RBP-Jk binding site determine the optimal target for Rta stimulation of RBP-Jk DNA binding and formation of ternary Rta/RBP-Jk/DNA complexes. DNA binding and tetramerization mutants of Rta fail to stimulate RBP-Jk DNA binding. Our chromatin immunoprecipitation assays show that RBP-Jk DNA binding is broadly, but selectively, stimulated across the entire KSHV genome during reactivation. We propose a model in which tetramerization of Rta allows it to straddle RBP-Jk and contact repeat units on both sides of RBP-Jk. Our study integrates high-affinity Rta DNA binding with the requirement for a cellular transcription factor in Rta transactivation.
Collapse
|
12
|
Replication and transcription activator (RTA) of murine gammaherpesvirus 68 binds to an RTA-responsive element and activates the expression of ORF18. J Virol 2011; 85:11338-50. [PMID: 21849436 DOI: 10.1128/jvi.00561-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The replication and transcription activator (RTA), mainly encoded by open reading frame 50, is an immediate-early gene product that is conserved among all characterized gammaherpesviruses. Previous studies have demonstrated that RTA proteins of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) can activate the promoter of many viral early lytic genes through direct or indirect mechanisms. Murine gammaherpesvirus 68 (MHV-68) is genetically related to KSHV and EBV, and the RTA homologue from MHV-68 also initiates the lytic cycle of gene expression. Although two RTA-dependent promoters had been identified in MHV-68, the mechanism of the interaction between RTA and the promoters was not characterized. In this study, we first identified an RTA-responsive promoter in the left origin of lytic replication region of MHV-68 through a reporter assay and mapped a 27-bp RTA-responsive element (RRE) through systematic deletions. Interestingly, sequence analysis identified a second RRE in this region. An electrophoretic mobility shift assay (EMSA) and a chromatin immunoprecipitation (ChIP) assay showed that RTA can bind directly to these two RREs in vitro or in vivo. Mutagenesis studies have further characterized the nucleotides important for mediating RTA binding by an EMSA. Moreover, we engineered RRE-deleted viruses and demonstrated in the context of the viral genome that one of the RREs mediates the RTA-dependent activation of an essential lytic gene, ORF18, during de novo infection. To our knowledge, this is the first time that RTA binding sites in MHV-68 have been identified. Since ORF18 regulates viral late gene expression, our study has also contributed to the delineation of the expression cascade of gammaherpesvirus lytic genes.
Collapse
|
13
|
Cellular transcription factor Oct-1 interacts with the Epstein-Barr virus BRLF1 protein to promote disruption of viral latency. J Virol 2011; 85:8940-53. [PMID: 21697476 DOI: 10.1128/jvi.00569-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Epstein-Barr virus (EBV) latent-to-lytic switch is an essential part of the viral life cycle, but the cellular factors that promote viral reactivation are not well defined. In this report, we demonstrate that the cellular transcription factor Oct-1 cooperates with the EBV immediate-early protein BRLF1 (R, Rta) to induce lytic viral reactivation. We show that cotransfected Oct-1 enhances the ability of BRLF1 to activate lytic gene expression in 293 cells stably infected with a BRLF1-defective EBV mutant (BRLF1-stop) and that Oct-1 increases BRLF1-mediated activation of lytic EBV promoters in reporter gene assays. We find that Oct-1 interacts directly with BRLF1 in vitro and that a mutant BRLF1 protein (the M140A mutant) attenuated for the ability to interact with Oct-1 in vitro is also resistant to Oct-1-mediated transcriptional enhancement in 293 BRLF1-stop cells. Furthermore, we show that cotransfected Oct-1 augments BRLF1 binding to a variety of lytic EBV promoters in chromatin immunoprecipitation (ChIP) assays (including the BZLF1, BMRF1, and SM promoters) and that BRLF1 tethers Oct-1 to lytic EBV promoters. In addition, we demonstrate that an Oct-1 mutant defective in DNA binding (the S335D mutant) still retains the ability to enhance BRLF1 transcriptional effects. Finally, we show that knockdown of endogenous Oct-1 expression reduces the level of constitutive lytic EBV gene expression in both EBV-positive B-cell and EBV-positive epithelial cell lines. These results suggest that Oct-1 acts as a positive regulator of EBV lytic gene expression and that this effect is at least partially mediated through its interaction with the viral protein BRLF1.
Collapse
|
14
|
Rhesus monkey rhadinovirus ORF57 induces gH and gL glycoprotein expression through posttranscriptional accumulation of target mRNAs. J Virol 2011; 85:7810-7. [PMID: 21613403 DOI: 10.1128/jvi.00493-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Open reading frame 57 (ORF57) of gamma-2 herpesviruses is a key regulator of viral gene expression. It has been reported to enhance the expression of viral genes by transcriptional, posttranscriptional, or translational activation mechanisms. Previously we have shown that the expression of gH and gL of rhesus monkey rhadinovirus (RRV), a close relative of the human Kaposi's sarcoma-associated herpesvirus (KSHV), could be dramatically rescued by codon optimization as well as by ORF57 coexpression (J. P. Bilello, J. S. Morgan, and R. C. Desrosiers, J. Virol. 82:7231-7237, 2008). We show here that ORF57 coexpression and codon optimization had similar effects, except that the rescue of expression by codon optimization was temporally delayed relative to that of ORF57 coexpression. The transfection of gL mRNA directly into cells with or without ORF57 coexpression and with or without codon optimization recapitulated the effects of these modes of induction on transfected DNA. These findings suggested an important role for the enhancement of mRNA stability and/or the translation of mRNA for these very different modes of induced expression. This conclusion was confirmed by several different measures of gH and gL mRNA stability and accumulation with or without ORF57 coexpression and with or without codon optimization. Our results indicate that RRV gH and gL expression is severely limited by the stability of the mRNA and that ORF57 coexpression and codon optimization independently induce gH and gL expression principally by allowing accumulation and translation of these mRNAs.
Collapse
|
15
|
Zhang T, Wang Y, Zhang L, Liu B, Xie J, Wood C, Wang J. Lysine residues of interferon regulatory factor 7 affect the replication and transcription activator-mediated lytic replication of Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J Gen Virol 2010; 92:181-7. [PMID: 20844090 PMCID: PMC3052531 DOI: 10.1099/vir.0.021816-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) infection goes through latent and lytic phases, which are controlled by the viral replication and transcription activator (RTA). Upon KSHV infection, the host responds by suppressing RTA-activated lytic gene expression through interferon regulatory factor 7 (IRF-7), a key regulator of host innate immune response. Lysine residues are potential sites for post-translational modification of IRF-7, and were suggested to be critical for its activity. In this study, we analysed the 15 lysine residues for their effects on IRF-7 function by site-directed mutagenesis. We found that some mutations affect the ability of IRF-7 to activate interferon (IFN)-α1 and IFN-β promoters, to suppress RTA-mediated lytic gene expression and to repress KSHV reactivation and lytic replication. However, other mutations affect only a subset of these four functions. These findings demonstrate that the lysine residues of IRF-7 play important roles in mediating IFN synthesis and modulating viral lytic replication.
Collapse
Affiliation(s)
- Tianzheng Zhang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Enhancement of autophagy during lytic replication by the Kaposi's sarcoma-associated herpesvirus replication and transcription activator. J Virol 2010; 84:7448-58. [PMID: 20484505 DOI: 10.1128/jvi.00024-10] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is one of two major degradation systems in eukaryotic cells. The degradation mechanism of autophagy is required to maintain the balance between the biosynthetic and catabolic processes and also contributes to defense against invading pathogens. Recent studies suggest that a number of viruses can evade or subvert the host cell autophagic pathway to enhance their own replication. Here, we investigated the effect of autophagy on the KSHV (Kaposi's sarcoma-associated herpesvirus) life cycle. We found that the inhibition of autophagy reduces KSHV lytic reactivation from latency, and an enhancement of autophagy can be detected during KSHV lytic replication. In addition, RTA (replication and transcription activator), an essential viral protein for KSHV lytic reactivation, is able to enhance the autophagic process, leading to an increase in the number of autophagic vacuoles, an increase in the level of the lipidated LC3 protein, and the formation of autolysosomes. Moreover, the inhibition of autophagy affects RTA-mediated lytic gene expression and viral DNA replication. These results suggest that RTA increases autophagy activation to facilitate KSHV lytic replication. This is the first report demonstrating that autophagy is involved in the lytic reactivation of KSHV.
Collapse
|
17
|
Cai Q, Verma SC, Lu J, Robertson ES. Molecular biology of Kaposi's sarcoma-associated herpesvirus and related oncogenesis. Adv Virus Res 2010; 78:87-142. [PMID: 21040832 PMCID: PMC3142360 DOI: 10.1016/b978-0-12-385032-4.00003-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kaposi's Sarcoma-associated Herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is the most recently identified human tumor virus,and is associated with the pathogenesis of Kaposi's sarcoma and two lymphoproliferative disorders known to occur frequently in AIDS patients-primary effusion lymphoma and multicentric Castleman disease. In the 15 years since its discovery, intense studies have demonstrated an etiologic role for KSHV in the development of these malignancies. Here, we review the recent advances linked to understanding KSHV latent and lytic life cycle and the molecular mechanisms of KSHV-mediated oncogenesis in terms of transformation, cell signaling, cell growth and survival, angiogenesis, immune invasion and response to microenvironmental stress, and highlight the potential therapeutic targets for blocking KSHV tumorigenesis.
Collapse
Affiliation(s)
- Qiliang Cai
- Department of Microbiology, Abramson, Comprehensive Cancer Center, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
18
|
Liu XH, Liu YQ, Shi XY, Wang Y, Geng YQ, Wang JZ. Number of and distance between response elements in Kaposi's sarcoma-associated herpesvirus ORF57 promoter influence its activation by replication and transcription activator and its repression by interferon regulatory factor 7. Arch Virol 2009; 155:361-6. [PMID: 20039088 DOI: 10.1007/s00705-009-0576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 11/27/2009] [Indexed: 11/29/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus ORF57 expression is highly responsive to replication and transcription activator (RTA) and interferon regulatory factor 7 (IRF-7). Three RTA response elements (RREs) have been identified in the ORF57 promoter. Here, we show evidence of another functional RRE located between nt 82003 and 82081, which can complement the loss of RTA activation resulting from RRE1 deletion. Repeats of a recombination signal-binding protein Jkappa (RBP-Jkappa) site enhanced RTA activation, which could not be suppressed by IRF-7. Alteration of the distance between the RBP-Jkappa site and RRE2 modulated responsiveness to RTA and IRF-7. These results will help to elucidate the precise regulation of viral gene expression.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Yang Z, Wen HJ, Minhas V, Wood C. The zinc finger DNA-binding domain of K-RBP plays an important role in regulating Kaposi's sarcoma-associated herpesvirus RTA-mediated gene expression. Virology 2009; 391:221-31. [PMID: 19592062 DOI: 10.1016/j.virol.2009.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/24/2009] [Accepted: 06/09/2009] [Indexed: 01/10/2023]
Abstract
K-RBP is a KRAB-containing zinc finger protein with multiple zinc finger motifs and represses Kaposi's sarcoma-associated herpesvirus (KSHV) transactivator RTA-mediated transactivation of several viral lytic gene promoters, including the ORF57 promoter. Whether K-RBP binds DNA through its zinc fingers and the role of zinc finger domain in repressing gene expression are unclear. Here we report that K-RBP binds DNA through its zinc finger domain and the target DNA sequences contain high GC content. Furthermore, K-RBP binds to KSHV ORF57 promoter, which contains a GC-rich motif. K-RBP suppresses the basal ORF57 promoter activity as well as RTA-mediated activation. The zinc finger domain of K-RBP is sufficient for the suppression of ORF57 promoter activation mediated by the viral transactivator RTA. Finally, we show that K-RBP inhibits RTA binding to ORF57 promoter. These findings suggest that the DNA-binding activity of K-RBP plays an important role in repressing viral promoter activity.
Collapse
Affiliation(s)
- Zhilong Yang
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln NE 68583, USA
| | | | | | | |
Collapse
|
20
|
Chen J, Ye F, Xie J, Kuhne K, Gao SJ. Genome-wide identification of binding sites for Kaposi's sarcoma-associated herpesvirus lytic switch protein, RTA. Virology 2009; 386:290-302. [PMID: 19233445 PMCID: PMC2663009 DOI: 10.1016/j.virol.2009.01.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/27/2008] [Accepted: 01/22/2009] [Indexed: 12/22/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) encoded by ORF50 is a lytic switch protein for viral reactivation from latency. The expression of RTA activates the expression of downstream viral genes, and is necessary for triggering the full viral lytic program. Using chromatin immunoprecipitation assay coupled with a KSHV whole-genome tiling microarray (ChIP-on-chip) approach, we identified a set of 19 RTA binding sites in the KSHV genome in a KSHV-infected cell line BCBL-1. These binding sites are located in the regions of promoters, introns, or exons of KSHV genes including ORF8, ORFK4.1, ORFK5, PAN, ORF16, ORF29, ORF45, ORF50, ORFK8, ORFK10.1, ORF59, ORFK12, ORF71/72, ORFK14/ORF74, and ORFK15, the two origins of lytic replication OriLyt-L and OriLyt-R, and the microRNA cluster. We confirmed these RTA binding sites by ChIP and quantitative real-time PCR. We further mapped the RTA binding site in the first intron of the ORFK15 gene, and determined that it is RTA-responsive. The ORFK15 RTA binding sequence TTCCAGGAA TTCCTGGAA consists of a palindromic structure of two tandem repeats, of which each itself is also an imperfect inverted repeat. Reporter assay and electrophoretic mobility shift assay confirmed the binding of the RTA protein to this sequence in vitro. Sequence alignment with other RTA binding sites identified the RTA consensus binding motif as TTCCAGGAT(N)(0-16)TTCCTGGGA. Interestingly, most of the identified RTA binding sites contain only half or part of this RTA binding motif. These results suggest the complexity of RTA binding in vivo, and the involvement of other cellular or viral transcription factors during RTA transactivation of target genes.
Collapse
Affiliation(s)
- Jiguo Chen
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Fengchun Ye
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jianping Xie
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Kurt Kuhne
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Shou-Jiang Gao
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Tumor Virology Group, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuhan, China
| |
Collapse
|
21
|
Qin Y, Liu Z, Zhang T, Wang Y, Li X, Wang J. Generation and application of polyclonal antibody against replication and transcription activator of Kaposi's sarcoma-associated herpesvirus. Appl Biochem Biotechnol 2009; 160:1217-26. [PMID: 19333559 DOI: 10.1007/s12010-009-8604-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/03/2009] [Indexed: 10/20/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma, the most common neoplasm in untreated HIV-1-infected individuals, and several B cell disorders. KSHV infection goes through lytic and latent phases, and the switch from latency to lytic replication is governed by viral replication and transcription activator (RTA). RTA consists of 691 amino acids, containing an N-terminal DNA-binding and a C-terminal activation domain. In the present study, polyclonal antibody against RTA was generated and evaluated. The C-terminal region of RTA (E482 approximately D691) was expressed in Escherichia coli, purified by affinity chromatography, and utilized to raise polyclonal antibody in BALB/c mice. High-affinity antisera were obtained, which successfully detected the antigen at a dilution of 1:13,500 for ELISA and 1:20,000 for Western blot analysis. The antibody can specifically recognize full-length RTA expressed in both E. coli and mammalian cells. Furthermore, endogenous RTA can be detected with the antibody in TPA-induced BCBL-1 cells under various conditions. These results suggested that the antibody is valuable for the investigation of biochemical properties and biological functions of RTA.
Collapse
Affiliation(s)
- Yu Qin
- College of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Ellison TJ, Izumiya Y, Izumiya C, Luciw PA, Kung HJ. A comprehensive analysis of recruitment and transactivation potential of K-Rta and K-bZIP during reactivation of Kaposi's sarcoma-associated herpesvirus. Virology 2009; 387:76-88. [PMID: 19269659 DOI: 10.1016/j.virol.2009.02.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/06/2009] [Accepted: 02/10/2009] [Indexed: 11/28/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma. K-Rta and K-bZIP are two major viral transcription factors that control reactivation of this virus. Here we report a genome-wide analysis of transcriptional capacity by evaluation of a comprehensive library of 83 putative KSHV promoters. In reporter assays, 34 viral promoters were activated by K-Rta, whereas K-bZIP activated 21 promoters. When K-Rta and K-bZIP were combined, 3 K-Rta responsive promoters were repressed by K-bZIP. The occupancy of K-Rta and K-bZIP across KSHV promoters was analyzed by chromatin immunoprecipitation with a viral promoter-chip in BCBL-1 cells. In addition, acetylation of local histones was examined to determine accessibility of promoters during latency and reactivation. Finally, 10 promoters were selected to study the dynamics of transcription factor recruitment. This study provides a comprehensive overview of the responsiveness of KSHV promoters to K-Rta and K-bZIP, and describes key chromatin changes during viral reactivation.
Collapse
Affiliation(s)
- Thomas J Ellison
- Department of Biological Chemistry, University of California, Davis (UC Davis) School of Medicine, UC Davis Cancer Center, Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
23
|
Wen HJ, Minhas V, Wood C. Identification and characterization of a new Kaposi's sarcoma-associated herpesvirus replication and transcription activator (RTA)-responsive element involved in RTA-mediated transactivation. J Gen Virol 2009; 90:944-953. [PMID: 19223488 DOI: 10.1099/vir.2008.006817-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) is well established as a key transcriptional activator that regulates the KSHV life cycle from latency to lytic replication. It is expressed immediately after infection and activates a number of viral genes leading to virus replication. The RTA-responsive element (RRE) in the RTA target gene promoters is critical for RTA to mediate this transactivation. A number of non-conserved RREs have been identified in various RTA-responsive promoters, and AT-rich sequences have been proposed to serve as RTA targets, but no consensus RRE sequence has been identified so far. Two non-conserved RREs (RRE1 and RRE2) containing AT-rich sequences have been identified previously in the promoter of one of the KSHV lytic genes, ORF57, which can be strongly activated by RTA. Based on homology with the consensus sequence of the Epstein-Barr virus Rta RRE, this study identified a third RTA-responsive element (RRE3) in the ORF57 promoter. This RRE comprised a GC-rich sequence that could bind RTA both in vitro and in vivo, and plays a role in RTA-mediated transactivation of the ORF57 promoter. The presence of two of the three RREs in close proximity to each other was required for optimal RTA-mediated transactivation of the ORF57 promoter, even though the presence of only one RRE is needed for RTA binding. These results suggest that the ability of RTA to mediate transcriptional activation is distinct from its ability to bind to its target elements.
Collapse
Affiliation(s)
- Hui-Ju Wen
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Veenu Minhas
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Charles Wood
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
24
|
Liu Y, Cao Y, Liang D, Gao Y, Xia T, Robertson ES, Lan K. Kaposi's sarcoma-associated herpesvirus RTA activates the processivity factor ORF59 through interaction with RBP-Jkappa and a cis-acting RTA responsive element. Virology 2008; 380:264-75. [PMID: 18786687 DOI: 10.1016/j.virol.2008.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/31/2008] [Accepted: 08/07/2008] [Indexed: 01/02/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) displays two life modes, latency and lytic reactivation in the infected host cells which are equally important for virus mediated pathogenesis. During latency only a small number of genes are expressed. Under specific conditions, KSHV can undergo lytic replication with the production of viral progeny. One immediate-early gene RTA, encoded by open reading frame 50 of KSHV, has been shown to play a critical role in switching the viral latency to lytic reactivation. Over-expression of RTA from a heterologous promoter is sufficient for driving KSHV lytic replication which results in production of viral progeny. In the present study, we show that RTA can activate the expression of the ORF59 which encodes the processivity factor essential for DNA replication during lytic reactivation. We also show that RTA regulates ORF59 promoter through interaction with RBP-Jkappa as well as a cis-acting RTA responsive element within the promoter. In the context of KSHV infected cells, the upregulation of ORF59 is a direct response to RTA expression. Taken together, our findings provide new evidence to explain the mechanism by which RTA can regulate its downstream gene ORF59, further increasing our understanding of the biology of KSHV lytic replication.
Collapse
Affiliation(s)
- Yunhua Liu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, The People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Regulation of Kaposi's sarcoma-associated herpesvirus reactivation by dopamine receptor-mediated signaling pathways. J Acquir Immune Defic Syndr 2008; 48:531-40. [PMID: 18645521 DOI: 10.1097/qai.0b013e31817fbdcf] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Kaposi's sarcoma-associated herpesvirus (KSHV) possesses two distinct life cycles, lytic replication and latency. An immediate early viral protein, Replication and transcription activator (RTA), is responsible for the virus switch from latency to active replication. METHODS To identify cellular pathways that reactivate KSHV replication, an RTA-responsive viral early promoter, PAN, coupled with an enhanced green fluorescent protein (EGFP) reporter was delivered into a KSHV latently infected B cell line. Five different chemical libraries with defined cellular targets were screened for their ability to induce the PAN promoter as an indication of lytic replication. RESULTS We identified seven chemicals that disrupted latency in KSHV latently infected B cells, five being N-acyl-dopamine derivatives. We showed that these chemicals reactivate KSHV through interacting with dopamine receptors, and that KSHV utilizes dopamine receptors and the associated PKA and MAP kinase pathways to detect and transmit stress signals for reactivation. CONCLUSION Our study identified two cellular signaling pathways that mediate KSHV reactivation and provided a chemical genetics approach to identify new endogenous activators with therapeutic potential against herpesvirus associated malignancies.
Collapse
|
26
|
Identification of direct transcriptional targets of the Kaposi's sarcoma-associated herpesvirus Rta lytic switch protein by conditional nuclear localization. J Virol 2008; 82:10709-23. [PMID: 18715905 DOI: 10.1128/jvi.01012-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lytic reactivation from latency is critical for the pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). We previously demonstrated that the 691-amino-acid (aa) KSHV Rta transcriptional transactivator is necessary and sufficient to reactivate the virus from latency. Viral lytic cycle genes, including those expressing additional transactivators and putative oncogenes, are induced in a cascade fashion following Rta expression. In this study, we sought to define Rta's direct targets during reactivation by generating a conditionally nuclear variant of Rta. Wild-type Rta protein is constitutively localized to cell nuclei and contains two putative nuclear localization signals (NLSs). Only one NLS (NLS2; aa 516 to 530) was required for the nuclear localization of Rta, and it relocalized enhanced green fluorescent protein exclusively to cell nuclei. The results of analyses of Rta NLS mutants demonstrated that proper nuclear localization of Rta was required for transactivation and the stimulation of viral reactivation. RTA with NLS1 and NLS2 deleted was fused to the hormone-binding domain of the murine estrogen receptor to generate an Rta variant whose nuclear localization and ability to transactivate and induce reactivation were tightly controlled posttranslationally by the synthetic hormone tamoxifen. We used this strategy in KSHV-infected cells treated with protein synthesis inhibitors to identify direct transcriptional targets of Rta. Rta activated only eight KSHV genes in the absence of de novo protein synthesis. These direct transcriptional targets of Rta were transactivated to different levels and included the genes nut-1/PAN, ORF57/Mta, ORF56/Primase, K2/viral interleukin-6 (vIL-6), ORF37/SOX, K14/vOX, K9/vIRF1, and ORF52. Our data suggest that the induction of most of the KSHV lytic cycle genes requires additional protein expression after the expression of Rta.
Collapse
|
27
|
Kaposi's sarcoma-associated herpesvirus transactivator RTA promotes degradation of the repressors to regulate viral lytic replication. J Virol 2008; 82:3590-603. [PMID: 18216089 DOI: 10.1128/jvi.02229-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8) RTA is an important protein involved in the induction of KSHV lytic replication from latency through activation of the lytic cascade. A number of cellular and viral proteins, including K-RBP, have been found to repress RTA-mediated transactivation and KSHV lytic replication. However, it is unclear as to how RTA overcomes the suppression during lytic reactivation. In this study, we found that RTA can induce K-RBP degradation through the ubiquitin-proteasome pathway and that two regions in RTA are responsible. Moreover, we found that RTA can promote the degradation of several other RTA repressors. RTA mutants that are defective in inducing K-RBP degradation cannot activate RTA responsive promoter as efficiently as wild-type RTA. Interference of the ubiquitin-proteasome pathway affected RTA-mediated transactivation and KSHV reactivation from latency. Our results suggest that KSHV RTA can stimulate the turnover of repressors to modulate viral reactivation. Since herpes simplex virus type 1 transactivator ICP0 and human cytomegalovirus transactivator pp71 also stimulate the degradation of cellular silencers, it is possible that the promotion of silencer degradation by viral transactivators may be a common mechanism for regulating the lytic replication of herpesviruses.
Collapse
|
28
|
Masa SR, Lando R, Sarid R. Transcriptional regulation of the open reading frame 35 encoded by Kaposi's sarcoma-associated herpesvirus. Virology 2007; 371:14-31. [PMID: 17963810 DOI: 10.1016/j.virol.2007.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 07/16/2007] [Accepted: 08/17/2007] [Indexed: 11/26/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the Gammaherpesvirinae and is causally associated with Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The KSHV genome encodes over 85 genes; the function of some is entirely unknown. We have characterized the transcriptional regulation of a conserved and uncharacterized Gammaherpesvirinae open reading frame, orf35, which lies in a cluster of several overlapping genes, orf34 to orf38. We identified the transcription start site and analyzed upstream sequences. We found that expression of the KSHV lytic replication and transcription activator (RTA) strongly increased the orf35 promoter activity through a 46-nucleotide region which includes a conserved AP-1 binding site. Electrophoretic mobility shift assay demonstrated direct binding of cJUN and cFOS to the predicted AP-1 binding site. Finally, using a mutated promoter lacking the AP-1 site and dominant-negative cFOS, we established that the RTA-mediated orf35 transactivation is AP-1-dependent.
Collapse
Affiliation(s)
- Shiri-Rivka Masa
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 52900, Israel
| | | | | |
Collapse
|
29
|
Kato-Noah T, Xu Y, Rossetto CC, Colletti K, Papousková I, Pari GS. Overexpression of the kaposi's sarcoma-associated herpesvirus transactivator K-Rta can complement a K-bZIP deletion BACmid and yields an enhanced growth phenotype. J Virol 2007; 81:13519-32. [PMID: 17913803 PMCID: PMC2168825 DOI: 10.1128/jvi.00832-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (HHV8) ORF50 encodes a transactivator, K-Rta, which functions as the switch from latent to lytic virus replication. K-bZIP interacts with K-Rta and can repress its transactivation activity for some viral promoters. Both K-Rta and K-bZIP are required for origin-dependent DNA replication. To determine the role of K-bZIP in the context of the viral genome, we generated a recombinant HHV8 bacterial artificial chromosome (BAC) with a deletion in the K-bZIP open reading frame. This BACmid, BAC36DeltaK8, displayed an enhanced growth phenotype with respect to virus production and accumulation of virus-encoded mRNAs measured by real-time PCR when K-Rta was used to induce the virus lytic cycle. Conversely, induction of the virus lytic cycle using tetradecanoyl phorbol acetate/n-butyrate resulted in no virus production and an aberrant gene expression pattern from BAC36DeltaK8-containing cells compared to wild-type (wt) BAC. This null virus phenotype was efficiently complemented by the expression of K-bZIP in trans, restoring virus production to wt BAC levels. Immunofluorescence staining revealed that subcellular localization of K-Rta was unchanged; however, a disruption of LANA subcellular localization was observed in cells harboring BAC36DeltaK8, suggesting that K-bZIP influences LANA localization. Coimmunoprecipitation experiments confirmed that K-bZIP interacts with LANA in BCBL-1 cells and in cotransfection assays. Lastly, the chromatin immunoprecipitation assay revealed that, in an environment where K-Rta is overexpressed and in the absence of K-bZIP, K-Rta binds to CAAT enhancer binding protein alpha sites within oriLyt, suggesting that it is K-Rta that supplies an essential replication function and that K-bZIP may serve to augment or facilitate the interaction of K-Rta with oriLyt.
Collapse
Affiliation(s)
- Taeko Kato-Noah
- Department of Microbiology, Cell and Molecular Biology Program, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | |
Collapse
|
30
|
Lefort S, Soucy-Faulkner A, Grandvaux N, Flamand L. Binding of Kaposi's sarcoma-associated herpesvirus K-bZIP to interferon-responsive factor 3 elements modulates antiviral gene expression. J Virol 2007; 81:10950-60. [PMID: 17652396 PMCID: PMC2045525 DOI: 10.1128/jvi.00183-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus encodes numerous regulatory proteins capable of modulating viral and cellular gene expression and affecting host cell functions. K-bZIP, a leucine zipper-containing transcription factor encoded by ORFK8, is one such protein. During infection, transcription of the ORFK8 early gene is turned on by the immediate-early replication and transcription factor activator (RTA). One described function of the K-bZIP nuclear protein is to interact with and repress RTA-mediated transactivation of viral promoters, including that of the K8 gene. In the present work, we provide evidence that the expression of K-bZIP results in the activation of the ifn-beta gene. Of interest, ifn-beta gene activation by K-bZIP is independent of interferon (IFN)-responsive factor 3 (IRF-3) and nuclear factor kappaB (NF-kappaB) activation. Using a DNA binding affinity assay and electromobility shift assay, we report that K-bZIP binds efficiently to the PRDIII-I region of the beta IFN (IFN-beta) promoter, and, in doing so, it prevents the attachment of activated IRF-3 but not that of NF-kappaB or ATF2/c-Jun to the IFN-beta promoter sequence. As a consequence, ifn-beta gene activation in response to IFN inducers such as Sendai virus infection or expression of retinoic acid-inducible gene I, mitochondrial antiviral signaling protein, or TANK-binding kinase 1 (TBK-1) is severely impaired (>90%) by the presence of K-bZIP. K-bZIP also prevents the activation of RANTES and CXCL11, whose promoters are also regulated by IRF-3. Lysine 158 (target for SUMO conjugation), threonine 111, and serine 167 (targets for phosphorylation) mutants of K-bZIP were equally effective as wild-type K-bZIP in mediating the repression of TBK-1-activated ifn-beta gene expression. Lastly, the overexpression of CREB binding protein could not reverse the K-bZIP repression of TBK-1-activated ifn-beta gene expression. In all, our results indicate that K-bZIP binds directly to the PRDIII-I region of the IFN-beta promoter and, as a consequence, causes a low level of ifn-beta gene transcription. In doing so, K-bZIP prevents IRF-3 from binding to the IFN-beta promoter and precludes the formation of the enhanceosome, which is required for maximal ifn-beta gene transcription. A new role for K-bZIP as a protein involved in immune evasion is therefore uncovered.
Collapse
Affiliation(s)
- Sylvain Lefort
- Rheumatology and Immunology Research Center, Room T1-49, 2705 Laurier Blvd., Quebec, Quebec G1V 4G2, Canada
| | | | | | | |
Collapse
|
31
|
Yu F, Harada JN, Brown HJ, Deng H, Song MJ, Wu TT, Kato-Stankiewicz J, Nelson CG, Vieira J, Tamanoi F, Chanda SK, Sun R. Systematic identification of cellular signals reactivating Kaposi sarcoma-associated herpesvirus. PLoS Pathog 2007; 3:e44. [PMID: 17397260 PMCID: PMC1839163 DOI: 10.1371/journal.ppat.0030044] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 02/08/2007] [Indexed: 11/18/2022] Open
Abstract
The herpesvirus life cycle has two distinct phases: latency and lytic replication. The balance between these two phases is critical for viral pathogenesis. It is believed that cellular signals regulate the switch from latency to lytic replication. To systematically evaluate the cellular signals regulating this reactivation process in Kaposi sarcoma-associated herpesvirus, the effects of 26,000 full-length cDNA expression constructs on viral reactivation were individually assessed in primary effusion lymphoma-derived cells that harbor the latent virus. A group of diverse cellular signaling proteins were identified and validated in their effect of inducing viral lytic gene expression from the latent viral genome. The results suggest that multiple cellular signaling pathways can reactivate the virus in a genetically homogeneous cell population. Further analysis revealed that the Raf/MEK/ERK/Ets-1 pathway mediates Ras-induced reactivation. The same pathway also mediates spontaneous reactivation, which sets the first example to our knowledge of a specific cellular pathway being studied in the spontaneous reactivation process. Our study provides a functional genomic approach to systematically identify the cellular signals regulating the herpesvirus life cycle, thus facilitating better understanding of a fundamental issue in virology and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Fuqu Yu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Josephine N Harada
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Helen J Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hongyu Deng
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Moon Jung Song
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Juran Kato-Stankiewicz
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christian G Nelson
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Jeffrey Vieira
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sumit K Chanda
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Yang Z, Wood C. The transcriptional repressor K-RBP modulates RTA-mediated transactivation and lytic replication of Kaposi's sarcoma-associated herpesvirus. J Virol 2007; 81:6294-306. [PMID: 17409159 PMCID: PMC1900108 DOI: 10.1128/jvi.02648-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The replication and transcription activator (RTA) protein of Kaposi's sarcoma (KS)-associated herpesvirus (KSHV)/human herpesvirus 8 functions as the key regulator to induce KSHV lytic replication from latency through activation of the lytic cascade of KSHV. Elucidation of the host factors involved in RTA-mediated transcriptional activation is pivotal for understanding the transition between viral latency and lytic replication. KSHV-RTA binding protein (K-RBP) was previously isolated as a cellular RTA binding protein of unknown function. Sequence analysis showed that K-RBP contains a Kruppel-associated box (KRAB) at the N terminus and 12 adjacent zinc finger motifs. In similarity to other KRAB-containing zinc finger proteins, K-RBP is a transcriptional repressor. Mutational analysis revealed that the KRAB domain is responsible for the transcriptional suppression activity of this protein and that the repression is histone deacetylase independent. K-RBP was found to repress RTA-mediated transactivation and interact with TIF1beta (transcription intermediary factor 1beta), a common corepressor of KRAB-containing protein, to synergize with K-RBP in repression. Overexpression and knockdown experiment results suggest that K-RBP is a suppressor of RTA-mediated KSHV reactivation. Our findings suggest that the KRAB-containing zinc finger protein K-RBP can suppress RTA-mediated transactivation and KSHV lytic replication and that KSHV utilizes this protein as a regulator to maintain a balance between latency and lytic replication.
Collapse
Affiliation(s)
- Zhilong Yang
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, E249 Beadle Center, P.O. Box 880666, Lincoln, NE 68588-0666, USA
| | | |
Collapse
|
33
|
Staudt MR, Dittmer DP. The Rta/Orf50 transactivator proteins of the gamma-herpesviridae. Curr Top Microbiol Immunol 2006; 312:71-100. [PMID: 17089794 DOI: 10.1007/978-3-540-34344-8_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The replication and transcription activator protein, Rta, is encoded by Orf50 in Kaposi's sarcoma-associated herpesvirus (KSHV) and other known gammaherpesviruses including Epstein-Barr virus (EBV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS), and murine herpesvirus 68 (MHV-68). Each Rta/Orf50 homologue of each gammaherpesvirus plays a pivotal role in the initiation of viral lytic gene expression and lytic reactivation from latency. Here we discuss the Rta/Orf50 of KSHV in comparison to the Rta/Orf50s of other gammaherpesviruses in an effort to identify structural motifs, mechanisms of action, and modulating host factors.
Collapse
Affiliation(s)
- M R Staudt
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 804 Mary Ellen Jones Bldg, CB 7290, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
34
|
Abstract
The life cycle of KSHV, latency versus lytic replication, is mainly determined at the transcriptional regulation level. A viral immediate-early gene product, replication and transcription activator (RTA), has been identified as the molecular switch for initiation of the lytic gene expression program from latency. Here we review progress on two key questions: how RTA gene expression is controlled by viral proteins and cellular signals and how RTA regulates the expression of downstream viral genes. We summarize the interactions of RTA with cellular and other viral proteins. We also discuss critical issues that must be addressed in the near future.
Collapse
Affiliation(s)
- H Deng
- Center for Infection and Immunity, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, PR China
| | | | | |
Collapse
|
35
|
Bowser BS, Morris S, Song MJ, Sun R, Damania B. Characterization of Kaposi's sarcoma-associated herpesvirus (KSHV) K1 promoter activation by Rta. Virology 2006; 348:309-27. [PMID: 16546233 DOI: 10.1016/j.virol.2006.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 12/07/2005] [Accepted: 02/08/2006] [Indexed: 11/25/2022]
Abstract
The K1 gene of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a 46-kDa transmembrane glycoprotein that possesses transforming properties, initiates signaling pathways in B cells, and prevents apoptosis. Here, we demonstrate a mechanism for activation of the K1 promoter by the Rta transactivator. Electrophoretic mobility shift assay (EMSA) analysis of the K1 promoter demonstrated that purified Rta protein bound to the K1 promoter at three locations, independent of other DNA-binding factors. Transcriptional assays revealed that only two of these Rta DNA-binding sites are functionally significant, and that they could impart Rta responsiveness to a heterologous E4 TATA box promoter. In addition, TATA-binding protein (TBP) bound to a TATA box element located 25 bp upstream of the K1 transcription start site and was also shown to associate with Rta by coimmunoprecipitation analysis. Rta transactivation may therefore be mediated in part through recruitment of TBP to target promoters.
Collapse
Affiliation(s)
- Brian S Bowser
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | |
Collapse
|
36
|
Ziegelbauer J, Grundhoff A, Ganem D. Exploring the DNA binding interactions of the Kaposi's sarcoma-associated herpesvirus lytic switch protein by selective amplification of bound sequences in vitro. J Virol 2006; 80:2958-67. [PMID: 16501105 PMCID: PMC1395432 DOI: 10.1128/jvi.80.6.2958-2967.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The lytic switch protein RTA of Kaposi's sarcoma-associated herpesvirus (KSHV) can be targeted to DNA by either direct sequence-specific recognition or via protein-protein interactions with host transcription factors. We have searched for sequences capable of direct RTA binding by screening synthetic oligonucleotide pools and KSHV genomic libraries for RTA-interacting elements, using repeated cycles of in vitro binding followed by amplification of the bound sequences. Multiple low-affinity sequences were recovered from the random pools, with generation of only a weak consensus sequence. The genomic library, by contrast, yielded many biologically relevant fragments, most of which could be shown to interact with RTA in vitro and some of which likely play important regulatory roles in vivo. Surprisingly, the most highly selected fragment came from the promoter of a late gene (gB) and contained at least two direct RTA binding sites, as well as one RBP-Jkappa binding site. This raises the possibility that some late KSHV genes may also be subject to direct RTA regulation, though indirect models are not excluded.
Collapse
Affiliation(s)
- Joseph Ziegelbauer
- G.W. Hooper Foundation, University of California, San Francisco, Box 0552, 513 Parnassus Ave., San Francisco, California 94143-0552, USA
| | | | | |
Collapse
|
37
|
Abstract
The K15 gene product of Kaposi's sarcoma-associated herpesvirus (KSHV) is a transmembrane protein that is encoded by the last open reading frame of the KSHV genome. The K15 protein has been implicated in modulation of B-cell signal transduction and activation of the Ras/mitogen-activated protein kinase and NF-kappaB signal transduction pathways. Here we report the identification of the transcriptional start site of the full-length K15 gene in KSHV-positive BCBL-1 cells. We have mapped the K15 transcriptional start site to a position 152 nucleotides upstream from the translation start site by rapid amplification of cDNA ends and RNase protection assays. We have also characterized the K15 promoter element. To analyze the cis-acting elements necessary to regulate K15 gene expression, a series of 5' promoter deletion constructs were generated and subcloned upstream of the luciferase reporter gene. Transcriptional assays with these mutant promoters demonstrated that chemical induction in latently infected KSHV-positive BCBL-1 cells activated K15 transcription. In addition, K15 promoter transactivation was also mediated by the viral immediate-early protein Orf50/Rta, suggesting that the K15 gene is actively transcribed during lytic replication.
Collapse
Affiliation(s)
- Emily L Wong
- Lineberger Comprehensive Cancer Center, CB 7295, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
38
|
Matsumura S, Fujita Y, Gomez E, Tanese N, Wilson AC. Activation of the Kaposi's sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J Virol 2005; 79:8493-505. [PMID: 15956592 PMCID: PMC1143749 DOI: 10.1128/jvi.79.13.8493-8505.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) maintains a latent infection in primary effusion lymphoma cells but can be induced to enter full lytic replication by exposure to a variety of chemical inducing agents or by expression of the KSHV-encoded replication and transcription activator (RTA) protein. During latency, only a few viral genes are expressed, and these include the three genes of the so-called latency transcript (LT) cluster: v-FLIP (open reading frame 71 [ORF71]), v-cyclin (ORF72), and latency-associated nuclear antigen (ORF73). During latency, all three open reading frames are transcribed from a common promoter as part of a multicistronic mRNA. Subsequent alternative mRNA splicing and internal ribosome entry allows for the expression of each protein. Here, we show that transcription of LT cassette mRNA can be induced by RTA through the activation of a second promoter (LT(i)) immediately downstream of the constitutively active promoter (LT(c)). We identified a minimal cis-regulatory region, which overlaps with the promoter for the bicistronic K14/v-GPCR delayed early gene that is transcribed in the opposite direction. In addition to a TATA box at -30 relative to the LT(i) mRNA start sites, we identified three separate RTA response elements that are also utilized by the K14/v-GPCR promoter. Interestingly, LT(i) is unresponsive to sodium butyrate, a potent inducer of lytic replication. This suggests there is a previously unrecognized class of RTA-responsive promoters that respond to direct, but not indirect, induction of RTA. These studies highlight the fact that induction method can influence the precise program of viral gene expression during early events in reactivation and also suggest a mechanism by which RTA contributes to establishment of latency during de novo infections.
Collapse
Affiliation(s)
- Satoko Matsumura
- Department of Microbiology and NYU Cancer Institute, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
39
|
Wang J, Zhang J, Zhang L, Harrington W, West JT, Wood C. Modulation of human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus replication and transcription activator transactivation by interferon regulatory factor 7. J Virol 2005; 79:2420-31. [PMID: 15681443 PMCID: PMC546578 DOI: 10.1128/jvi.79.4.2420-2431.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8)/Kaposi's sarcoma-associated herpesvirus infection goes through lytic and latent phases that are regulated by viral gene products, but very little is known about the involvement of host proteins. The replication and transcription activator (RTA) is a viral protein sufficient to initiate lytic replication by activating downstream genes, including the viral early gene open reading frame 57 (ORF 57), which codes for a posttranscriptional activator. In this study, we demonstrate that cellular interferon regulatory factor 7 (IRF-7) negatively regulates this process by competing with RTA for binding to the RTA response element in the ORF 57 promoter to down-regulate RTA-induced gene expression. We also show that alpha interferon represses RTA-mediated transactivation and that repression involves IRF-7. Our study indicates that upon HHV-8 infection, the host responds by suppression of lytic gene expression through binding of IRF-7 to the lytic viral gene promoter. These findings suggest that HHV-8 has developed a novel mechanism to induce but then subvert the innate antiviral response, specifically the interferon-signaling pathway, to regulate RTA activity and ultimately the viral latent/lytic replicative cycle.
Collapse
Affiliation(s)
- Jinzhong Wang
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska--Lincoln, 1901 Vine St., Lincoln, NE 68588-0666, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes latent infections in lymphocytes and endothelial cells, and latent infection is closely linked to tumorigenesis. As few viral markers are expressed during latency, compounds that can safely and efficiently increase lytic gene expression in vivo have been sought. We have found that the non-tumour-promoting phorbol ester prostratin and the proteasome inhibitor bortezomib induce immediate-early, early and late KSHV gene expression from two lymphoma cell lines in vitro. Their ability to induce lytic gene expression supports a role for phorbol-ester and proteasome-regulated signalling pathways in KSHV reactivation and prompts further investigation of prostratin and bortezomib as therapeutic agents for KSHV-associated malignancies.
Collapse
|
41
|
Zhang J, Wang J, Wood C, Xu D, Zhang L. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 replication and transcription activator regulates viral and cellular genes via interferon-stimulated response elements. J Virol 2005; 79:5640-52. [PMID: 15827179 PMCID: PMC1082735 DOI: 10.1128/jvi.79.9.5640-5652.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (also called human herpesvirus 8 [HHV-8]) replication and transcription activator (RTA) is apparently necessary and sufficient for the switch from viral latency to lytic replication. RTA may regulate open reading frame (ORF) K14 (viral OX-2 homologue) and ORF74 (viral G-protein-coupled receptor homologue) genes through an interferon-stimulated response element (ISRE)-like sequence (K14 ISRE) in the promoter region. RTA strongly activated a K14 ISRE-containing K14-ORF74 promoter reporter construct and a heterologous promoter reporter construct containing K14 ISRE. RTA could bind to K14 ISRE and other ISREs, activate promoter reporter constructs from interferon-simulated genes (ISGs), and selectively induce three endogenous ISGs in primary endothelial cells: ISG-54, myxovirus resistance protein 1 (MxA), and stimulated trans-acting factor of 50 kDa. In addition, a region in the RTA DNA-binding domain has been identified with certain sequence similarity to the DNA-binding domains of the interferon regulatory factor (IRF) family. Mutation in one conserved amino acid within this region reduced the ability of RTA to bind to ISRE as well as other RTA response elements. Furthermore, the mutant failed to activate RTA-responsive promoters and to induce viral lytic gene expression. The mutation at the same conserved amino acid residue in IRF-7 drastically reduced its ability to bind to DNA and to activate the beta interferon promoter. The sequence and functional similarities between RTA and IRFs suggest that the HHV-8 RTA may usurp the cellular IRF pathway.
Collapse
Affiliation(s)
- Jun Zhang
- Nebraska Center for Virology, University of Nebraska, 1901 Vine St., Lincoln, NE 68588, USA
| | | | | | | | | |
Collapse
|
42
|
Song MJ, Hwang S, Wong W, Round J, Martinez-Guzman D, Turpaz Y, Liang J, Wong B, Johnson RC, Carey M, Sun R. The DNA architectural protein HMGB1 facilitates RTA-mediated viral gene expression in gamma-2 herpesviruses. J Virol 2004; 78:12940-50. [PMID: 15542646 PMCID: PMC524970 DOI: 10.1128/jvi.78.23.12940-12950.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Replication and transcription activator (RTA), an immediate-early gene product of gamma-2 herpesviruses including Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gamma herpesvirus 68 (MHV-68), plays a critical role in controlling the viral life cycle. RTA acts as a strong transcription activator for several downstream genes of KSHV and MHV-68 through direct DNA binding, as well as via indirect mechanisms. HMGB1 (also called HMG-1) protein is a highly conserved nonhistone chromatin protein with the ability to bind and bend DNA. HMGB1 protein promoted RTA binding to different RTA target sites in vitro, with greater enhancement to low-affinity sites than to high-affinity sites. Box A or box B and homologues of HMGB1 also enhanced RTA binding to DNA. Transient transfection of HMGB1 stimulated RTA transactivation of RTA-responsive promoters from KSHV and MHV-68. Furthermore, MHV-68 viral gene expression, as well as viral replication, was significantly reduced in HMGB1-deficient cells than in the wild type. This abated viral gene expression was partially restored by HMGB1 transfection into HMGB1(-/-) cells. These results suggest an important function of the DNA architectural protein, HMGB1, in RTA-mediated gene expression, as well as viral replication in gamma-2 herpesviruses.
Collapse
Affiliation(s)
- Moon Jung Song
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Damania B, Jeong JH, Bowser BS, DeWire SM, Staudt MR, Dittmer DP. Comparison of the Rta/Orf50 transactivator proteins of gamma-2-herpesviruses. J Virol 2004; 78:5491-9. [PMID: 15113928 PMCID: PMC400334 DOI: 10.1128/jvi.78.10.5491-5499.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The viral immediate-early transactivator Rta/Orf50 is necessary and sufficient to initiate Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8) reactivation from latently infected cells. Since Rta/Orf50 is conserved among all known gamma-2-herpesviruses, we investigated whether the murine gamma-68-herpesvirus (MHV-68) and rhesus monkey rhadinovirus (RRV) homologs can functionally substitute for KSHV Rta/Orf50. (i) Our comparison of 12 KSHV promoters showed that most responded to all three Rta/Orf50proteins, but three promoters (vGPCR, K8, and gB) responded only to the KSHV Rta/Orf50 transactivator. Overall, the activation of KSHV promoters was higher with KSHV Rta than with the RRV and MHV-68 Rta. (ii) Only the primate Rta/Orf50 homologs were able to interfere with human p53-depedent transcriptional activation. (iii) Transcriptional profiling showed that the KSHV Rta/Orf50 was more efficient than it's homologs in inducing KSHV lytic transcription from the latent state. These results suggest that the core functionality of Rta/Orf50 is conserved and independent of its host, but the human protein has evolved additional, human-specific capabilities.
Collapse
Affiliation(s)
- Blossom Damania
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
44
|
Gwack Y, Nakamura H, Lee SH, Souvlis J, Yustein JT, Gygi S, Kung HJ, Jung JU. Poly(ADP-ribose) polymerase 1 and Ste20-like kinase hKFC act as transcriptional repressors for gamma-2 herpesvirus lytic replication. Mol Cell Biol 2003; 23:8282-94. [PMID: 14585985 PMCID: PMC262387 DOI: 10.1128/mcb.23.22.8282-8294.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The replication and transcription activator (RTA) of gamma-2 herpesvirus is sufficient to drive the entire virus lytic cycle. Hence, the control of RTA activity should play an important role in the maintenance of viral latency. Here, we demonstrate that cellular poly(ADP-ribose) polymerase 1 (PARP-1) and Ste20-like kinase hKFC interact with the serine/threonine-rich region of gamma-2 herpesvirus RTA and that these interactions efficiently transfer poly(ADP-ribose) and phosphate units to RTA. Consequently, these modifications strongly repressed RTA-mediated transcriptional activation by inhibiting its recruitment onto the promoters of virus lytic genes. Conversely, the genetic ablation of PARP-1 and hKFC interaction or the knockout of the PARP-1 gene and activity considerably enhanced gamma-2 herpesvirus lytic replication. Thus, this is the first demonstration that cellular PARP-1 and hKFC act as molecular sensors to regulate RTA activity and thereby, herpesvirus latency.
Collapse
Affiliation(s)
- Yousang Gwack
- Department of Microbiology and Molecular Genetics, Tumor Virology Division, New England Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Song MJ, Deng H, Sun R. Comparative study of regulation of RTA-responsive genes in Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 2003; 77:9451-62. [PMID: 12915560 PMCID: PMC187374 DOI: 10.1128/jvi.77.17.9451-9462.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication and transcription activator (RTA) (also referred to as ORF50), an immediate-early gene product of Kaposi's sarcoma-associated herpesvirus (KSHV)/(human herpesvirus 8), plays a critical role in balancing the viral life cycle between latency and lytic replication. RTA has been shown to act as a strong transcription activator for several downstream genes of KSHV. Direct binding of RTA to DNA is thought to be one of the important mechanisms for transactivation of target genes, while indirect mechanisms are also implicated in RTA transactivation of certain selected genes. This study demonstrated direct binding of the DNA-binding domain of RTA (Rdbd) to a Kaposin (Kpsn) promoter sequence, which is highly homologous to the RTA-responsive element (RRE) of the PAN promoter. We undertook a comparative study of the RREs of PAN RNA, ORF57, vIL-6, and Kpsn to understand how RTA regulates gene expression during lytic replication. Comparing RNA abundance and transcription initiation rates of these RTA target genes in virus-infected cells suggested that the transcription initiation rate of the promoters is a major determinant of viral gene expression, rather than stability of the transcripts. RTA-mediated transactivation of reporters containing each RRE showed that their promoter strengths in a transient-transfection system were comparable to their transcription rates during reactivation. Moreover, our electrophoretic mobility shift assays of each RRE demonstrated that the highly purified Rdbd protein directly bound to the RREs. Based on these results, we conclude that direct binding of RTA to these target sequences contributes to their gene expression to various extents during the lytic life cycle of KSHV.
Collapse
MESH Headings
- Base Sequence
- Cell Line
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Gene Expression Regulation, Viral
- Genes, Reporter
- Genes, Viral
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Herpesvirus 8, Human/physiology
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/physiology
- Promoter Regions, Genetic
- RNA, Viral/genetics
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcriptional Activation
- Viral Proteins/genetics
- Viral Proteins/physiology
- Virus Replication
Collapse
Affiliation(s)
- Moon Jung Song
- Department of Molecular and Medical Pharmacology, UCLA AIDS Institute, Jonsson Comprehensive Cancer Center, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
46
|
Liao W, Tang Y, Kuo YL, Liu BY, Xu CJ, Giam CZ. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 transcriptional activator Rta is an oligomeric DNA-binding protein that interacts with tandem arrays of phased A/T-trinucleotide motifs. J Virol 2003; 77:9399-411. [PMID: 12915555 PMCID: PMC187432 DOI: 10.1128/jvi.77.17.9399-9411.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) encodes an immediate early transcriptional activator, Rta, which mediates viral reactivation from latency and lytic viral replication. Here we report the purification and characterizations of HHV-8 Rta and its interaction with Rta-responsive DNA elements. The Rta response element (RtaRE) in the promoter of the KSHV/HHV-8 K8 open reading frame was mapped to a 47-bp sequence (RtaRE1) and a 60-bp sequence (RtaRE2) upstream of the TATA motif. A comparison of the K8 RtaREs with other viral RtaREs revealed a pattern of multiple A/T triplets spaced with a periodicity of 10 or 20 bp. Substitutions of the in-phase A/T trinucleotides of the RtaRE1 with G/C bases greatly diminished Rta responsiveness and Rta binding. By contrast, base substitutions in an out-of-phase A/T-trinucleotide sequence had no effect. Importantly, multimers of (A/T)(3)N(7) and N(5)(A/T)(5)N(6)(A/T)(4) motifs supported a strong Rta response in a copy number-dependent manner. No specific sequence motifs in the spacer regions could be discerned. Potent Rta response, however, was obtained with phased A/T trinucleotides with 7-bp spacers of arbitrary sequences with high G/C content. Lengthening of the phased A/T motifs or lowering of the G/C content of the spacers resulted in a reduction in Rta response. Finally, Escherichia coli-derived Rta is an oligomer of 440 kDa in molecular size and binds RtaRE as an oligomer. These results support a model of Rta transactivation wherein the subunits of the Rta oligomer make multiple contacts with a tandem array of phased A/T triplets in the configuration of (A/T)(3)(G/C)(7) repeats.
Collapse
Affiliation(s)
- Wei Liao
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | | | |
Collapse
|
47
|
West JT, Wood C. The role of Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8 regulator of transcription activation (RTA) in control of gene expression. Oncogene 2003; 22:5150-63. [PMID: 12910252 DOI: 10.1038/sj.onc.1206555] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanisms that control the replication state, latency versus lytic, of human herpesviruses have been under intense investigations. Here we summarize some of the recent findings that help define such mechanisms for Kaposi's sarcoma-associated herpesvirus/human herpesvirus type 8 (KSHV/HHV-8). For HHV-8, the viral regulator of transcription activation (RTA) is a key mediator of the switch from latency to lytic gene expression in infected cells. RTA is necessary and sufficient to drive HHV-8 lytic replication and the production of viral progeny. The RTA is an immediate-early gene product, it is the initial activator of expression of a multitude of viral and cellular genes that have been implicated in the replication of HHV-8 and pathogenesis of KS. Interactions of RTA with a number of viral promoters, and with a number of transcription factors or transcriptional co-activators are highlighted. Modulation of transactivation, through alternate RTA-protein, or RTA-promoter interactions, is hypothesized to participate in the selective tissue tropism and differential pathogenesis observed in KS.
Collapse
Affiliation(s)
- John T West
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska, Lincoln, 1901 Vine Street, Lincoln, NE 68588, USA
| | | |
Collapse
|
48
|
Seaman WT, Quinlivan EB. Lytic switch protein (ORF50) response element in the Kaposi's sarcoma-associated herpesvirus K8 promoter is located within but does not require a palindromic structure. Virology 2003; 310:72-84. [PMID: 12788632 DOI: 10.1016/s0042-6822(03)00095-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Kaposi's sarcoma-associated virus (KSHV) ORF50 protein induces lytic replication and activates the K8 promoter. We show that ORF50-induced and tetradecanoyl phorbol acetate (TPA) induced K8 transcripts initiated from the same start site. A newly identified palindrome (PAL2), containing a 12-bp response region required for ORF50-induced activation in lymphoid cells, was identified in the K8 promoter. Specific DNA binding of bacterially expressed ORF50 was not seen with the K8 promoter despite specific binding to the PAN promoter. The new palindrome shared homology with a previously described ORF50 response element (50RE(K8) and 50RE(57)). We demonstrate that the new 50RE(K8) (50RE(K8-PAL2)) is not the palindrome per se. Instead, the response element is buried within the right arm of the palindrome. We propose that the complexity of the K8 response elements reflects the complexity of mechanisms used by ORF50 during viral reactivation.
Collapse
Affiliation(s)
- William T Seaman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599-7295, USA
| | | |
Collapse
|
49
|
Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, Jung JU. Global changes in Kaposi's sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol 2003; 77:4205-20. [PMID: 12634378 PMCID: PMC150665 DOI: 10.1128/jvi.77.7.4205-4220.2003] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important step in the herpesvirus life cycle is the switch from latency to lytic reactivation. In order to study the life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), we developed a gene expression system in KSHV-infected primary effusion lymphoma cells. This system uses Flp-mediated efficient recombination and tetracycline-inducible expression. The Rta transcriptional activator, which acts as a molecular switch for lytic reactivation of KSHV, was efficiently integrated downstream of the Flp recombination target site, and its expression was tightly controlled by tetracycline. Like stimulation with tetradecanoyl phorbol acetate (TPA), the ectopic expression of Rta efficiently induced a complete cycle of viral replication, including a well-ordered program of KSHV gene expression and production of infectious viral progeny. A striking feature of Rta-mediated lytic gene expression was that Rta induced KSHV gene expression in a more powerful and efficient manner than TPA stimulation, indicating that Rta plays a central, leading role in KSHV lytic gene expression. Thus, our streamlined gene expression system provides a novel means not only to study the effects of viral gene products on overall KSHV gene expression and replication, but also to understand the natural viral reactivation process.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Microbiology and Molecular Genetics, Division of Tumor Virology, New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA
| | | | | | | | | | | |
Collapse
|
50
|
Gwack Y, Baek HJ, Nakamura H, Lee SH, Meisterernst M, Roeder RG, Jung JU. Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi's sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Mol Cell Biol 2003; 23:2055-67. [PMID: 12612078 PMCID: PMC149486 DOI: 10.1128/mcb.23.6.2055-2067.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An important step in the herpesvirus life cycle is the switch from latency to lytic reactivation. The RTA transcription activator of Kaposi's sarcoma-associated herpesvirus (KSHV) acts as a molecular switch for lytic reactivation. Here we demonstrate that KSHV RTA recruits CBP, the SWI/SNF chromatin remodeling complex, and the TRAP/Mediator coactivator into viral promoters through interactions with a short acidic sequence in the carboxyl region and that this recruitment is essential for RTA-dependent viral gene expression. The Brg1 subunit of SWI/SNF and the TRAP230 subunit of TRAP/Mediator were shown to interact directly with RTA. Consequently, genetic ablation of these interactions abolished KSHV lytic replication. These results demonstrate that the recruitment of CBP, SWI/SNF, and TRAP/Mediator complexes by RTA is the principal mechanism to direct well-controlled viral gene expression and thereby viral lytic reactivation.
Collapse
Affiliation(s)
- Yousang Gwack
- Tumor Virology Division, New England Regional Primate Research Center, 1 Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | | | | | | | | | | | |
Collapse
|