1
|
Tayyeb JZ, Mondal S, Anisur Rahman M, Kumar S, Bayıl I, Akash S, Hossain MS, Alqahtani T, Zaki MEA, Oliveira JIN. Identification of Helicobacter pylori-carcinogenic TNF-alpha-inducing protein inhibitors via daidzein derivatives through computational approaches. J Cell Mol Med 2024; 28:e18358. [PMID: 38693868 PMCID: PMC11063725 DOI: 10.1111/jcmm.18358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024] Open
Abstract
Gastric cancer is considered a class 1 carcinogen that is closely linked to infection with Helicobacter pylori (H. pylori), which affects over 1 million people each year. However, the major challenge to fight against H. pylori and its associated gastric cancer due to drug resistance. This research gap had led our research team to investigate a potential drug candidate targeting the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein. In this study, a total of 45 daidzein derivatives were investigated and the best 10 molecules were comprehensively investigated using in silico approaches for drug development, namely pass prediction, quantum calculations, molecular docking, molecular dynamics simulations, Lipinski rule evaluation, and prediction of pharmacokinetics. The molecular docking study was performed to evaluate the binding affinity between the target protein and the ligands. In addition, the stability of ligand-protein complexes was investigated by molecular dynamics simulations. Various parameters were analysed, including root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM). The results has confirmed that the ligand-protein complex CID: 129661094 (07) and 129664277 (08) formed stable interactions with the target protein. It was also found that CID: 129661094 (07) has greater hydrogen bond occupancy and stability, while the ligand-protein complex CID 129664277 (08) has greater conformational flexibility. Principal component analysis revealed that the ligand-protein complex CID: 129661094 (07) is more compact and stable. Hydrogen bond analysis revealed favourable interactions with the reported amino acid residues. Overall, this study suggests that daidzein derivatives in particular show promise as potential inhibitors of H. pylori.
Collapse
Affiliation(s)
- Jehad Zuhair Tayyeb
- Department of Clinical Biochemistry, College of MedicineUniversity of JeddahJeddahSaudi Arabia
| | - Shibam Mondal
- Pharmacy Discipline, School of Life SciencesKhulna UniversityKhulnaBangladesh
| | | | - Swapon Kumar
- Department of PharmacyJahangirnagar UniversitySavarBangladesh
| | - Imren Bayıl
- Department of Bioinformatics and Computational BiologyGaziantep UniversityGaziantepTurkey
| | - Shopnil Akash
- Department of PharmacyDaffodil International UniversityDhakaBangladesh
| | | | - Taha Alqahtani
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, College of ScienceImam Mohammad Ibn Saud Islamic UniversityRiyadhSaudi Arabia
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience CenterFederal University of Rio Grande do NorteNatalBrazil
| |
Collapse
|
2
|
Islam MR, Islam Sovon MS, Amena U, Rahman M, Hosen ME, Kumer A, Bourhia M, Bin Jardan YA, Ibenmoussa S, Wondmie GF. Ligand-based drug design against Herpes Simplex Virus-1 capsid protein by modification of limonene through in silico approaches. Sci Rep 2024; 14:9828. [PMID: 38684729 PMCID: PMC11058824 DOI: 10.1038/s41598-024-59577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
The pharmacological effects of limonene, especially their derivatives, are currently at the forefront of research for drug development and discovery as well and structure-based drug design using huge chemical libraries are already widespread in the early stages of therapeutic and drug development. Here, various limonene derivatives are studied computationally for their potential utilization against the capsid protein of Herpes Simplex Virus-1. Firstly, limonene derivatives were designed by structural modification followed by conducting a molecular docking experiment against the capsid protein of Herpes Simplex Virus-1. In this research, the obtained molecular docking score exhibited better efficiency against the capsid protein of Herpes Simplex Virus-1 and hence we conducted further in silico investigation including molecular dynamic simulation, quantum calculation, and ADMET analysis. Molecular docking experiment has documented that Ligands 02 and 03 had much better binding affinities (- 7.4 kcal/mol and - 7.1 kcal/mol) to capsid protein of Herpes Simplex Virus-1 than Standard Acyclovir (- 6.5 kcal/mol). Upon further investigation, the binding affinities of primary limonene were observed to be slightly poor. But including the various functional groups also increases the affinities and capacity to prevent viral infection of the capsid protein of Herpes Simplex Virus-1. Then, the molecular dynamic simulation confirmed that the mentioned ligands might be stable during the formation of drug-protein complexes. Finally, the analysis of ADMET was essential in establishing them as safe and human-useable prospective chemicals. According to the present findings, limonene derivatives might be a promising candidate against the capsid protein of Herpes Simplex Virus-1 which ultimately inhibits Herpes Simplex Virus-induced encephalitis that causes interventions in brain inflammation. Our findings suggested further experimental screening to determine their practical value and utility.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh, 1207
| | | | - Ummy Amena
- Department of Pharmacy, Faculty of Life & Earth Sciences, Jagannath University, Dhaka, Bangladesh
| | - Miadur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Md Eram Hosen
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ajoy Kumer
- Department of Chemistry, College of Arts and Sciences, International University of Business Agriculture and Technology (IUBAT), Dhaka, 1216, Bangladesh
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences in Saveetha Medical College and Hospital, Chennai, India
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, 34000, Montpellier, France
| | | |
Collapse
|
3
|
Farghaly TA, Pashameah RA, Bayazeed A, Al-Soliemy AM, Alsaedi AMR, Harras MF. Design and Synthesis of New bis-oxindole and Spiro(triazole-oxindole) as CDK4 Inhibitors with Potent Anti-breast Cancer Activity. Med Chem 2024; 20:63-77. [PMID: 37723960 DOI: 10.2174/1573406419666230810124855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Since CDKs have been demonstrated to be overexpressed in a wide spectrum of human malignancies, their inhibition has been cited as an effective technique for anticancer drug development. METHODS In this context, new bis-oxindole/spiro-triazole-oxindole anti-breast cancer drugs with potential CDK4 inhibitory effects were produced in this work. The novel series of bis-oxindole/spirotriazole- oxindole were synthesized from the reaction of bis-oxindole with the aniline derivatives then followed by 1,3-dipolar cycloaddition of hydrazonoyl chloride. RESULTS The structure of these bis-oxindole/spiro-triazole-oxindole series was proven based on their spectral analyses. Most bis-oxindole and bis-spiro-triazole-oxindole compounds effectively inhibited the growth of MCF-7 (IC50 = 2.81-17.61 μM) and MDA-MB-231 (IC50 = 3.23-7.98 μM) breast cancer cell lines with low inhibitory activity against normal WI-38 cells. While the reference doxorubicin showed IC50 values of 7.43 μM against MCF-7 and 5.71 μM against the MDA-MB-231 cell line. Additionally, compounds 3b, 3c, 6b, and 6d revealed significant anti-CDK4 activity (IC50 = 0.157- 0.618 μM) compared to palbociclib (IC50 = 0.071 μM). Subsequent mechanistic investigations demonstrated that 3c was able to trigger tumor cell death through the induction of apoptosis. Moreover, it stimulated cancer cell cycle arrest in the G1 phase. Furthermore, western blotting disclosed that the 3c-induced cell cycle arrest may be mediated through p21 upregulation. CONCLUSION According to all of the findings, bis-oxindole 3c shows promise as a cancer treatment targeting CDK4.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Rami A Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Abrar Bayazeed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Amerah M Al-Soliemy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Amani M R Alsaedi
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Marwa F Harras
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Akash S, Mahmood S, Ahamed R, Bayıl I, Dev Bairagi R, Islam MR, Hosen ME, de Lima Menezes G, S Almaary K, Nafidi HA, Bourhia M, Ouahmane L. Novel computational and drug design strategies for the inhibition of human T-cell leukemia virus 1-associated lymphoma by Astilbin derivatives. J Biomol Struct Dyn 2023:1-16. [PMID: 38131136 DOI: 10.1080/07391102.2023.2294376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Human T-cell leukemia virus 1 (HTLV-1) associated lymphoma is a devastating malignancy triggered by HTLV-1 infections. We employeda comprehensive drug design and computational strategy in this work to explore the inhibitory activitiesof Astilbin derivatives against HTLV-1-associated lymphoma. We evaluated the stability, binding affinities, and various computational analysis of Astilbin derivatives against target proteins, such as HTLV-1 main protease and HTLV-1 capsid protein. The root mean square deviation (RMSD), root mean square fluctuation, radius of gyration, hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM) were applied to characterize these protein-ligand interactions further. Ligand-03 and ligand-04 exhibited notable binding affinity to HTLV-1 capsid protein, while ligand-05 displayed high binding affinity to HTLV-1 protease. MD simulation analysis revealed that ligand-03, bound to HTLV-1 capsid protein, demonstrated enhanced stability with lower RMSD values and fewer conformational changes, suggesting a promising binding orientation. Ligand-04, despite stable binding, exhibited increased structural deviations, making it less suitable. Ligand-05 demonstrated stable binding to HTLV-1 protease throughout the simulation period at 100 nanoseconds. Hydrogen bond analysis indicated that ligand-05 formed persistent hydrogen bonds with significantresidues, contributing to its stability. PCA highlighted ligand-03's more remarkable conformational changes, while DCCM showed ligand-05's distinct dynamics, indicating its different behavior in the complex. Furthermore, binding free energy calculations supported the favorable interactions of ligand-03 and ligand-04 with HTLV-1 capsid protein, while ligand-05 showed weaker interactions with HTLV-1 protease. Molecular electrostatic potential and frontier molecular orbital analyses provided insights into these compounds' charge distribution and stability. In conclusion, this research found Astilbin derivatives as potential inhibitors of HTLV-1-associated lymphoma. Future attempts at drug development will benefit from the steady interaction landscape provided by Ligand-03, Ligand-04 and Ligand-05, which showed the most attractive binding profile with the target protein. These results open up new opportunities for innovative drug development, and more experimental testing should be done between Astilbin derivatives and HTLV-1-associated lymphoma.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International, University, Dhaka, Bangladesh
| | - Sajjat Mahmood
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Rashel Ahamed
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Imren Bayıl
- Department of Bioinformatics and Computational Biology, Gaziantep University, Turkey
| | - Rahul Dev Bairagi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International, University, Dhaka, Bangladesh
| | - Md Eram Hosen
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Gabriela de Lima Menezes
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Lahcen Ouahmane
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Labeled Research Unit-CNRSTN°4, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
5
|
Dorafshan Tabatabai AS, Dehghanian E, Mansouri-Torshizi H. Exploring the Interaction Between the Newly Designed Antitumor Zn(II) Complex and CT-DNA/BSA: Spectroscopic Methods, DFT Computational Analysis, and Docking Simulation. Appl Biochem Biotechnol 2023; 195:6276-6308. [PMID: 36856984 DOI: 10.1007/s12010-023-04394-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
A new zinc(II) complex formulated as [Zn(pipr-ac)2], where pipr-ac stands for piperidineacetate, was synthesized and structurally identified with the help of experimental and DFT methods. Frontier molecular orbital (FMO) analysis demonstrated that the new complex has higher biological activity compared to the free ligand. Molecular electrostatic potential (MEP) showed the nitrogen atoms and oxygen of carbonyl groups are the active sites of Zn(II) compound. Also, natural bond orbital (NBO) analysis confirmed the charge transfer from the ligating atoms to the metal ion and formation of four coordinated Zn(II) complex. MTT assay illustrated a noticeable cytotoxic activity of the new zinc(II) complex compared to cisplatin on K562 cell line. The CT-DNA and serum albumin (SA) binding of the Zn(II) complex were explored individually. In this regard, UV-Vis spectroscopy and florescence titration revealed the occurrences of fluorescence quenching of CT-DNA/SA by metal compound via static mechanism and creation of hydrogen bonds and van der Waals interactions between them. The binding was further confirmed by viscosity measurement and gel electrophoresis assay for CT-DNA and circular dichroism spectroscopy for SA. Moreover, molecular docking simulation demonstrated that the new compound binds mainly through hydrogen bonds to the groove of DNA and hydrogen bonds and van der Waals interactions to site I of SA.
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
6
|
Ravisankar N, Sarathi N, Maruthavanan T, Ramasundaram S, Ramesh M, Sankar C, Umamatheswari S, Kanthimathi G, Oh TH. Synthesis, antimycobacterial screening, molecular docking, ADMET prediction and pharmacological evaluation on novel pyran-4-one bearing hydrazone, triazole and isoxazole moieties: Potential inhibitors of SARS CoV-2. J Mol Struct 2023; 1285:135461. [PMID: 37041803 PMCID: PMC10062711 DOI: 10.1016/j.molstruc.2023.135461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
The respiratory infection tuberculosis is caused by the bacteria Mycobacterium tuberculosis and its unrelenting spread caused millions of deaths around the world. Hence, it is needed to explore potential and less toxic anti-tubercular drugs. In the present work, we report the synthesis and antitubercular activity of four different (hydrazones 7-12, O-ethynyl oximes 19-24, triazoles 25-30, and isoxazoles 31-36) hybrids. Among these hybrids 9, 10, 33, and 34, displayed high antitubercular activity at 3.12 g/mL with >90% of inhibitions. The hybrids also showed good docking energies between -6.8 and -7.8 kcal/mol. Further, most active molecules were assayed for their DNA gyrase reduction ability towards M. tuberculosis and E.coli DNA gyrase by the DNA supercoiling and ATPase gyrase assay methods. All four hybrids showed good IC50 values comparable to that of the reference drug. In addition, the targets were also predicted as a potential binder for papain-like protease (SARS CoV-2 PLpro) by molecular docking and a good interaction result was observed. Besides, all targets were predicted for their absorption, distribution, metabolism, and excretion - toxicity (ADMET) profile and found a significant amount of ADMET and bioavailability.
Collapse
Affiliation(s)
- N Ravisankar
- Department of Chemistry, Veltech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai 600 062, India
| | - N Sarathi
- Department of Chemistry, GRT Institute of Engineering and Technology (Affiliated to Anna University), Tiruttani 631 209, Tamil Nadu, India
| | - T Maruthavanan
- Department of Chemistry, SONASTARCH, Sona College of Technology, Salem 636005, Tamil Nadu, India
| | | | - M Ramesh
- Department of Chemistry, Govt. Arts College, Tiruchirappalli, Tamil Nadu 620 022, India
| | - C Sankar
- Department of Chemistry, SRM TRP Engineering College, Tiruchirappalli, Tamil Nadu 621 105, India
| | - S Umamatheswari
- Department of Chemistry, Govt. Arts College, Tiruchirappalli, Tamil Nadu 620 022, India
| | - G Kanthimathi
- Department of Chemistry, Ramco Institue of Technology, Rajapalayam, Tamil Nadu 626 117, India
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38436, Republic of Korea
| |
Collapse
|
7
|
Optimizing the Sunitinib for cardio-toxicity and thyro-toxicity by scaffold hopping approach. In Silico Pharmacol 2022; 10:10. [PMID: 35791431 DOI: 10.1007/s40203-022-00125-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/16/2022] [Indexed: 10/17/2022] Open
Abstract
Sunitinib is a potent anti-cancer scaffold that acts as a VEGFR-2 inhibitor. Although the scaffold exhibits potent anti-cancer activity, it is cardiotoxic and also induces hypothyroidism. The current research aims to optimize the Sunitinib for cardio-toxicity and thyro-toxicity by scaffold hopping approach using the admetSAR server. The server has optimized the physico-chemical properties of Sunitinib, which were contributing to the cardiotoxicity and thyro-toxicity. The library of the optimized compounds was further screened by the molecular docking studies and results were validated by the MD simulation and DFT analysis for VEGFR-2 inhibition. Compounds 163 and 432 exhibited the highest affinity to VEGFR-2 receptor with minimal cardiotoxicity and thyro-toxicity. These two compounds could be the starting point for the further discovery of angiogenic inhibitors. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-022-00125-1.
Collapse
|
8
|
Coşar ED, Dincel ED, Demiray S, Sucularlı E, Tüccaroğlu E, Özsoy N, Ulusoy-Güzeldemirci N. Anticholinesterase activities of novel indole-based hydrazide-hydrazone derivatives: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Elkaeed EB, Salam HAAE, Sabt A, Al-Ansary GH, Eldehna WM. Recent Advancements in the Development of Anti-Breast Cancer Synthetic Small Molecules. Molecules 2021; 26:7611. [PMID: 34946704 PMCID: PMC8709016 DOI: 10.3390/molecules26247611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Among all cancer types, breast cancer (BC) still stands as one of the most serious diseases responsible for a large number of cancer-associated deaths among women worldwide, and diagnosed cases are increasing year by year worldwide. For a very long time, hormonal therapy, surgery, chemotherapy, and radiotherapy were used for breast cancer treatment. However, these treatment approaches are becoming progressively futile because of multidrug resistance and serious side effects. Consequently, there is a pressing demand to develop more efficient and safer agents that can fight breast cancer belligerence and inhibit cancer cell proliferation, invasion and metastasis. Currently, there is an avalanche of newly designed and synthesized molecular entities targeting multiple types of breast cancer. This review highlights several important synthesized compounds with promising anti-BC activity that are categorized according to their chemical structures.
Collapse
Affiliation(s)
- Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia;
| | | | - Ahmed Sabt
- Chemistry of Natural Compounds Department, National Research Center, Dokki, Cairo 12622, Egypt;
| | - Ghada H. Al-Ansary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
10
|
Dincel ED, Hasbal-Celikok G, Yilmaz-Ozden T, Ulusoy-Güzeldemirci N. Design, biological evaluation, molecular docking study and in silico ADME prediction of novel imidazo[2,1-b]thiazole derivatives as a novel class of α-glucosidase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Chauhan G, Pathak DP, Ali F, Dubey P, Khasimbi S. In vitro Evaluation of Isatin derivatives as Potent Anti-Breast Cancer Agents against MCF-7, MDA MB 231, MDA-MB 435 and MDA-MB 468 Breast Cancers cell lines: A Review. Anticancer Agents Med Chem 2021; 22:1883-1896. [PMID: 34477529 DOI: 10.2174/1871520621666210903130152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Breast cancer (BC) is one of the most frequent malignancy and most common reasons of impermanence in women. The backbone of therapy for BC is principally chemotherapy, but due to its non-specific nature between normal cells and cancer cells and severe side effects are the main barriers in its therapy. So, there is an intense requirement for the enlargement of more efficacious, more specific and safer anti-BC agents. OBJECTIVE Isatin (IST) is an endogenous molecule which is a principal class of heterocyclic compounds and exhibits a wide range of therapeutic activities which can be used as a starting material for the synthesis of several drug molecules. Many literatures were reported previously on different pharmacological activities of IST derivatives and particularly on anticancer activity but this review mainly focus on anti-BC activities of IST derivatives through MCF-7, MDA MB 231, MDA-MB 435 and MDA-MB 468 cell lines. Here in we mentioned, a total 33 IST derivatives (compound 24- 56) which shown good anti-BC activity. IST derived compounds are also available in market and are used for various cancer types like sunitinib for renal cell carcinoma (RCC) and Nintedanib used for the cryptogenic fibrosing alveolitis treatment but when evaluated for BC did not get much success. CONCLUSION This review mainly highlights anti-BC activities of various IST analogues using MCF-7, MDA MB 231, MDA-MB 435 and MDA-MB 468 cell lines, display the potent compound of the series and structure-activity relationships of compounds with molecular docking also. So, this study mainly shows the importance of IST as major sources for drug design and development of newer anti-BC drugs.
Collapse
Affiliation(s)
- Garima Chauhan
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector 3, Pushp Vihar, New Delhi, Delhi 110017, India
| | - Dharam Pal Pathak
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector 3, Pushp Vihar, New Delhi, Delhi 110017, India
| | - Faraat Ali
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector 3, Pushp Vihar, New Delhi, Delhi 110017, India
| | - Pragya Dubey
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector 3, Pushp Vihar, New Delhi, Delhi 110017, India
| | - Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector 3, Pushp Vihar, New Delhi, Delhi 110017, India
| |
Collapse
|
12
|
Nandini Asha R, Ravindran Durai Nayagam B, Bhuvanesh N. Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2. Bioorg Chem 2021; 112:104967. [PMID: 33975232 PMCID: PMC8096530 DOI: 10.1016/j.bioorg.2021.104967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 11/26/2022]
Abstract
Nowadays, over 200 countries face a wellbeing emergency because of epidemiological disease COVID-19 caused by the SARS-CoV-2 virus. It will cause a very high effect on the world's economy and the worldwide health sector. The present work is an investigation of the newly synthesized 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine (M1BZP) molecule's inhibitory potential against important protein targets of SARS-CoV-2 using computational approaches. M1BZP crystallizes in monoclinic type with P1211 space group. For the title compound M1BZP, spectroscopic characterization like 1H NMR, 13C NMR, FTIR, were carried out. The geometry of the compound had been optimized by the DFT method and its results were compared with the X-ray diffraction data. The calculated energies for the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) showed the stability and reactivity of the title compound. Intermolecular interactions in the crystal network were determined using Hirshfeld surface analyses. The molecular electrostatic potential (MEP) picture was drawn using the same level of theory to visualize the chemical reactivity and charge distribution on the molecule. Molecular docking study performed for the synthesized compound revealed an efficient interaction with the COVID-19 protease and resulted in good activities. We hope the present study would help workers in the field to develop potential vaccines and therapeutics against the novel coronavirus. Virtual ADME studies were carried out as well and a relationship between biological, electronic, and physicochemical qualifications of the target compound was determined. Toxicity prediction by computational technique for the title compound was also carried out.
Collapse
Affiliation(s)
- R Nandini Asha
- Department of Chemistry and Research Centre, Pope's College (Autonomous), Sawyerpuram-628251, Affiliated to Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India.
| | - B Ravindran Durai Nayagam
- Department of Chemistry and Research Centre, Pope's College (Autonomous), Sawyerpuram-628251, Affiliated to Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India.
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| |
Collapse
|
13
|
Dincel ED, Gürsoy E, Yilmaz-Ozden T, Ulusoy-Güzeldemirci N. Antioxidant activity of novel imidazo[2,1-b]thiazole derivatives: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. Bioorg Chem 2020; 103:104220. [DOI: 10.1016/j.bioorg.2020.104220] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
|
14
|
Kumar D, Sharma S, Kalra S, Singh G, Monga V, Kumar B. Medicinal Perspective of Indole Derivatives: Recent Developments and Structure-Activity Relationship Studies. Curr Drug Targets 2020; 21:864-891. [DOI: 10.2174/1389450121666200310115327] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/22/2022]
Abstract
Heterocyclic compounds play a significant role in various biological processes of the human
body and many of them are in clinical use due to their diverse, chemical and biological properties.
Among these, indole is one of the most promising pharmacologically active molecules. Due to its
chemical reactivity, indole has been willingly modified to obtain a variety of new lead molecules,
which has been successfully utilized to obtained novel drug candidates for the treatment of different
pharmacological diseases. Indole-based compounds such as vincristine (anticancer), reserpine (antihypertensive),
amedalin (antidepressant) and many more describe the medicinal and pharmacological
importance of the indole in uplifting human life. In this review, we compiled various reports on indole
derivatives and their biological significance, including antifungal, antiprotozoal, antiplatelet, anti-
Alzheimer’s, anti-Parkinson’s, antioxidant and anticancer potential from 2015 onwards. In addition,
structure-activity relationship studies of the different derivatives have been included. We have also
discussed novel synthetic strategies developed during this period for the synthesis of different indole
derivatives. We believe that this review article will provide comprehensive knowledge about the medicinal
importance of indoles and will help in the design and synthesis of novel indole-based molecules
with high potency and efficacy.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Sahil Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Sourav Kalra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
15
|
Kaur K, Jaitak V. Recent Development in Indole Derivatives as Anticancer Agents for Breast Cancer. Anticancer Agents Med Chem 2020; 19:962-983. [PMID: 30864529 DOI: 10.2174/1871520619666190312125602] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Breast Cancer (BC) is the second most common cause of cancer related deaths in women. Due to severe side effects and multidrug resistance, current therapies like hormonal therapy, surgery, radiotherapy and chemotherapy become ineffective. Also, the existing drugs for BC treatment are associated with several drawbacks such as poor oral bioavailability, non-selectivity and poor pharmacodynamics properties. Therefore, there is an urgent need for the development of more effective and safer anti BC agents. OBJECTIVE This article explored in detail the possibilities of indole-based heterocyclic compounds as anticancer agents with breast cancer as their major target. METHODS Recent literature related to indole derivatives endowed with encouraging anti BC potential is reviewed. With special focus on BC, this review offers a detailed account of multiple mechanisms of action of various indole derivatives: aromatase inhibitor, tubulin inhibitor, microtubule inhibitor, targeting estrogen receptor, DNA-binding mechanism, induction of apoptosis, inhibition of PI3K/AkT/NFkB/mTOR, and HDAC inhibitors, by which these derivatives have shown promising anticancer potential. RESULTS Exhaustive literature survey indicated that indole derivatives are associated with properties of inducing apoptosis and disturbing tubulin assembly. Indoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogen-mediated activity. Furthermore, indole derivatives have been found to modulate critical targets such as topoisomerase and HDAC. These derivatives have shown significant activity against breast cancer cells. CONCLUSION In BC, indole derivatives seem to be quite competent and act through various mechanisms that are well established in case of BC. This review has shown that indole derivatives can further be explored for the betterment of BC chemotherapy. A lot of potential is still hidden which demands to be discovered for upgrading BC chemotherapy.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda (Pb) -151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda (Pb) -151001, India
| |
Collapse
|
16
|
Ding Z, Zhou M, Zeng C. Recent advances in isatin hybrids as potential anticancer agents. Arch Pharm (Weinheim) 2020; 353:e1900367. [PMID: 31960987 DOI: 10.1002/ardp.201900367] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 11/06/2022]
Abstract
The isatin framework is a useful template for the development of novel anticancer agents. This is exemplified by the fact that several isatin-based anticancer agents, such as semaxanib, sunitinib, nintedanib, and hesperadin, are already in use or under clinical trials for the treatment of diverse kinds of cancers. Isatin-based hybrids could be obtained by incorporating other anticancer pharmacophores into the isatin skeleton and they have the potential to overcome drug resistance with reduced side effects. Thus, isatin-based hybrids may provide attractive scaffolds for the development of novel anticancer agents. This review covers the recent advances of isatin-based hybrids with anticancer activity, covering articles published between 2001 and 2019. The anticancer activities of these molecules and the structure-activity relationships are also discussed. The purpose of this review article is to set up the direction for the design and development of isatin-based hybrids with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Zhen Ding
- Department of Pharmacy, Bozhou People's Hospital, Bozhou, China
| | - Minfeng Zhou
- Department of General Practice, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Cheng Zeng
- Department of Pharmacy, Bozhou People's Hospital, Bozhou, China
| |
Collapse
|
17
|
Varun, Sonam, Kakkar R. Isatin and its derivatives: a survey of recent syntheses, reactions, and applications. MEDCHEMCOMM 2019; 10:351-368. [PMID: 30996856 PMCID: PMC6438150 DOI: 10.1039/c8md00585k] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023]
Abstract
Isatin (1H-indole-2,3-dione) and its derivatives represent an important class of heterocyclic compounds that can be used as precursors for drug synthesis. Since its discovery, a lot of research work has been done regarding the synthesis, chemical properties, and biological and industrial applications of isatin. In this review, we have reported several novel methods for the synthesis of N-, C2-, and C3-substituted and spiro derivatives of isatin. The isatin moiety also shows important chemical reactions such as oxidation, ring expansion, Friedel-Crafts reaction and aldol condensation. These reactions, in turn, produce several biologically viable compounds like 2-oxindoles, tryptanthrin, indirubins, and many more. We have also summarized some recently reported biological activities exhibited by isatin derivatives, like anti-cancer, anti-bacterial, anti-diabetic and others. Special attention has been paid to their anti-cancer activity, and various anti-cancer targets such as histone deacetylase, carbonic anhydrase, tyrosine kinase, and tubulin have been discussed in detail. Other applications of isatin derivatives, such as in the dye industry and in corrosion prevention, have also been discussed.
Collapse
Affiliation(s)
- Varun
- Department of Chemistry , University of Delhi , India .
| | - Sonam
- Department of Chemistry , University of Delhi , India .
| | - Rita Kakkar
- Department of Chemistry , University of Delhi , India .
| |
Collapse
|
18
|
Liu J, Ming B, Gong GH, Wang D, Bao GL, Yu LJ. Current research on anti-breast cancer synthetic compounds. RSC Adv 2018. [DOI: 10.1039/c7ra12912b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is the most common cancer for females and its incidence tends to increase year by year.
Collapse
Affiliation(s)
- Jia Liu
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Bian Ming
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Guo-Hua Gong
- First Clinical Medical of Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
| | - Di Wang
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Gui-Lan Bao
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Li-Jun Yu
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| |
Collapse
|
19
|
Rudrapal M, Chetia D, Singh V. Novel series of 1,2,4-trioxane derivatives as antimalarial agents. J Enzyme Inhib Med Chem 2017; 32:1159-1173. [PMID: 28870093 PMCID: PMC6009891 DOI: 10.1080/14756366.2017.1363742] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Among three series of 1,2,4-trioxane derivatives, five compounds showed good in vitro antimalarial activity, three compounds of which exhibited better activity against P. falciparum resistant (RKL9) strain than the sensitive (3D7) one. Two best compounds were one from aryl series and the other from heteroaryl series with IC50 values of 1.24 µM and 1.24 µM and 1.06 µM and 1.17 µM, against sensitive and resistant strains, respectively. Further, trioxane derivatives exhibited good binding affinity for the P. falciparum cysteine protease falcipain 2 receptor (PDB id: 3BPF) with well defined drug-like and pharmacokinetic properties based on Lipinski's rule of five with additional physicochemical and ADMET parameters. In view of having antimalarial potential, 1,2,4-trioxane derivative(s) reported herein may be useful as novel antimalarial lead(s) in the discovery and development of future antimalarial drug candidates as P. falciparum falcipain 2 inhibitors against resistant malaria.
Collapse
Affiliation(s)
- Mithun Rudrapal
- a Department of Pharmaceutical Sciences , Dibrugarh University , Dibrugarh , India
| | - Dipak Chetia
- a Department of Pharmaceutical Sciences , Dibrugarh University , Dibrugarh , India
| | - Vineeta Singh
- b Parasite Bank, National Institute of Malaria Research (ICMR) , Sector 8 , Dwarka , New Delhi , India
| |
Collapse
|
20
|
|