1
|
Lee HS, Han JE, Bae EK, Jie EY, Kim SW, Kwon HJ, Lee HS, Yeon SH, Murthy HN, Park SY. Response surface methodology mediated optimization of phytosulfokine and plant growth regulators for enhanced protoplast division, callus induction, and somatic embryogenesis in Angelica Gigas Nakai. BMC PLANT BIOLOGY 2024; 24:527. [PMID: 38858674 PMCID: PMC11165744 DOI: 10.1186/s12870-024-05243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Angelica Gigas (Purple parsnip) is an important medicinal plant that is cultivated and utilized in Korea, Japan, and China. It contains bioactive substances especially coumarins with anti-inflammatory, anti-platelet aggregation, anti-cancer, anti-diabetic, antimicrobial, anti-obesity, anti-oxidant, immunomodulatory, and neuroprotective properties. This medicinal crop can be genetically improved, and the metabolites can be obtained by embryonic stem cells. In this context, we established the protoplast-to-plant regeneration methodology in Angelica gigas. RESULTS In the present investigation, we isolated the protoplast from the embryogenic callus by applying methods that we have developed earlier and established protoplast cultures using Murashige and Skoog (MS) liquid medium and by embedding the protoplast in thin alginate layer (TAL) methods. We supplemented the culture medium with growth regulators namely 2,4-dichlorophenoxyaceticacid (2,4-D, 0, 0.75, 1.5 mg L- 1), kinetin (KN, 0, 0.5, and 1.0 mg L- 1) and phytosulfokine (PSK, 0, 50, 100 nM) to induce protoplast division, microcolony formation, and embryogenic callus regeneration. We applied central composite design (CCD) and response surface methodology (RSM) for the optimization of 2,4-D, KN, and PSK levels during protoplast division, micro-callus formation, and induction of embryogenic callus stages. The results revealed that 0.04 mg L- 1 2,4-D + 0.5 mg L- 1 KN + 2 nM PSK, 0.5 mg L- 1 2,4-D + 0.9 mg L- 1 KN and 90 nM PSK, and 1.5 mg L- 1 2,4-D and 1 mg L- 1 KN were optimum for protoplast division, micro-callus formation and induction embryogenic callus. MS basal semi-solid medium without growth regulators was good for the development of embryos and plant regeneration. CONCLUSIONS This study demonstrated successful protoplast culture, protoplast division, micro-callus formation, induction embryogenic callus, somatic embryogenesis, and plant regeneration in A. gigas. The methodologies developed here are quite useful for the genetic improvement of this important medicinal plant.
Collapse
Affiliation(s)
- Han-Sol Lee
- Department of Horticultural Science, Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jong-Eun Han
- Department of Horticultural Science, Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Eun-Kyung Bae
- Department of Forest Bioresources, National Institute of Forest Science, 39 Onjeong-ro, Suwon, 16631, Republic of Korea
| | - Eun Yee Jie
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Suk Weon Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea.
| | - Hyuk Joon Kwon
- Food Science R&D Center, Kolmar BNH Co., Seocho-gu, Seoul, 30003, Republic of Korea
| | - Hak Sung Lee
- Food Science R&D Center, Kolmar BNH Co., Seocho-gu, Seoul, 30003, Republic of Korea
| | - Soo-Ho Yeon
- Food Science R&D Center, Kolmar BNH Co., Seocho-gu, Seoul, 30003, Republic of Korea
| | - Hosakatte Niranjana Murthy
- Department of Horticultural Science, Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
- Department of Botany, Karnatak University, Dharwad, 580003, India
- Department of Biotechnology, KLE Technological University, Hubballi, 580039, India
| | - So-Young Park
- Department of Horticultural Science, Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
2
|
Jeong YY, Noh YS, Kim SW, Seo PJ. Efficient regeneration of protoplasts from Solanum lycopersicum cultivar Micro-Tom. Biol Methods Protoc 2024; 9:bpae008. [PMID: 38414647 PMCID: PMC10898868 DOI: 10.1093/biomethods/bpae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
Protoplast regeneration has become a key platform for genetic and genome engineering. However, we lack reliable and reproducible methods for efficient protoplast regeneration for tomato (Solanum lycopersicum) cultivars. Here, we optimized cell and tissue culture methods for protoplast isolation, microcallus proliferation, shoot regeneration, and plantlet establishment of the tomato cultivar Micro-Tom. A thin layer of alginate was applied to protoplasts isolated from third to fourth true leaves and cultured at an optimal density of 1 × 105 protoplasts/ml. We determined the optimal culture media for protoplast proliferation, callus formation, de novo shoot regeneration, and root regeneration. Regenerated plantlets exhibited morphologically normal growth and sexual reproduction. The entire regeneration process, from protoplasts to flowering plants, was accomplished within 5 months. The optimized protoplast regeneration platform enables biotechnological applications, such as genome engineering, as well as basic research on plant regeneration in Solanaceae species.
Collapse
Affiliation(s)
- Yeong Yeop Jeong
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yoo-Sun Noh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Suk Weon Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
3
|
Neubauer A, Ruaud S, Waller M, Frangedakis E, Li F, Nötzold SI, Wicke S, Bailly A, Szövényi P. Step-by-step protocol for the isolation and transient transformation of hornwort protoplasts. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11456. [PMID: 35495192 PMCID: PMC9039799 DOI: 10.1002/aps3.11456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/23/2021] [Indexed: 05/15/2023]
Abstract
PREMISE A detailed protocol for the protoplast transformation of hornwort tissue is not yet available, limiting molecular biological investigations of these plants and comparative analyses with other bryophytes, which display a gametophyte-dominant life cycle and are critical to understanding the evolution of key land plant traits. METHODS AND RESULTS We describe a detailed protocol to isolate and transiently transform protoplasts of the model hornwort Anthoceros agrestis. The digestion of liquid cultures with Driselase yields a high number of viable protoplasts suitable for polyethylene glycol (PEG)-mediated transformation. We also report early signs of protoplast regeneration, such as chloroplast division and cell wall reconstitution. CONCLUSIONS This protocol represents a straightforward method for isolating and transforming A. agrestis protoplasts that is less laborious than previously described approaches. In combination with the recently developed stable genome transformation technique, this work further expands the prospects of functional studies in this model hornwort.
Collapse
Affiliation(s)
- Anna Neubauer
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
- Zurich‐Basel Plant Science CenterZurichSwitzerland
| | - Stéphanie Ruaud
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
- Zurich‐Basel Plant Science CenterZurichSwitzerland
| | - Manuel Waller
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
- Zurich‐Basel Plant Science CenterZurichSwitzerland
| | | | - Fay‐Wei Li
- Boyce Thompson InstituteIthacaNew YorkUSA
- Plant Biology SectionCornell UniversityIthacaNew YorkUSA
| | | | - Susann Wicke
- Institute for BiologyHumboldt University of BerlinBerlinGermany
- Späth‐ArboretumHumboldt University of BerlinBerlinGermany
| | - Aurélien Bailly
- Zurich‐Basel Plant Science CenterZurichSwitzerland
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Péter Szövényi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
- Zurich‐Basel Plant Science CenterZurichSwitzerland
| |
Collapse
|
4
|
Jeong YY, Lee HY, Kim SW, Noh YS, Seo PJ. Optimization of protoplast regeneration in the model plant Arabidopsis thaliana. PLANT METHODS 2021; 17:21. [PMID: 33622383 PMCID: PMC7901198 DOI: 10.1186/s13007-021-00720-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/08/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Plants have a remarkable reprogramming potential, which facilitates plant regeneration, especially from a single cell. Protoplasts have the ability to form a cell wall and undergo cell division, allowing whole plant regeneration. With the growing need for protoplast regeneration in genetic engineering and genome editing, fundamental studies that enhance our understanding of cell cycle re-entry, pluripotency acquisition, and de novo tissue regeneration are essential. To conduct these studies, a reproducible and efficient protoplast regeneration method using model plants is necessary. RESULTS Here, we optimized cell and tissue culture methods for improving protoplast regeneration efficiency in Arabidopsis thaliana. Protoplasts were isolated from whole seedlings of four different Arabidopsis ecotypes including Columbia (Col-0), Wassilewskija (Ws-2), Nossen (No-0), and HR (HR-10). Among these ecotypes, Ws-2 showed the highest potential for protoplast regeneration. A modified thin alginate layer was applied to the protoplast culture at an optimal density of 1 × 106 protoplasts/mL. Following callus formation and de novo shoot regeneration, the regenerated inflorescence stems were used for de novo root organogenesis. The entire protoplast regeneration process was completed within 15 weeks. The in vitro regenerated plants were fertile and produced morphologically normal progenies. CONCLUSION The cell and tissue culture system optimized in this study for protoplast regeneration is efficient and reproducible. This method of Arabidopsis protoplast regeneration can be used for fundamental studies on pluripotency establishment and de novo tissue regeneration.
Collapse
Affiliation(s)
- Yeong Yeop Jeong
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hun-Young Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Suk Weon Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Korea
| | - Yoo-Sun Noh
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
5
|
Lei R, Qiao W, Hu F, Jiang H, Zhu S. A simple and effective method to encapsulate tobacco mesophyll protoplasts to maintain cell viability. MethodsX 2014; 2:24-32. [PMID: 26150968 PMCID: PMC4487327 DOI: 10.1016/j.mex.2014.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/27/2014] [Indexed: 11/15/2022] Open
Abstract
Protoplasts have been widely used for genetic transformation, cell fusion, and somatic mutation due to the absence of a cell wall. However, without the protection of a cell wall, protoplasts are easy to rupture and aggregate during washing, collecting, and gene transfection. In this work, we propose a simple and effective silica/alginate two-step method to immobilize protoplasts with advantages in experimental manipulation and microscopic imaging, as well as in potentially studying cell biological processes such as secretion and metabolism. The proposed two-step immobilization method adopts Transwell with clear tissue culture-treated membrane to support protoplasts in the form of uniform thin layer, which has three unique properties. The tissue culture-treated membrane has a good affinity for the plant cell; thus, protoplasts can spread evenly and form a very thin layer. There are more choices for membrane pore size, depending on the application. It is very convenient to change or collect the solution without mechanically disturbing the protoplasts. This simple and effective silica sol–gel/alginate two-step immobilization of protoplasts in Transwell has great potential for applications in genetic transformation, metabolite production, and migration assays.
Collapse
Affiliation(s)
- Rong Lei
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Wenjie Qiao
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China ; Department of Entomology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fan Hu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Hongshan Jiang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Shuifang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
6
|
Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J. Progress in plant protoplast research. PLANTA 2013; 238:991-1003. [PMID: 23955146 DOI: 10.1007/s00425-013-1936-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
In this review we focus on recent progress in protoplast regeneration, symmetric and asymmetric hybridization and novel technology developments. Regeneration of new species and improved culture techniques opened new horizons for practical breeding in a number of crops. The importance of protoplast sources and embedding systems is discussed. The study of reactive oxygen species effects and DNA (de)condensation, along with thorough phytohormone monitoring, are in our opinion the most promising research topics in the further strive for rationalization of protoplast regeneration. Following, fusion and fragmentation progress is summarized. Genomic, transcriptomic and proteomic studies have led to better insights in fundamental processes such as cell wall formation, cell development and chromosome rearrangements in fusion products, whether or not obtained after irradiation. Advanced molecular screening methods of both genome and cytoplasmome facilitate efficient screening of both symmetric and asymmetric fusion products. We expect that emerging technologies as GISH, high resolution melting and next generation sequencing will pay major contributions to our insights of genome creation and stabilization, mainly after asymmetric hybridization. Finally, we demonstrate agricultural valorization of somatic hybridization through enumerating recent introgression of diverse traits in a number of commercial crops.
Collapse
Affiliation(s)
- Tom Eeckhaut
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium.
| | - Prabhu Shankar Lakshmanan
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Dieter Deryckere
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium
| | - Erik Van Bockstaele
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Johan Van Huylenbroeck
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090, Melle, Belgium
| |
Collapse
|
7
|
Kiełkowska A, Adamus A. An alginate-layer technique for culture of Brassica oleracea L. protoplasts. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2012; 48:265-273. [PMID: 22593638 PMCID: PMC3337407 DOI: 10.1007/s11627-012-9431-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/03/2012] [Indexed: 05/05/2023]
Abstract
Ten accessions belonging to the Brassica oleracea subspecies alba and rubra, and to B. oleracea var. sabauda were used in this study. Protoplasts were isolated from leaves and hypocotyls of in vitro grown plants. The influence of selected factors on the yield, viability, and mitotic activity of protoplasts immobilized in calcium alginate layers was investigated. The efficiency of protoplast isolation from hypocotyls was lower (0.7 ± 0.1 × 10(6) ml(-1)) than for protoplasts isolated from leaf mesophyll tissue (2 ± 0.1 × 10(6) ml(-1)). High (70-90%) viabilities of immobilized protoplasts were recorded, independent of the explant sources. The highest proportion of protoplasts undergoing divisions was noted for cv. Reball F1, both from mesophyll (29.8 ± 2.2%) and hypocotyl (17.5 ± 0.3%) tissues. Developed colonies of callus tissue were subjected to regeneration and as a result plants from six accessions were obtained.
Collapse
Affiliation(s)
- Agnieszka Kiełkowska
- Department of Genetics, Plant Breeding and Seed Science, University of Agriculture in Krakow, Al. 29-Listopada 54, 31-425 Krakow, Poland
| | - Adela Adamus
- Department of Genetics, Plant Breeding and Seed Science, University of Agriculture in Krakow, Al. 29-Listopada 54, 31-425 Krakow, Poland
| |
Collapse
|
8
|
Patel D, Power JB, Anthony P, Badakshi F, (Pat) Heslop-Harrison JS, Davey MR. Somatic hybrid plants of Nicotiana x sanderae (+) N. debneyi with fungal resistance to Peronospora tabacina. ANNALS OF BOTANY 2011; 108:809-19. [PMID: 21880657 PMCID: PMC3177675 DOI: 10.1093/aob/mcr197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/16/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS The genus Nicotiana includes diploid and tetraploid species, with complementary ecological, agronomic and commercial characteristics. The species are of economic value for tobacco, as ornamentals, and for secondary plant-product biosynthesis. They show substantial differences in disease resistance because of their range of secondary products. In the last decade, sexual hybridization and transgenic technologies have tended to eclipse protoplast fusion for gene transfer. Somatic hybridization was exploited in the present investigation to generate a new hybrid combination involving two sexually incompatible tetraploid species. The somatic hybrid plants were characterized using molecular, molecular cytogenetic and phenotypic approaches. METHODS Mesophyll protoplasts of the wild fungus-resistant species N. debneyi (2n = 4x = 48) were electrofused with those of the ornamental interspecific sexual hybrid N. × sanderae (2n = 2x = 18). From 1570 protoplast-derived cell colonies selected manually in five experiments, 580 tissues were sub-cultured to shoot regeneration medium. Regenerated plants were transferred to the glasshouse and screened for their morphology, chromosomal composition and disease resistance. KEY RESULTS Eighty-nine regenerated plants flowered; five were confirmed as somatic hybrids by their intermediate morphology compared with parental plants, cytological constitution and DNA-marker analysis. Somatic hybrid plants had chromosome complements of 60 or 62. Chromosomes were identified to parental genomes by genomic in situ hybridization and included all 18 chromosomes from N. × sanderae, and 42 or 44 chromosomes from N. debneyi. Four or six chromosomes of one ancestral genome of N. debneyi were eliminated during culture of electrofusion-treated protoplasts and plant regeneration. Both chloroplasts and mitochondria of the somatic hybrid plants were probably derived from N. debneyi. All somatic hybrid plants were fertile. In contrast to parental plants of N. × sanderae, the seed progeny of somatic hybrid plants were resistant to infection by Peronospora tabacina, a trait introgressed from the wild parent, N. debneyi. CONCLUSIONS Sexual incompatibility between N. × sanderae and N. debneyi was circumvented by somatic hybridization involving protoplast fusion. Asymmetrical nuclear hybridity was seen in the hybrids with loss of chromosomes, although importantly, somatic hybrids were fertile and stable. Expression of fungal resistance makes these somatic hybrids extremely valuable germplasm in future breeding programmes in ornamental tobacco.
Collapse
Affiliation(s)
- Deval Patel
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - J. Brian Power
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Paul Anthony
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Farah Badakshi
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | - Michael R. Davey
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
9
|
Sun H, Aidun CK, Egertsdotter U. Effects from shear stress on morphology and growth of early stages of Norway spruce somatic embryos. Biotechnol Bioeng 2010; 105:588-99. [PMID: 19787637 DOI: 10.1002/bit.22554] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The shear stress effect on directional expansion of pro embryogenic masses (PEMs) and suspensor cell development of somatic embryos of Norway spruce (Picea abies) at the proliferation stage was studied by a direct and quantitative image analysis system. The experimental system allowed for detailed observations of the effect of hydrodynamic shear stress in rotating and deforming liquid cultures of proliferating Norway spruce somatic embryos. Briefly, somatic embryos at an early development stage comprised only of clusters of meristematic cells without suspensor cells were fixed on an alginate film. The alginate film was affixed on the bottom of a flow cell and the somatic embryos were subjected to laminar flow through the chamber of the flow cell. Magnified images of the cell clusters were collected every 24 h. The image data was processed based on a normalized cross-correlation method, capable of measuring morphological and size features of individual cell clusters in both temporal and spatial domains. No suspensor cells developed in the cell clusters under shear stress of 140 s(-1) for the duration of the experiments. Cell clusters in the control cultured in stationary liquid conditions developed suspensor cells after 5-9 days in culture. Furthermore, the radial growth of meristematic cell clusters was inhibited by shear rates of 86 and 140 s(-1), corresponding to shear stress of 0.086 and 0.14 N/m(2), compared to growth under stationary conditions. The shear rate showed a significant negative correlation to growth rate. Control group showed no preference for direction during growth under static conditions.
Collapse
Affiliation(s)
- Hong Sun
- Georgia Institute of Technology, Atlanta, 30332, USA
| | | | | |
Collapse
|
10
|
Pati PK, Sharma M, Ahuja PS. Rose protoplast isolation and culture and heterokaryon selection by immobilization in extra thin alginate film. PROTOPLASMA 2008; 233:165-171. [PMID: 18787772 DOI: 10.1007/s00709-008-0297-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/16/2007] [Indexed: 05/26/2023]
Abstract
Somatic hybridization has been identified as one method for the genetic improvement of roses. The success of somatic hybridization programmes relies to a great extent upon efficient protoplast isolation and culture and selection of heterokaryons. This paper reports the isolation of rose cell suspension protoplasts by direct sucrose flotation and demonstrates their culture using extra thin alginate film. A comparative assessment of the efficiency of conventional culture techniques versus those with extra thin alginate film or thin alginate layer is also presented. A very high plating efficiency (80%) was obtained using thin alginate layer or extra thin alginate film techniques with improved media formulations. Protoplasts of Rosa damascena and R. bourboniana were fused by using polyethylene glycol as fusogen and later immobilized in the thin layer of alginate. The fused protoplasts were tracked on the basis of differential fluorescent staining, and the hybridity of heterokaryons following their development to callus was confirmed by molecular characterization. This novel selection strategy has general applicability and is faster and simpler to perform during somatic hybridization experiments.
Collapse
Affiliation(s)
- P K Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar.
| | | | | |
Collapse
|