1
|
Tian L, Yang R, Li D, Wu T, Sun F. Enantioselective biomarkers of maize toxicity induced by hexabromocyclododecane based on submicroscopic structure, gene expression and molecular docking. ENVIRONMENTAL RESEARCH 2024; 252:119119. [PMID: 38734290 DOI: 10.1016/j.envres.2024.119119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Hexabromocyclododecane (HBCD), as a monitored chemical of the Chemical Weapons Convention, the Stockholm Convention and the Action Plan for New Pollutants Treatment in China, raises significant concerns on its impact of human health and food security. This study investigated enantiomer-specific biomarkers of HBCD in maize (Zea mays L.). Upon exposure to HBCD enantiomers, the maize root tip cell wall exhibited thinning, uneven cell gaps, and increased deposition on the cell outer wall. Elevated malondialdehyde (MDA) indicated lipid peroxidation, with higher mitochondrial membrane potential (MMP) inhibition in (+)-enantiomer treatments (47.2%-57.9%) than (-)-enantiomers (14.4%-37.4%). The cell death rate significantly increased by 37.7%-108.8% in roots and 16.4%-62.4% in shoots, accompanied by the upregulation of superoxide dismutase isoforms genes. Molecular docking presenting interactions between HBCD and target proteins, suggested that HBCD has an affinity for antioxidant enzyme receptors with higher binding energy for (+)-enantiomers, further confirming their stronger toxic effects. All indicators revealed that oxidative damage to maize seedlings was more severe after treatment with (+)-enantiomers compared to (-)-enantiomers. This study elucidates the biomarkers of phytotoxicity evolution induced by HBCD enantiomers, providing valuable insights for the formulation of more effective policies to safeguard environmental safety and human health in the future.
Collapse
Affiliation(s)
- Liu Tian
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Ronghe Yang
- Research Center for Chemical Safety&Security and Verification Technology, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Die Li
- College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Tong Wu
- Research Center for Chemical Safety&Security and Verification Technology, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Fengxia Sun
- Research Center for Chemical Safety&Security and Verification Technology, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| |
Collapse
|
2
|
Kobylińska A, Bernat P, Posmyk MM. Melatonin Mitigates Lead-Induced Oxidative Stress and Modifies Phospholipid Profile in Tobacco BY-2 Suspension Cells. Int J Mol Sci 2024; 25:5064. [PMID: 38791101 PMCID: PMC11121664 DOI: 10.3390/ijms25105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Many studies have shown that melatonin (an indoleamine) is an important molecule in plant physiology. It is known that this indoleamine is crucial during plant stress responses, especially by counteracting secondary oxidative stress (efficient direct and indirect antioxidant) and switching on different defense plant strategies. In this report, we present exogenous melatonin's potential to protect lipid profile modification and membrane integrity in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) cell culture exposed to lead. There are some reports of the positive effect of melatonin on animal cell membranes; ours is the first to report changes in the lipid profile in plant cells. The experiments were performed in the following variants: LS: cells cultured on unmodified LS medium-control; (ii) MEL: BY-2 cells cultured on LS medium with melatonin added from the beginning of culture; (iii) Pb: BY-2 cells cultured on LS medium with Pb2+ added on the 4th day of culture; (iv) MEL+Pb: BY-2 cells cultured on LS medium with melatonin added from the start of culture and stressed with Pb2+ added on the 4th day of culture. Lipidomic analysis of BY-2 cells revealed the presence of 40 different phospholipids. Exposing cells to lead led to the overproduction of ROS, altered fatty acid composition and increased PLD activity and subsequently elevated the level of phosphatidic acid at the cost of dropping the phosphatidylcholine. In the presence of lead, double-bond index elevation, mainly by higher quantities of linoleic (C18:2) and linolenic (C18:3) acids in the log phase of growth, was observed. In contrast, cells exposed to heavy metal but primed with melatonin showed more similarities with the control. Surprisingly, the overproduction of ROS caused of lipid peroxidation only in the stationary phase of growth, although considerable changes in lipid profiles were observed in the log phase of growth-just 4 h after lead administration. Our results indicate that the pretreatment of BY-2 with exogenous melatonin protected tobacco cells against membrane dysfunctions caused by oxidative stress (lipid oxidation), but also findings on a molecular level suggest the possible role of this indoleamine in the safeguarding of the membrane lipid composition that limited lead-provoked cell death. The presented research indicates a new mechanism of the defense strategy of plant cells generated by melatonin.
Collapse
Affiliation(s)
- Agnieszka Kobylińska
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Małgorzata Maria Posmyk
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| |
Collapse
|
3
|
Jiao G, Huang Y, Dai H, Gou H, Li Z, Shi H, Yang J, Ni S. Responses of rhizosphere microbial community structure and metabolic function to heavy metal coinhibition. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6177-6198. [PMID: 37269417 DOI: 10.1007/s10653-023-01626-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
Metal mineral mining results in releases of large amounts of heavy metals into the environment, and it is necessary to better understand the response of rhizosphere microbial communities to simultaneous stress from multiple heavy metals (HMs), which directly impacts plant growth and human health. In this study, by adding different concentrations of cadmium (Cd) to a soil with high background concentrations of vanadium (V) and chromium (Cr), the growth of maize during the jointing stage was explored under limiting conditions. High-throughput sequencing was used to explore the response and survival strategies of rhizosphere soil microbial communities to complex HM stress. The results showed that complex HMs inhibited the growth of maize at the jointing stage, and the diversity and abundance of maize rhizosphere soil microorganisms were significantly different at different metal enrichment levels. In addition, according to the different stress levels, the maize rhizosphere attracted many tolerant colonizing bacteria, and cooccurrence network analysis showed that these bacteria interacted very closely. The effects of residual heavy metals on beneficial microorganisms (such as Xanthomonas, Sphingomonas, and lysozyme) were significantly stronger than those of bioavailable metals and soil physical and chemical properties. PICRUSt analysis revealed that the different forms of V and Cd had significantly greater effects on microbial metabolic pathways than all forms of Cr. Cr mainly affected the two major metabolic pathways: microbial cell growth and division and environmental information transmission. In addition, significant differences in rhizosphere microbial metabolism under different concentrations were found, and this can serve as a reference for subsequent metagenomic analysis. This study is helpful for exploring the threshold for the growth of crops in toxic HM soils in mining areas and achieving further biological remediation.
Collapse
Affiliation(s)
- Ganghui Jiao
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Yi Huang
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China.
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| | - Hao Dai
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Hang Gou
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Zijing Li
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Huibin Shi
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| | - Jinyan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Shijun Ni
- College of Geosciences, Chengdu University of Technology, Sichuan, 610059, China
| |
Collapse
|
4
|
Zhao Z, Meng G, Zamin I, Wei T, Ma D, An L, Yue X. Genome-Wide Identification and Functional Analysis of the TIFY Family Genes in Response to Abiotic Stresses and Hormone Treatments in Tartary Buckwheat ( Fagopyrum tataricum). Int J Mol Sci 2023; 24:10916. [PMID: 37446090 DOI: 10.3390/ijms241310916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
TIFY is a plant-specific gene family with four subfamilies: ZML, TIFY, PPD, and JAZ. Recently, this family was found to have regulatory functions in hormone stimulation, environmental response, and development. However, little is known about the roles of the TIFY family in Tartary buckwheat (Fagopyrum tataricum), a significant crop for both food and medicine. In this study, 18 TIFY family genes (FtTIFYs) in Tartary buckwheat were identified. The characteristics, motif compositions, and evolutionary relationships of the TIFY proteins, as well as the gene structures, cis-acting elements, and synteny of the TIFY genes, are discussed in detail. Moreover, we found that most FtTIFYs responded to various abiotic stresses (cold, heat, salt, or drought) and hormone treatments (ABA, MeJA, or SA). Through yeast two-hybrid assays, we revealed that two FtTIFYs, FtTIFY1 and FtJAZ7, interacted with FtABI5, a homolog protein of AtABI5 involved in ABA-mediated germination and stress responses, implying crosstalk between ABA and JA signaling in Tartary buckwheat. Furthermore, the overexpression of FtJAZ10 and FtJAZ12 enhanced the heat stress tolerance of tobacco. Consequently, our study suggests that the FtTIFY family plays important roles in responses to abiotic stress and provides two candidate genes (FtJAZ10 and FtJAZ12) for the cultivation of stress-resistant crops.
Collapse
Affiliation(s)
- Zhixing Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guanghua Meng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Imran Zamin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dongdi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- The College of Forestry, Beijing Forestry University, Beijing 100000, China
| | - Xiule Yue
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Xing Q, Hasan MK, Li Z, Yang T, Jin W, Qi Z, Yang P, Wang G, Ahammed GJ, Zhou J. Melatonin-induced plant adaptation to cadmium stress involves enhanced phytochelatin synthesis and nutrient homeostasis in Solanum lycopersicum L. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131670. [PMID: 37236109 DOI: 10.1016/j.jhazmat.2023.131670] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd) pollution is an increasingly serious problem in crop production. Although significant progress has been made to comprehend the molecular mechanism of phytochelatins (PCs)-mediated Cd detoxification, the information on the hormonal regulation of PCs is very fragmentary. In the present study, we constructed TRV-COMT, TRV-PCS, and TRV-COMT-PCS plants to further assess the function of CAFFEIC ACID O-METHYLTRANSFERASE (COMT) and PHYTOCHELATIN SYNTHASE (PCS) in melatonin-induced regulation of plant resistance to Cd stress in tomato. Cd stress significantly decreased chlorophyll content and CO2 assimilation rate, but increased Cd, H2O2 and MDA accumulation in the shoot, most profoundly in PCs deficient TRV-PCS and TRV-COMT-PCS plants. Notably, Cd stress and exogenous melatonin treatment significantly increased endogenous melatonin and PC contents in non-silenced plants. Results also explored that melatonin could alleviate oxidative stress and enhance antioxidant capacity and redox homeostasis by conserving improved GSH:GSSG and ASA:DHA ratios. Moreover, melatonin improves osmotic balance and nutrient absorption by regulating the synthesis of PCs. This study unveiled a crucial mechanism of melatonin-regulated PC synthesis, persuaded Cd stress tolerance and nutrient balance in tomato, which may have potential implications for the enhancement of plant resistance to toxic heavy metal stress.
Collapse
Affiliation(s)
- Qufan Xing
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Md Kamrul Hasan
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Zhichao Li
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Ting Yang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Weiduo Jin
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, Sanya, China; Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Guanghui Wang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Henan University of Science and Technology, Luoyang 471023, China.
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China.
| |
Collapse
|
6
|
Valandro F, Menguer PK, Cabreira-Cagliari C, Margis-Pinheiro M, Cagliari A. Programmed cell death (PCD) control in plants: New insights from the Arabidopsis thaliana deathosome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110603. [PMID: 32900441 DOI: 10.1016/j.plantsci.2020.110603] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled process that leads to cell suicide in both eukaryotic and prokaryotic organisms. In plants PCD occurs during development, defence response and when exposed to adverse conditions. PCD acts controlling the number of cells by eliminating damaged, old, or unnecessary cells to maintain cellular homeostasis. Unlike in animals, the knowledge about PCD in plants is limited. The molecular network that controls plant PCD is poorly understood. Here we present a review of the current mechanisms involved with the genetic control of PCD in plants. We also present an updated version of the AtLSD1 deathosome, which was previously proposed as a network controlling HR-mediated cell death in Arabidopsis thaliana. Finally, we discuss the unclear points and open questions related to the AtLSD1 deathosome.
Collapse
Affiliation(s)
- Fernanda Valandro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Paloma Koprovski Menguer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | | | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Alexandro Cagliari
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, RS, Brazil; Universidade Estadual do Rio Grande do Sul (UERGS), RS, Brazil.
| |
Collapse
|
7
|
Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. BIOLOGY 2020; 9:biology9070177. [PMID: 32708065 PMCID: PMC7407403 DOI: 10.3390/biology9070177] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Cadmium (Cd) is one of the most toxic metals in the environment, and has noxious effects on plant growth and production. Cd-accumulating plants showed reduced growth and productivity. Therefore, remediation of this non-essential and toxic pollutant is a prerequisite. Plant-based phytoremediation methodology is considered as one a secure, environmentally friendly, and cost-effective approach for toxic metal remediation. Phytoremediating plants transport and accumulate Cd inside their roots, shoots, leaves, and vacuoles. Phytoremediation of Cd-contaminated sites through hyperaccumulator plants proves a ground-breaking and profitable choice to combat the contaminants. Moreover, the efficiency of Cd phytoremediation and Cd bioavailability can be improved by using plant growth-promoting bacteria (PGPB). Emerging modern molecular technologies have augmented our insight into the metabolic processes involved in Cd tolerance in regular cultivated crops and hyperaccumulator plants. Plants’ development via genetic engineering tools, like enhanced metal uptake, metal transport, Cd accumulation, and the overall Cd tolerance, unlocks new directions for phytoremediation. In this review, we outline the physiological, biochemical, and molecular mechanisms involved in Cd phytoremediation. Further, a focus on the potential of omics and genetic engineering strategies has been documented for the efficient remediation of a Cd-contaminated environment.
Collapse
|
8
|
Arbuscular Mycorrhizal Fungi as Potential Agents in Ameliorating Heavy Metal Stress in Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060815] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heavy metal accumulation in plants is a severe environmental problem, rising at an expeditious rate. Heavy metals such as cadmium, arsenic, mercury and lead are known environmental pollutants that exert noxious effects on the morpho-physiological and biological attributes of a plant. Due to their mobile nature, they have become an extended part of the food chain and affect human health. Arbuscular mycorrhizal fungi ameliorate metal toxicity as they intensify the plant’s ability to tolerate metal stress. Mycorrhizal fungi have vesicles, which are analogous to fungal vacuoles and accumulate massive amount of heavy metals in them. With the help of a pervasive hyphal network, arbuscular mycorrhizal fungi help in the uptake of water and nutrients, thereby abating the use of chemical fertilizers on the plants. They also promote resistance parameters in the plants, secrete a glycoprotein named glomalin that reduces the metal uptake in plants by forming glycoprotein–metal complexes, and improve the quality of the soil. They also assist plants in phytoremediation by increasing the absorptive area, increase the antioxidant response, chelate heavy metals and stimulate genes for protein synthesis that reduce the damage caused by free radicals. The current manuscript focuses on the uptake of heavy metals, accumulation, and arbuscular mycorrhizal impact in ameliorating heavy metal stress in plants.
Collapse
|
9
|
Dappe V, Dumez S, Bernard F, Hanoune B, Cuny D, Dumat C, Sobanska S. The role of epicuticular waxes on foliar metal transfer and phytotoxicity in edible vegetables: case of Brassica oleracea species exposed to manufactured particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20092-20106. [PMID: 30264340 DOI: 10.1007/s11356-018-3210-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The rapid industrialization and urbanization of intra- and peri-urban areas at the world scale are responsible for the degradation of the quality of edible crops, because of their contamination with airborne pollutants. Their consumption could lead to serious health risks. In this work, we aim to investigate the phytotoxicity induced by foliar transfer of atmospheric particles of industrial/urban origin. Leaves of cabbage plants (Brassica oleracea var. Prover) were contaminated with metal-rich particles (PbSO4 CuO and CdO) of micrometer size. A trichloroacetic acid (TCA) treatment was used to inhibit the synthesis of the epicuticular waxes in order to investigate their protective role against metallic particles toxicity. Besides the location of the particles on/in the leaves by microscopic techniques, photosynthetic activity measurements, genotoxicity assessment, and quantification of the gene expression have been studied for several durations of exposure (5, 10, and 15 days). The results show that the depletion of epicuticular waxes has a limited effect on the particle penetration in the leaf tissues. The stomatal openings appear to be the main pathway of particles entry inside the leaf tissues, as demonstrated by the overexpression of the BolC.CHLI1 gene. The effects of particles on the photosynthetic activity are limited, considering only the photosynthetic Fv/Fm parameter. The genotoxic effects were significant for the contaminated TCA-treated plants, especially after 10 days of exposure. Still, the cabbage plants are able to implement repair mechanisms quickly, and to thwart the physiological effects induced by the particles. Finally, the foliar contamination by metallic particles induces no serious damage to DNA, as observed by monitoring the BolC.OGG1 gene.
Collapse
Affiliation(s)
- Vincent Dappe
- Laboratoire de Spectrochimie Infrarouge et Raman, CNRS UMR 8516, Université de Lille, 59655, Villeneuve d'Ascq, France.
| | - Sylvain Dumez
- Laboratoire des Sciences Végétales et Fongiques EA4483, Université de Lille, 3 rue du Professeur Laguesse, B.P. 83, Lille, France
| | - Fabien Bernard
- Laboratoire des Sciences Végétales et Fongiques EA4483, Université de Lille, 3 rue du Professeur Laguesse, B.P. 83, Lille, France
| | - Benjamin Hanoune
- Laboratoire de Physico-Chimie des Processus de Combustion et de l'Atmosphère, UMR 8522 CNRS, Université de Lille, 59655, Villeneuve d'Ascq, France
| | - Damien Cuny
- Laboratoire des Sciences Végétales et Fongiques EA4483, Université de Lille, 3 rue du Professeur Laguesse, B.P. 83, Lille, France
| | - Camille Dumat
- Université de Toulouse INP-ENSAT, Avenue de l'Agrobiopole, 31326, Castanet-Tolosan, France
- Université Toulouse - Le Mirail UTM-CERTOP CNRS UMR, 5044, Toulouse, France
| | - Sophie Sobanska
- Laboratoire de Spectrochimie Infrarouge et Raman, CNRS UMR 8516, Université de Lille, 59655, Villeneuve d'Ascq, France.
- Institut des Sciences Moléculaires UMR CNRS 5255, Université de Bordeaux, 351, Cours de la Libération, 33405, Talence, France.
| |
Collapse
|
10
|
Salicylic Acid Signals Plant Defence against Cadmium Toxicity. Int J Mol Sci 2019; 20:ijms20122960. [PMID: 31216620 PMCID: PMC6627907 DOI: 10.3390/ijms20122960] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Salicylic acid (SA), as an enigmatic signalling molecule in plants, has been intensively studied to elucidate its role in defence against biotic and abiotic stresses. This review focuses on recent research on the role of the SA signalling pathway in regulating cadmium (Cd) tolerance in plants under various SA exposure methods, including pre-soaking, hydroponic exposure, and spraying. Pretreatment with appropriate levels of SA showed a mitigating effect on Cd damage, whereas an excessive dose of exogenous SA aggravated the toxic effects of Cd. SA signalling mechanisms are mainly associated with modification of reactive oxygen species (ROS) levels in plant tissues. Then, ROS, as second messengers, regulate a series of physiological and genetic adaptive responses, including remodelling cell wall construction, balancing the uptake of Cd and other ions, refining the antioxidant defence system, and regulating photosynthesis, glutathione synthesis and senescence. These findings together elucidate the expanding role of SA in phytotoxicology.
Collapse
|
11
|
Azizollahi Z, Ghaderian SM, Ghotbi-Ravandi AA. Cadmium accumulation and its effects on physiological and biochemical characters of summer savory ( Satureja hortensis L.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1241-1253. [PMID: 31140292 DOI: 10.1080/15226514.2019.1619163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The objective of this study was to determine the effects of cadmium (Cd) toxicity on accumulation, growth, physiological responses, and biochemical characters in summer savory (Satureja hortensis L.). Plants were subjected to different levels of Cd concentrations including 0 (control), 2.5, 5, and 15 mg L-1 in the growing medium. Cd exposure led to a significant increase in root and shoot Cd content. Calculation of bioaccumulation factor, translocation factor, and transfer coefficient revealed that Cd mostly accumulated in roots of S. hortensis and root to shoot transport was effectively restricted. Cd toxicity negatively affected plant growth and significantly reduced chlorophyll content. Contrarily, proline, soluble and reducing carbohydrates, anthocyanin content, and the activity of antioxidant enzymes significantly increased as a result of Cd exposure. Cd application led to a significant increase in essential oil content of S. hortensis. GC-MS analysis revealed that percentage main constitute of S. hortensi, carvacrol, which determines the quality of oil increased under the highest Cd treatment. Based on our findings, S. hortensis can be considered an invaluable alternative crop for mildly Cd-contaminated soils. Besides, due to the high potential of Cd accumulation in the root, S. hortensis may offer a feasible tool for phytostabilization purposes.
Collapse
Affiliation(s)
- Zahra Azizollahi
- Department of Biology, Faculty of Sciences, University of Isfahan , Isfahan , Iran
| | | | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University , Tehran , Iran
| |
Collapse
|
12
|
Xin JP, Zhang Y, Tian RN. Tolerance mechanism of Triarrhena sacchariflora (Maxim.) Nakai. seedlings to lead and cadmium: Translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:611-621. [PMID: 30241089 DOI: 10.1016/j.ecoenv.2018.09.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/03/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Hydroponic experiments were conducted to assess the accumulation, translocation, and chemical forms of lead (Pb) and cadmium (Cd) in the roots, stems, and leaves of Triarrhena sacchariflora seedlings and the associated variation in leaf ultrastructure. The leaves and leaf ultrastructure showed no significant symptoms of toxicity with 0.05 mM Pb or 0.01 mM Cd exposure for 10d. Chlorosis and wilting were observed in leaves when the Pb and Cd concentration was higher than 0.1 and 0.05 mM in the medium, respectively, as demonstrated by severe ultrastructural modifications at higher concentration in the leaves, such as plasmolysis, cell wall detachment, chloroplast swelling, nuclear condensation, and even nuclear fragmentation. The Pb and Cd concentrations in the roots was significantly higher than those in the stems and leaves. This indicated low Pb and Cd translocation from the roots to the aboveground parts. Subcellular distribution analysis showed that the majority of Pb and Cd was bound to the cell wall, especially in the roots, indicating that the cell wall likely constitutes a crucial storage site for Pb and Cd. This mechanism decreases the translocation of Pb and Cd across membranes and is more effective than vacuolar compartmentation. The majority of Pb and Cd exited in form of insoluble Pb/Cd-pectate or -oxalate complexes in the plant. In conclusion, higher concentrations of Pb or Cd induced premature senescence. High Pb and Cd enrichment was observed in the roots, which decreased the translocation of Pb and Cd from the roots to the aboveground tissues. The immobilization of Pb or Cd by the cell wall is important for plant detoxification and can protect protoplasts from Pb or Cd toxicity. Pb and Cd mainly existed in insoluble Pb/Cd-phosphate or -oxalate complexes, exhibiting low activity and thereby limiting symplastic transport and suppressing toxicity.
Collapse
Affiliation(s)
- Jian-Pan Xin
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yao Zhang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ru-Nan Tian
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
13
|
Meena M, Aamir M, Kumar V, Swapnil P, Upadhyay R. Evaluation of morpho-physiological growth parameters of tomato in response to Cd induced toxicity and characterization of metal sensitive NRAMP3 transporter protein. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2018; 148:144-167. [DOI: 10.1016/j.envexpbot.2018.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
14
|
Sergio LPDS, de Paoli F, Mencalha AL, da Fonseca ADS. Chronic Obstructive Pulmonary Disease: From Injury to Genomic Stability. COPD 2017; 14:439-450. [DOI: 10.1080/15412555.2017.1332025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Luiz Philippe da Silva Sergio
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Rio de Janeiro, Brazil
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, São Pedro, Juiz de Fora, Minas Gerais, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Rio de Janeiro, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Rio de Janeiro, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Teresópolis, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC. Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 241:73-137. [PMID: 27300014 DOI: 10.1007/398_2016_8] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This review summarizes the findings of the most recent studies, published from 2000 to 2016, which focus on the biogeochemical behavior of Cd in soil-plant systems and its impact on the ecosystem. For animals and people not subjected to a Cd-contaminated environment, consumption of Cd contaminated food (vegetables, cereals, pulses and legumes) is the main source of Cd exposure. As Cd does not have any known biological function, and can further cause serious deleterious effects both in plants and mammalian consumers, cycling of Cd within the soil-plant system is of high global relevance.The main source of Cd in soil is that which originates as emissions from various industrial processes. Within soil, Cd occurs in various chemical forms which differ greatly with respect to their lability and phytoavailability. Cadmium has a high phytoaccumulation index because of its low adsorption coefficient and high soil-plant mobility and thereby may enter the food chain. Plant uptake of Cd is believed to occur mainly via roots by specific and non-specific transporters of essential nutrients, as no Cd-specific transporter has yet been identified. Within plants, Cd causes phytotoxicity by decreasing nutrient uptake, inhibiting photosynthesis, plant growth and respiration, inducing lipid peroxidation and altering the antioxidant system and functioning of membranes. Plants tackle Cd toxicity via different defense strategies such as decreased Cd uptake or sequestration into vacuoles. In addition, various antioxidants combat Cd-induced overproduction of ROS. Other mechanisms involve the induction of phytochelatins, glutathione and salicylic acid.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès-Toulouse II, 5 Allée Antonio Machado, 31058, Toulouse Cedex 9, France
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- Southern Cross GeoScience, Southern Cross University, Lismore, 2480, NSW, Australia
| | | |
Collapse
|
16
|
Cuypers A, Hendrix S, Amaral dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity. FRONTIERS IN PLANT SCIENCE 2016; 7:470. [PMID: 27199999 PMCID: PMC4843763 DOI: 10.3389/fpls.2016.00470] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide ([Formula: see text]), hydrogen peroxide (H2O2) and the hydroxyl radical ((•)OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lomaglio T, Rocco M, Trupiano D, De Zio E, Grosso A, Marra M, Delfine S, Chiatante D, Morabito D, Scippa GS. Effect of short-term cadmium stress on Populus nigra L. detached leaves. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:40-8. [PMID: 26047071 DOI: 10.1016/j.jplph.2015.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 05/09/2023]
Abstract
Pollution by toxic metals, accumulating into soils as result of human activities, is a worldwide major concern in industrial countries. Plants exhibit different degrees of tolerance to heavy metals, as a consequence of their ability to exclude or accumulate them in particular tissues, organs or sub-cellular compartments. Molecular information about cellular processes affected by heavy metals is still largely incomplete. As a fast-growing, highly tolerant perennial plant species, poplar has become a model for environmental stress response investigations. To study the short-term effects of cadmium accumulation in leaves, we analyzed photosystem II (PSII) quantum yield, hydrogen peroxide (H2O2) generation, hormone levels variation, as well as proteome profile alteration of 50μM CdSO4 vacuum-infiltrated poplar (Populus nigra L.) detached leaves. Cadmium management brought about an early and sustained production of hydrogen peroxide, an increase of abscisic acid, ethylene and gibberellins content, as well as a decrease in cytokinins and auxin levels, whereas photosynthetic electron transport was unaffected. Proteomic analysis revealed that twenty-one proteins were differentially induced in cadmium-treated leaves. Identification of fifteen polypeptides allowed to ascertain that most of them were involved in stress response while the remaining ones were involved in photosynthetic carbon metabolism and energy production.
Collapse
Affiliation(s)
- Tonia Lomaglio
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche Italy
| | - Mariapina Rocco
- Dipartimento per la Biologia, Geologia e l'Ambiente, Università del Sannio, Benevento, Italy
| | - Dalila Trupiano
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche Italy
| | - Elena De Zio
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche Italy
| | - Alessandro Grosso
- Dipartimento di Biologia, Università di Roma Tor Vergata, Roma, Italy
| | - Mauro Marra
- Dipartimento di Biologia, Università di Roma Tor Vergata, Roma, Italy
| | - Sebastiano Delfine
- Dipartimento di Agricoltura, Ambientee Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Donato Chiatante
- Dipartimento di Biotecnologia e Scienze della Vita, Università dell' Insubria, Varese, Italy
| | - Domenico Morabito
- Université d'Orléans, INRA, LBLGC, EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures, Orléans, France
| | | |
Collapse
|
18
|
Castagna A, Di Baccio D, Ranieri AM, Sebastiani L, Tognetti R. Effects of combined ozone and cadmium stresses on leaf traits in two poplar clones. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2064-2075. [PMID: 25167820 DOI: 10.1007/s11356-014-3481-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
Information on plant responses to combined stresses such as ozone (O3) and cadmium (Cd) is scarce in tree species. On the other hand, high O3 concentrations in the atmosphere and heavy metal contaminations in water and soil simultaneously affect forest ecosystems. Toxic metals may exacerbate the consequences of air pollutants. In this research, two poplar clones, differently sensitive to O3 ("I-214" O3-tolerant and "Eridano" O3-sensitive), were grown for 5 weeks in pots supplied with 0 and 150 mg Cd kg(-1) soil and then exposed to a 15-day O3 fumigation (60 nl l(-1), 5 h a day) or supplied with charcoal-filtered air under the same conditions (referred to as control samples). The effects of the two stressors, alone or in combination, on Cd accumulation, photosynthetic capacity, ethylene emission and oxidative state were investigated in fully expanded leaves. Cadmium accumulation in leaves caused a reduction, but not complete failure, of photosynthesis in Eridano and I-214 poplar clones. The reduction in assimilation rate was more important following O3 fumigation. Stomatal aperture after O3 treatment, instead, increased in I-214 and decreased in Eridano. Overall, Cd treatment was effective in decreasing ethylene emission, whereas O3 fumigation increased it in both clones, although interacting with the metal treatment. Again, O3 fumigation induced a significant increase in ascorbate (ASA) + dehydroascorbate (DHA) content, which was strongly oxidised by O3, thus decreasing the redox state. On the other hand, Cd treatment had a positive effect on ASA content and redox state in I-214, but not in Eridano. Although Cd and O3 are known to share some common toxicity pathways, the combined effects induced distinct clone-specific responses, underlying the complexity of plant reactions to multiple stresses.
Collapse
Affiliation(s)
- Antonella Castagna
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy,
| | | | | | | | | |
Collapse
|
19
|
Koffler BE, Polanschütz L, Zechmann B. Higher sensitivity of pad2-1 and vtc2-1 mutants to cadmium is related to lower subcellular glutathione rather than ascorbate contents. PROTOPLASMA 2014; 251:755-69. [PMID: 24281833 PMCID: PMC4059996 DOI: 10.1007/s00709-013-0576-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/25/2013] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd) interferes with ascorbate and glutathione metabolism as it induces the production of reactive oxygen species (ROS), binds to glutathione due to its high affinity to thiol groups, and induces the production of phytochelatins (PCs) which use glutathione as a precursor. In this study, changes in the compartment specific distribution of ascorbate and glutathione were monitored over a time period of 14 days in Cd-treated (50 and 100 μM) Arabidopsis Col-0 plants, and two mutant lines deficient in glutathione (pad2-1) and ascorbate (vtc2-1). Both mutants showed higher sensitivity to Cd than Col-0 plants. Strongly reduced compartment specific glutathione, rather than decreased ascorbate contents, could be correlated with the development of symptoms in these mutants suggesting that higher sensitivity to Cd is related to low glutathione contents rather than low ascorbate contents. On the subcellular level it became obvious that long-term treatment of wildtype plants with Cd induced the depletion of glutathione and ascorbate contents in all cell compartments except chloroplasts indicating an important protective role for antioxidants in chloroplasts against Cd. Additionally, we could observe an immediate decrease of glutathione and ascorbate in all cell compartments 12 h after Cd treatment indicating that glutathione and ascorbate are either withdrawn from or not redistributed into other organelles after their production in chloroplasts, cytosol (production centers for glutathione) and mitochondria (production center for ascorbate). The obtained data is discussed in respect to recently proposed stress models involving antioxidants in the protection of plants against environmental stress conditions.
Collapse
Affiliation(s)
- Barbara Eva Koffler
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Lisa Polanschütz
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Bernd Zechmann
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010 Graz, Austria
| |
Collapse
|
20
|
Guan J, Dai J, Zhao X, Liu C, Gao C, Liu R. Spectroscopic investigations on the interaction between carbon nanotubes and catalase on molecular level. J Biochem Mol Toxicol 2014; 28:211-6. [PMID: 24616245 DOI: 10.1002/jbt.21555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/19/2014] [Accepted: 02/01/2014] [Indexed: 12/29/2022]
Abstract
The interactions between well-dispersed multiwalled carbon nanotubes (MWCNTs) and catalase (CAT) were investigated. The activity of CAT was inhibited with the addition of MWCNTs. After deducting the inner filter effect, the fluorescence spectra revealed that the tryptophan (Trp) residues were exposed and the fluorescence intensities of CAT increased with the increase in the MWCNTs concentration. At the same time, the environment of the Trp residues became more hydrophobic. The results of UV-vis absorption spectroscopy and CD spectra indicated that the secondary structure of CAT had been changed, and the amino acid residues were located in a more hydrophobic environment. Meanwhile, the UV-vis spectra indicated that the conformation of the heme porphyrin rings was changed. The microenvironment of CAT activity sites may be interfered by MWCNTs. This research showed that MWCNTs could not only contribute to the conformational changes of protein but also change the enzyme function.
Collapse
Affiliation(s)
- Jin Guan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, Jinan, 250100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Zhang BL, Shang SH, Zhang HT, Jabeen Z, Zhang GP. Sodium chloride enhances cadmium tolerance through reducing cadmium accumulation and increasing anti-oxidative enzyme activity in tobacco. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1420-5. [PMID: 23417770 DOI: 10.1002/etc.2183] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/07/2012] [Accepted: 01/18/2013] [Indexed: 05/28/2023]
Abstract
The effect of sodium chloride (NaCl) on cadmium (Cd) uptake, translocation, and oxidative stress was investigated using 2 tobacco cultivars differing in Cd tolerance. The growth inhibition of the tobacco plants exposed to Cd toxicity was in part alleviated by moderate addition of NaCl in the culture solution. Cadmium concentration of shoots and roots in the 2 cultivars increased with increasing Cd levels in the solution and decreased with the addition of NaCl. The addition of NaCl could alleviate the oxidative stress caused by Cd toxicity, as reflected by reduced production of malondialdehyde and recovered or enhanced activities of antioxidative enzymes catalase and glutathione peroxidase. The results also showed that the enhancement of antioxidative enzyme activity by NaCl for the tobacco plants exposed to Cd stress is related to induced Ca signaling.
Collapse
Affiliation(s)
- Bing-Lin Zhang
- Department of Agronomy, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2012. [PMID: 0 DOI: 10.1016/j.envexpbot.2012.04.006] [Citation(s) in RCA: 600] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
24
|
Mohamed AA, Castagna A, Ranieri A, Sanità di Toppi L. Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 57:15-22. [PMID: 22652410 DOI: 10.1016/j.plaphy.2012.05.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 05/03/2012] [Indexed: 05/18/2023]
Abstract
Indian mustard (Brassica juncea L. Czern.) tolerates high concentrations of heavy metals and is a promising species for the purpose of phytoextraction of cadmium (Cd) from metal-contaminated soils. This work investigates the extent to which antioxidant and metal sequestering mechanisms are responsible for this tolerance. To this end, seedlings of Indian mustard were grown for 7 days in 0, 50 or 200 μM Cd. Increasing Cd concentrations led to a progressive Cd accumulation in roots and shoots, accompanied by an organ-dependent alteration in mineral uptake, and a decrease in root/shoot length and fresh/dry weight. Cd negatively affected chlorophyll and carotenoid contents and activated the xanthophyll cycle, suggesting the need to protect the photosynthetic apparatus from photoinhibition. Shoots seemed to be less efficient than roots in ROS scavenging, as indicated by the different response to Cd stress shown by peroxidase and catalase activities and, solely with regard to the highest Cd concentration, by ascorbate level. Such a different antioxidant capacity might at least partly explain differences in the trend of lipid peroxidation observed in the two organs. Moreover, in both roots and shoots, glutathione and phytochelatin content markedly increased under Cd stress, regardless of the metal concentration involved.
Collapse
Affiliation(s)
- Amal Amin Mohamed
- Department of Plant Biochemistry, National Research Centre, Dokki, Cairo, Egypt
| | | | | | | |
Collapse
|
25
|
Volland S, Lütz C, Michalke B, Lütz-Meindl U. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 109:59-69. [PMID: 22204989 PMCID: PMC3314905 DOI: 10.1016/j.aquatox.2011.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/21/2011] [Accepted: 11/24/2011] [Indexed: 05/02/2023]
Abstract
Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased significantly in chromium treated cells, showing that glutathione is playing a major role in intracellular ROS and chromium detoxification.
Collapse
Affiliation(s)
- Stefanie Volland
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria
| | - Cornelius Lütz
- Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Bernhard Michalke
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Ecological Chemistry, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Ursula Lütz-Meindl
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria
- Corresponding author. Tel.: +43 662 8044 5555; fax: +43 662 8044 619.
| |
Collapse
|
26
|
Teng Y, Zhang H, Liu R. Molecular interaction between 4-aminoantipyrine and catalase reveals a potentially toxic mechanism of the drug. MOLECULAR BIOSYSTEMS 2011; 7:3157-63. [DOI: 10.1039/c1mb05271c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Benitez-Alfonso Y, Jackson D, Maule A. Redox regulation of intercellular transport. PROTOPLASMA 2011; 248:131-40. [PMID: 21107619 DOI: 10.1007/s00709-010-0243-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/10/2010] [Indexed: 05/19/2023]
Abstract
Plant cells communicate with each other via plasmodesmata (PDs) in order to orchestrate specific responses to environmental and developmental cues. At the same time, environmental signals regulate this communication by promoting changes in PD structure that modify symplastic permeability and, in extreme cases, isolate damaged cells. Reactive oxygen species (ROS) are key messengers in plant responses to a range of biotic and abiotic stresses. They are also generated during normal metabolism, and mediate signaling pathways that modulate plant growth and developmental transitions. Recent research has suggested the participation of ROS in the regulation of PD transport. The study of several developmental and stress-induced processes revealed a co-regulation of ROS and callose (a cell wall polymer that regulates molecular flux through PDs). The identification of Arabidopsis mutants simultaneously affected in cell redox homeostasis and PD transport, and the histological detection of hydrogen peroxide and peroxidases in the PDs of the tomato vascular cambium provide new information in support of this novel regulatory mechanism. Here, we describe the evidence that supports a role for ROS in the regulation of callose deposition and/or in the formation of secondary PD, and discuss the potential importance of this mechanism during plant growth or defense against environmental stresses.
Collapse
|