1
|
Choi GE, Park JY, Park MR, Yoon JH, Han HJ. Glucocorticoid enhances presenilin1-dependent Aβ production at ER's mitochondrial-associated membrane by downregulating Rer1 in neuronal cells. Redox Biol 2023; 65:102821. [PMID: 37494768 PMCID: PMC10382667 DOI: 10.1016/j.redox.2023.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Stress-induced release of glucocorticoid is an important amyloidogenic factor that upregulates amyloid precursor protein (APP) and β secretase 1 (BACE1) levels. Glucocorticoid also contributes to the pathogenesis of Alzheimer's disease (AD) by increasing ER-mitochondria connectivity, in which amyloid β (Aβ) processing occurs rigorously because of its lipid raft-rich characteristics. However, the mechanism by which glucocorticoid enhances γ-secretase activity in the mitochondrial-associated membrane of ER (MAM) and subsequent accumulation of mitochondrial Aβ is unclear. In this study, we determined how glucocorticoid enhances Aβ production in MAM using SH-SY5Y cells and ICR mice. First, we observed that cortisol-induced Aβ accumulation in mitochondria preceded its extracellular apposition by enhancing γ-secretase activity, which was the result of increased presenilin 1 (PSEN1) localization in MAM. Screening data revealed that cortisol selectively downregulated the ER retrieval protein Rer1, which triggered its maturation and subsequent entry into the endocytic secretory pathway of PSEN1. Accordingly, overexpression of RER1 reversed the deleterious effects of mitochondrial Aβ on mitochondrial respiratory function and neuronal cell viability. Notably, we found that cortisol guided the glucocorticoid receptor (GR) to bind directly to the RER1 promoter, thus trans-repressing its expression. Inhibiting GR function reduced Aβ accumulation at mitochondria and improved the outcome of a spatial memory task in mice exposed to corticosterone. Taken together, glucocorticoid enhances PSEN1-mediated Aβ generation at MAM by downregulating Rer1, which is a potential target at early stages of AD pathogenesis.
Collapse
Affiliation(s)
- Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, South Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Mo Ran Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
2
|
Merényi Z, Krizsán K, Sahu N, Liu XB, Bálint B, Stajich JE, Spatafora JW, Nagy LG. Genomes of fungi and relatives reveal delayed loss of ancestral gene families and evolution of key fungal traits. Nat Ecol Evol 2023; 7:1221-1231. [PMID: 37349567 PMCID: PMC10406608 DOI: 10.1038/s41559-023-02095-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
Fungi are ecologically important heterotrophs that have radiated into most niches on Earth and fulfil key ecological services. Despite intense interest in their origins, major genomic trends of their evolutionary route from a unicellular opisthokont ancestor to derived multicellular fungi remain poorly known. Here we provide a highly resolved genome-wide catalogue of gene family changes across fungal evolution inferred from the genomes of 123 fungi and relatives. We show that a dominant trend in early fungal evolution has been the gradual shedding of protist genes and the punctuated emergence of innovation by two main gene duplication events. We find that the gene content of non-Dikarya fungi resembles that of unicellular opisthokonts in many respects, owing to the conservation of protist genes in their genomes. The most rapidly duplicating gene groups included extracellular proteins and transcription factors, as well as ones linked to the coordination of nutrient uptake with growth, highlighting the transition to a sessile osmotrophic feeding strategy and subsequent lifestyle evolution as important elements of early fungal history. These results suggest that the genomes of pre-fungal ancestors evolved into the typical filamentous fungal genome by a combination of gradual gene loss, turnover and several large duplication events rather than by abrupt changes. Consequently, the taxonomically defined Fungi represents a genomically non-uniform assemblage of species.
Collapse
Affiliation(s)
- Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | - Neha Sahu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Xiao-Bin Liu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Jason E Stajich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
3
|
Ryan KC, Laboy JT, Norman KR. Deregulation of Mitochondrial Calcium Handling Due to Presenilin Loss Disrupts Redox Homeostasis and Promotes Neuronal Dysfunction. Antioxidants (Basel) 2022; 11:antiox11091642. [PMID: 36139715 PMCID: PMC9495597 DOI: 10.3390/antiox11091642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are major contributors to the pathophysiology of neurodegenerative diseases, including Alzheimer’s disease (AD). However, the mechanisms driving mitochondrial dysfunction and oxidative stress are unclear. Familial AD (fAD) is an early onset form of AD caused primarily by mutations in the presenilin-encoding genes. Previously, using Caenorhabditis elegans as a model system to study presenilin function, we found that loss of C. elegans presenilin orthologue SEL-12 results in elevated mitochondrial and cytosolic calcium levels. Here, we provide evidence that elevated neuronal mitochondrial generated reactive oxygen species (ROS) and subsequent neurodegeneration in sel-12 mutants are a consequence of the increase of mitochondrial calcium levels and not cytosolic calcium levels. We also identify mTORC1 signaling as a critical factor in sustaining high ROS in sel-12 mutants in part through its repression of the ROS scavenging system SKN-1/Nrf. Our study reveals that SEL-12/presenilin loss disrupts neuronal ROS homeostasis by increasing mitochondrial ROS generation and elevating mTORC1 signaling, which exacerbates this imbalance by suppressing SKN-1/Nrf antioxidant activity.
Collapse
|
4
|
Ryan KC, Ashkavand Z, Sarasija S, Laboy JT, Samarakoon R, Norman KR. Increased mitochondrial calcium uptake and concomitant mitochondrial activity by presenilin loss promotes mTORC1 signaling to drive neurodegeneration. Aging Cell 2021; 20:e13472. [PMID: 34499406 PMCID: PMC8520713 DOI: 10.1111/acel.13472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic dysfunction and protein aggregation are common characteristics that occur in age‐related neurodegenerative disease. However, the mechanisms underlying these abnormalities remain poorly understood. We have found that mutations in the gene encoding presenilin in Caenorhabditis elegans, sel‐12, results in elevated mitochondrial activity that drives oxidative stress and neuronal dysfunction. Mutations in the human presenilin genes are the primary cause of familial Alzheimer's disease. Here, we demonstrate that loss of SEL‐12/presenilin results in the hyperactivation of the mTORC1 pathway. This hyperactivation is caused by elevated mitochondrial calcium influx and, likely, the associated increase in mitochondrial activity. Reducing mTORC1 activity improves proteostasis defects and neurodegenerative phenotypes associated with loss of SEL‐12 function. Consistent with high mTORC1 activity, we find that SEL‐12 loss reduces autophagosome formation, and this reduction is prevented by limiting mitochondrial calcium uptake. Moreover, the improvements of proteostasis and neuronal defects in sel‐12 mutants due to mTORC1 inhibition require the induction of autophagy. These results indicate that mTORC1 hyperactivation exacerbates the defects in proteostasis and neuronal function in sel‐12 mutants and demonstrate a critical role of presenilin in promoting neuronal health.
Collapse
Affiliation(s)
- Kerry C. Ryan
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Zahra Ashkavand
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Shaarika Sarasija
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Jocelyn T. Laboy
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| | - Kenneth R. Norman
- Department of Regenerative and Cancer Cell Biology Albany Medical College Albany New York USA
| |
Collapse
|
5
|
Spagnuolo MS, Pallottini V, Mazzoli A, Iannotta L, Tonini C, Morone B, Ståhlman M, Crescenzo R, Strazzullo M, Iossa S, Cigliano L. A Short‐Term Western Diet Impairs Cholesterol Homeostasis and Key Players of Beta Amyloid Metabolism in Brain of Middle Aged Rats. Mol Nutr Food Res 2020; 64:e2000541. [DOI: 10.1002/mnfr.202000541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/28/2022]
Affiliation(s)
| | - Valentina Pallottini
- Department of ScienceBiomedical and Technology Science SectionUniversity Roma Tre Rome 00146 Italy
| | - Arianna Mazzoli
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| | - Lucia Iannotta
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| | - Claudia Tonini
- Department of ScienceBiomedical and Technology Science SectionUniversity Roma Tre Rome 00146 Italy
| | - Barbara Morone
- Institute of Genetics and Biophysics “A. Buzzati‐Traverso”National Research Council Naples 80131 Italy
| | - Marcus Ståhlman
- Wallenberg LaboratoryDepartment of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of Gothenburg Gothenburg 413 45 Sweden
| | | | - Maria Strazzullo
- Institute of Genetics and Biophysics “A. Buzzati‐Traverso”National Research Council Naples 80131 Italy
| | - Susanna Iossa
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| | - Luisa Cigliano
- Department of BiologyUniversity of Naples Federico II Naples 80126 Italy
| |
Collapse
|
6
|
Fülöp T, Munawara U, Larbi A, Desroches M, Rodrigues S, Catanzaro M, Guidolin A, Khalil A, Bernier F, Barron AE, Hirokawa K, Beauregard PB, Dumoulin D, Bellenger JP, Witkowski JM, Frost E. Targeting Infectious Agents as a Therapeutic Strategy in Alzheimer's Disease. CNS Drugs 2020; 34:673-695. [PMID: 32458360 PMCID: PMC9020372 DOI: 10.1007/s40263-020-00737-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently largely unknown. The most common explanation for AD, now, is the amyloid cascade hypothesis, which states that the cause of AD is senile plaque formation by the amyloid β peptide, and the formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning theory by which to explain AD is based on the infection hypothesis. Much experimental and epidemiological data support the involvement of infections in the development of dementia. According to this mechanism, the infection either directly or via microbial virulence factors precedes the formation of amyloid β plaques. The amyloid β peptide, possessing antimicrobial properties, may be beneficial at an early stage of AD, but becomes detrimental with the progression of the disease, concomitantly with alterations to the innate immune system at both the peripheral and central levels. Infection results in neuroinflammation, leading to, and sustained by, systemic inflammation, causing eventual neurodegeneration, and the senescence of the immune cells. The sources of AD-involved microbes are various body microbiome communities from the gut, mouth, nose, and skin. The infection hypothesis of AD opens a vista to new therapeutic approaches, either by treating the infection itself or modulating the immune system, its senescence, or the body's metabolism, either separately, in parallel, or in a multi-step way.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Usma Munawara
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
- Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Valbonne, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Michele Catanzaro
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Andrea Guidolin
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Abdelouahed Khalil
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - François Bernier
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Tokyo Med. Dent. University, Tokyo, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - David Dumoulin
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Department of Chemistry, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Eric Frost
- Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Liu Z, Zhu Y, Li F, Xie Y. GATA1-regulated JAG1 promotes ovarian cancer progression by activating Notch signal pathway. PROTOPLASMA 2020; 257:901-910. [PMID: 31897811 DOI: 10.1007/s00709-019-01477-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Ovarian cancer is the major cause of mortality due to late stage diagnoses and lower survival rates, and the mechanism of cancer progression is not completely understood. Thus, exploring the regulatory factors of ovarian cancer proliferation and metastasis is urgent. JAG1 expression in KOV3 and OVCA433 cells was detected by qPCR and western blot. MTT and Transwell assays were used to determine cell proliferation and metastasis. The tumor spheres formation assay, DOX, and Cisplatin administrations were performed to assess JAG1-induced stemness and chemoresistance. ChIP assay was used to verify the direct binding of GATA1 on JAG1 promoter. Ovarian cancer cells have higher JAG1 expression, which turns on Notch signaling and promotes cell proliferation, migration, invasion, stemness, and the resistance of chemotherapy. While knockdown JAG1 dramatically suppressed the ovarian cancer progression, GATA1 is the transcriptional factor of JAG1 in ovarian cells, knockdown JAG1 can inhibit GATA1-induced Notch activation and cell proliferation. This study demonstrates that JAG1, acting as an oncogenic gene, plays an important role in ovarian cancer progression and chemoresistance. Targeting GATA1/JAG1/Notch pathway may provide a novel strategy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Shanxian Central Hospital of Shandong Province, No.1 Wenhua Road, Shancheng Town, Shanxian, Heze, 274300, Shandong, China
| | - Yongchun Zhu
- Shanxian Dongda Hospital of Shandong Province, No.1 Shunshi East Road, Shanxian, Heze, 274300, Shandong, China
| | - Fangfang Li
- Shanxian Dongda Hospital of Shandong Province, No.1 Shunshi East Road, Shanxian, Heze, 274300, Shandong, China
| | - Yuge Xie
- Shanxian Central Hospital of Shandong Province, No.1 Wenhua Road, Shancheng Town, Shanxian, Heze, 274300, Shandong, China.
| |
Collapse
|
8
|
Schrank S, McDaid J, Briggs CA, Mustaly-Kalimi S, Brinks D, Houcek A, Singer O, Bottero V, Marr RA, Stutzmann GE. Human-Induced Neurons from Presenilin 1 Mutant Patients Model Aspects of Alzheimer's Disease Pathology. Int J Mol Sci 2020; 21:ijms21031030. [PMID: 32033164 PMCID: PMC7037274 DOI: 10.3390/ijms21031030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022] Open
Abstract
Traditional approaches to studying Alzheimer’s disease (AD) using mouse models and cell lines have advanced our understanding of AD pathogenesis. However, with the growing divide between model systems and clinical therapeutic outcomes, the limitations of these approaches are increasingly apparent. Thus, to generate more clinically relevant systems that capture pathological cascades within human neurons, we generated human-induced neurons (HiNs) from AD and non-AD individuals to model cell autonomous disease properties. We selected an AD patient population expressing mutations in presenilin 1 (mPS1), which is linked to increased amyloid production, tau pathology, and calcium signaling abnormalities, among other features. While these AD components are detailed in model systems, they have yet to be collectively identified in human neurons. Thus, we conducted molecular, immune-based, electrophysiological, and calcium imaging studies to establish patterns of cellular pathology in this patient population. We found that mPS1 HiNs generate increased Aβ42 and hyperphosphorylated tau species relative to non-AD controls, and exaggerated ER calcium responses that are normalized with ryanodine receptor (RyR) negative allosteric modulators. The inflammasome product, interleukin-18 (IL-18), also increased PS1 expression. This work highlights the potential for HiNs to model AD pathology and validates their role in defining cellular pathogenesis and their utility for therapeutic screening.
Collapse
Affiliation(s)
- Sean Schrank
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
| | - Clark A. Briggs
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
| | - Sarah Mustaly-Kalimi
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Deanna Brinks
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd. North, Chicago, IL 60064, USA;
| | - Aiden Houcek
- Lake Forest College, Lake Forest, IL 60045, USA;
| | - Oded Singer
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot 76100, Israel;
| | - Virginie Bottero
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd. North, Chicago, IL 60064, USA;
| | - Robert A. Marr
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd. North, Chicago, IL 60064, USA;
- Correspondence: (R.A.M.); (G.E.S.)
| | - Grace E. Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd. North, Chicago, IL 60064, USA;
- Correspondence: (R.A.M.); (G.E.S.)
| |
Collapse
|
9
|
Ashkavand Z, Sarasija S, Ryan KC, Laboy JT, Norman KR. Corrupted ER-mitochondrial calcium homeostasis promotes the collapse of proteostasis. Aging Cell 2020; 19:e13065. [PMID: 31714672 PMCID: PMC6974732 DOI: 10.1111/acel.13065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022] Open
Abstract
Aging and age-related diseases are associated with a decline of protein homeostasis (proteostasis), but the mechanisms underlying this decline are not clear. In particular, decreased proteostasis is a widespread molecular feature of neurodegenerative diseases, such as Alzheimer's disease (AD). Familial AD is largely caused by mutations in the presenilin encoding genes; however, their role in AD is not understood. In this study, we investigate the role of presenilins in proteostasis using the model system Caenorhabditis elegans. Previously, we found that mutations in C. elegans presenilin cause elevated ER to mitochondria calcium signaling, which leads to an increase in mitochondrial generated oxidative stress. This, in turn, promotes neurodegeneration. To understand the cellular mechanisms driving neurodegeneration, using several molecular readouts of protein stability in C. elegans, we find that presenilin mutants have widespread defects in proteostasis. Markedly, we demonstrate that these defects are independent of the protease activity of presenilin and that reduction in ER to mitochondrial calcium signaling can significantly prevent the proteostasis defects observed in presenilin mutants. Furthermore, we show that supplementing presenilin mutants with antioxidants suppresses the proteostasis defects. Our findings indicate that defective ER to mitochondria calcium signaling promotes proteostatic collapse in presenilin mutants by increasing oxidative stress.
Collapse
Affiliation(s)
- Zahra Ashkavand
- Department of Regenerative and Cancer Cell BiologyAlbany Medical CollegeAlbanyNYUSA
| | - Shaarika Sarasija
- Department of Regenerative and Cancer Cell BiologyAlbany Medical CollegeAlbanyNYUSA
| | - Kerry C. Ryan
- Department of Regenerative and Cancer Cell BiologyAlbany Medical CollegeAlbanyNYUSA
| | - Jocelyn T. Laboy
- Department of Regenerative and Cancer Cell BiologyAlbany Medical CollegeAlbanyNYUSA
| | - Kenneth R. Norman
- Department of Regenerative and Cancer Cell BiologyAlbany Medical CollegeAlbanyNYUSA
| |
Collapse
|
10
|
Liu L, Qian X, Chao M, Zhao Y, Huang J, Wang T, Sun F, Ling E, Song H. Aluminum toxicity related to SOD and expression of presenilin and CREB in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21480. [PMID: 29978503 DOI: 10.1002/arch.21480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aluminum (Al) is an important environmental metal factor that can be potentially associated with pathological changes leading to neurotoxicity. The silkworm, Bombyx mori, is an important economic insect and has also been used as a model organism in various research areas. However, the toxicity of Al on silkworm physiology has not been reported. Here, we comprehensively investigate the toxic effects of Al on the silkworm, focusing on its effects on viability and development, superoxide dismutase (SOD) activity, and the expression of presenilin and cAMP response element-binding protein (CREB) in BmE cells and silkworm larvae. BmE cell viability decreased after treatment with aluminum chloride (AlCl3 ) in both dose- and time-dependent manners. When AlCl3 solution was injected into newly hatched fifth instar larvae, both larval weight gain and survival rate were significantly decreased in a manner correlating with AlCl3 dose and developmental stage. Furthermore, when BmE cells and silkworm larvae were exposed to AlCl3 , SOD activity decreased significantly relative to the control group, whereas presenilin expression increased more than twofold. Additionally, CREB and phosphorylated CREB (p-CREB) expression in the heads of fifth instar larvae decreased by 28.0% and 50.0%, respectively. These results indicate that Al inhibits the growth and development of silkworms in vitro and in vivo, altering SOD activity and the expressions of presenilin, CREB, and p-CREB. Our data suggest that B. mori can serve as a model animal for studying Al-induced neurotoxicity or neurodegeneration.
Collapse
Affiliation(s)
- Longhai Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaoran Qian
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Mengling Chao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yijiao Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Taichu Wang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fan Sun
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hongsheng Song
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Sarasija S, Norman KR. Role of Presenilin in Mitochondrial Oxidative Stress and Neurodegeneration in Caenorhabditis elegans. Antioxidants (Basel) 2018; 7:antiox7090111. [PMID: 30149498 PMCID: PMC6162450 DOI: 10.3390/antiox7090111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative diseases like Alzheimer’s disease (AD) are poised to become a global health crisis, and therefore understanding the mechanisms underlying the pathogenesis is critical for the development of therapeutic strategies. Mutations in genes encoding presenilin (PSEN) occur in most familial Alzheimer’s disease but the role of PSEN in AD is not fully understood. In this review, the potential modes of pathogenesis of AD are discussed, focusing on calcium homeostasis and mitochondrial function. Moreover, research using Caenorhabditis elegans to explore the effects of calcium dysregulation due to presenilin mutations on mitochondrial function, oxidative stress and neurodegeneration is explored.
Collapse
Affiliation(s)
- Shaarika Sarasija
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA.
| | - Kenneth R Norman
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
12
|
Lin HC, Ho MY, Tsen CM, Huang CC, Wu CC, Huang YJ, Hsiao IL, Chuang CY. From the Cover: Comparative Proteomics Reveals Silver Nanoparticles Alter Fatty Acid Metabolism and Amyloid Beta Clearance for Neuronal Apoptosis in a Triple Cell Coculture Model of the Blood–Brain Barrier. Toxicol Sci 2017; 158:151-163. [DOI: 10.1093/toxsci/kfx079] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
13
|
Presenilin 2 deficiency facilitates Aβ-induced neuroinflammation and injury by upregulating P2X7 expression. SCIENCE CHINA-LIFE SCIENCES 2017; 60:189-201. [DOI: 10.1007/s11427-016-0347-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
|
14
|
Lian Q, Nie Y, Zhang X, Tan B, Cao H, Chen W, Gao W, Chen J, Liang Z, Lai H, Huang S, Xu Y, Jiang W, Huang P. Effects of grape seed proanthocyanidin on Alzheimer's disease in vitro and in vivo. Exp Ther Med 2016; 12:1681-1692. [PMID: 27588088 PMCID: PMC4998082 DOI: 10.3892/etm.2016.3530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/21/2016] [Indexed: 11/09/2022] Open
Abstract
Grape seed proanthocyanidin (GSPA) consists of catechin, epicatechin and epicatechin gallate, which are strong antioxidants that are beneficial to health and may attenuate or prevent Alzheimer's disease (AD). In the present study, the effects of GSPA on pheochromocytoma (PC12) cell viability were determined using cell counting kit-8 and lactate dehydrogenase (LDH) assays, whereas apoptosis and mitochondrial membrane potential (Ψm) were measured via flow cytometry analysis. The effect of GSPA administration on the behavior and memory of amyloid precursor protein (APP)/presenilin-1 (PS-1) double transgenic mice was assessed using a Morris water maze. APP Aβ peptides and tau hyperphosphorylation were examined by western blotting; whereas the expression levels of PS-1 were evaluated by reverse transcription-quantitative polymerase chain reaction and compared with pathological sections stained with hematoxylin-eosin and Congo red. Data from the in vitro experiments demonstrated that GSPA significantly alleviated Aβ25–35 cytotoxicity and LDH leakage ratio, inhibited apoptosis and increased Ψm. The findings from the in vivo experiments showed a significant enhancement in cognition and spatial memory ability, an improvement in the pathology of APP and tau protein and a decrease in PS-1 mRNA expression levels. Therefore, the results of the present study indicated that GSPA may be a novel therapeutic strategy for the treatment of AD or may, at the very least, improve the quality of life of patients with AD.
Collapse
Affiliation(s)
- Qingwang Lian
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yongsheng Nie
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaoyou Zhang
- BannerBioNutraceuticals Inc., Shenzhen, Guangdong 518057, P.R. China
| | - Bo Tan
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hongying Cao
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Wenling Chen
- BannerBioNutraceuticals Inc., Shenzhen, Guangdong 518057, P.R. China
| | - Weiming Gao
- BannerBioNutraceuticals Inc., Shenzhen, Guangdong 518057, P.R. China
| | - Jiayi Chen
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zhijian Liang
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Huangling Lai
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Siming Huang
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yifei Xu
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Weiwen Jiang
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Ping Huang
- Department of Pharmacology Teaching and Research, College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
15
|
Leal NS, Schreiner B, Pinho CM, Filadi R, Wiehager B, Karlström H, Pizzo P, Ankarcrona M. Mitofusin-2 knockdown increases ER-mitochondria contact and decreases amyloid β-peptide production. J Cell Mol Med 2016; 20:1686-95. [PMID: 27203684 PMCID: PMC4988279 DOI: 10.1111/jcmm.12863] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/04/2016] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.
Collapse
Affiliation(s)
- Nuno Santos Leal
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Bernadette Schreiner
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Catarina Moreira Pinho
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Birgitta Wiehager
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Helena Karlström
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Maria Ankarcrona
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Duggan SP, McCarthy JV. Beyond γ-secretase activity: The multifunctional nature of presenilins in cell signalling pathways. Cell Signal 2015; 28:1-11. [PMID: 26498858 DOI: 10.1016/j.cellsig.2015.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 01/24/2023]
Abstract
The presenilins are the catalytic subunit of the membrane-embedded tetrameric γ-secretase protease complexes. More that 90 transmembrane proteins have been reported to be γ-secretase substrates, including the widely studied amyloid precursor protein (APP) and the Notch receptor, which are precursors for the generation of amyloid-β peptides and biologically active APP intracellular domain (AICD) and Notch intracellular domain (NICD). The diversity of γ-secretase substrates highlights the importance of presenilin-dependent γ-secretase protease activities as a regulatory mechanism in a range of biological systems. However, there is also a growing body of evidence that supports the existence of γ-secretase-independent functions for the presenilins in the regulation and progression of an array of cell signalling pathways. In this review, we will present an overview of current literature that proposes evolutionarily conserved presenilin functions outside of the γ-secretase complex, with a focus on the suggested role of the presenilins in the regulation of Wnt/β-catenin signalling, protein trafficking and degradation, calcium homeostasis and apoptosis.
Collapse
Affiliation(s)
- Stephen P Duggan
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology, ABCRF, Western Gateway Building, University College Cork, Cork, Ireland
| | - Justin V McCarthy
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology, ABCRF, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
17
|
Noss EH, Watts GFM, Zocco D, Keller TL, Whitman M, Blobel CP, Lee DM, Brenner MB. Evidence for cadherin-11 cleavage in the synovium and partial characterization of its mechanism. Arthritis Res Ther 2015; 17:126. [PMID: 25975695 PMCID: PMC4449585 DOI: 10.1186/s13075-015-0647-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/01/2015] [Indexed: 12/12/2022] Open
Abstract
Introduction Engagement of the homotypic cell-to-cell adhesion molecule cadherin-11 on rheumatoid arthritis (RA) synovial fibroblasts with a chimeric molecule containing the cadherin-11 extracellular binding domain stimulated cytokine, chemokine, and matrix metalloproteinases (MMP) release, implicating cadherin-11 signaling in RA pathogenesis. The objective of this study was to determine if cadherin-11 extracellular domain fragments are found inside the joint and if a physiologic synovial fibroblast cleavage pathway releases those fragments. Methods Cadherin-11 cleavage fragments were detected by western blot in cell media or lysates. Cleavage was interrupted using chemical inhibitors or short-interfering RNA (siRNA) gene silencing. The amount of cadherin-11 fragments in synovial fluid was measured by western blot and ELISA. Results Soluble cadherin-11 extracellular fragments were detected in human synovial fluid at significantly higher levels in RA samples compared to osteoarthritis (OA) samples. A cadherin-11 N-terminal extracellular binding domain fragment was shed from synovial fibroblasts after ionomycin stimulation, followed by presenilin 1 (PSN1)-dependent regulated intramembrane proteolysis of the retained membrane-bound C-terminal fragments. In addition to ionomycin-induced calcium flux, tumor necrosis factor (TNF)-α also stimulated cleavage in both two- and three-dimensional fibroblast cultures. Although cadherin-11 extracellular domains were shed by a disintegrin and metalloproteinase (ADAM) 10 in several cell types, a novel ADAM- and metalloproteinase-independent activity mediated shedding in primary human fibroblasts. Conclusions Cadherin-11 undergoes ectodomain shedding followed by regulated intramembrane proteolysis in synovial fibroblasts, triggered by a novel sheddase that generates extracelluar cadherin-11 fragments. Cadherin-11 fragments were enriched in RA synovial fluid, suggesting they may be a marker of synovial burden and may function to modify cadherin-11 interactions between synovial fibroblasts. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0647-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erika H Noss
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard School of Medicine, Smith Research Building, 5th floor, 1 Jimmy Fund Way, Boston, MA, 02115, USA.
| | - Gerald F M Watts
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard School of Medicine, Smith Research Building, 5th floor, 1 Jimmy Fund Way, Boston, MA, 02115, USA.
| | - Davide Zocco
- Exosomics Siena S.p.A., Strada del Petriccio e Belriguardo, 35, 53100, Siena, Italy.
| | - Tracy L Keller
- Harvard School of Dental Medicine, Department of Developmental Biology, REB 505, 190 Longwood Avenue, Boston, MA, 02115, USA.
| | - Malcolm Whitman
- Harvard School of Dental Medicine, Department of Developmental Biology, REB 505, 190 Longwood Avenue, Boston, MA, 02115, USA.
| | - Carl P Blobel
- Hospital for Special Surgery, 535 east 70th Street, New York, NY, 10021, USA.
| | - David M Lee
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard School of Medicine, Smith Research Building, 5th floor, 1 Jimmy Fund Way, Boston, MA, 02115, USA. .,F. Hoffman-La Roche Ltd, Grenzacherstrasse 124, Building 69/Room 206, 4070, Basel, Switzerland.
| | - Michael B Brenner
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard School of Medicine, Smith Research Building, 5th floor, 1 Jimmy Fund Way, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Moussavi Nik SH, Newman M, Wilson L, Ebrahimie E, Wells S, Musgrave I, Verdile G, Martins RN, Lardelli M. Alzheimer's disease-related peptide PS2V plays ancient, conserved roles in suppression of the unfolded protein response under hypoxia and stimulation of γ-secretase activity. Hum Mol Genet 2015; 24:3662-78. [PMID: 25814654 DOI: 10.1093/hmg/ddv110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/23/2015] [Indexed: 12/30/2022] Open
Abstract
The PRESENILIN1 and PRESENILIN2 genes encode structurally related proteases essential for γ-secretase activity. Of nearly 200 PRESENILIN mutations causing early onset, familial Alzheimer's disease (FAD) only the K115Efx10 mutation of PSEN2 causes truncation of the open reading frame. If translated, the truncated product would resemble a naturally occurring isoform of PSEN2 named PS2V that is induced by hypoxia and found at elevated levels in late onset Alzheimer's disease (AD) brains. The function of PS2V is largely unexplored. We show that zebrafish possess a PS2V-like isoform, PS1IV, produced from the fish's PSEN1 rather than PSEN2 orthologous gene. The molecular mechanism controlling formation of PS2V/PS1IV was probably present in the ancient common ancestor of the PSEN1 and PSEN2 genes. Human PS2V and zebrafish PS1IV have highly divergent structures but conserved abilities to stimulate γ-secretase activity and to suppress the unfolded protein response (UPR) under hypoxia. The putative protein truncation caused by K115Efx10 resembles PS2V in its ability to increase γ-secretase activity and suppress the UPR. This supports increased Aβ levels as a common link between K115Efx10 early onset AD and sporadic, late onset AD. The ability of mutant variants of PS2V to stimulate γ-secretase activity partially correlates with their ability to suppress the UPR. The cytosolic, transmembrane and luminal domains of PS2V are all critical to its γ-secretase and UPR-suppression activities. Our data support a model in which chronic hypoxia in aged brains promotes excessive Notch signalling and accumulation of Aβ that contribute to AD pathogenesis.
Collapse
Affiliation(s)
| | - Morgan Newman
- Department of Genetics and Evolution, School of Biological Sciences
| | - Lachlan Wilson
- Department of Genetics and Evolution, School of Biological Sciences
| | | | - Simon Wells
- Department of Genetics and Evolution, School of Biological Sciences
| | - Ian Musgrave
- Clinical and Experimental Pharmacology, University of Adelaide, Adelaide, SA 5005, Australia
| | - Giuseppe Verdile
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia, Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia and School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia and School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Michael Lardelli
- Department of Genetics and Evolution, School of Biological Sciences,
| |
Collapse
|
19
|
Canobbio I, Abubaker AA, Visconte C, Torti M, Pula G. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer's disease. Front Cell Neurosci 2015; 9:65. [PMID: 25784858 PMCID: PMC4347625 DOI: 10.3389/fncel.2015.00065] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative cause of dementia in the elderly. AD is accompanied by the accumulation of amyloid peptides in the brain parenchyma and in the cerebral vessels. The sporadic form of AD accounts for about 95% of all cases. It is characterized by a late onset, typically after the age of 65, with a complex and still poorly understood aetiology. Several observations point towards a central role of cerebrovascular dysfunction in the onset of sporadic AD (SAD). According to the "vascular hypothesis", AD may be initiated by vascular dysfunctions that precede and promote the neurodegenerative process. In accordance to this, AD patients show increased hemorrhagic or ischemic stroke risks. It is now clear that multiple bidirectional connections exist between AD and cerebrovascular disease, and in this new scenario, the effect of amyloid peptides on vascular cells and blood platelets appear to be central to AD. In this review, we analyze the effect of amyloid peptides on vascular function and platelet activation and its contribution to the cerebrovascular pathology associated with AD and the progression of this disease.
Collapse
Affiliation(s)
- Ilaria Canobbio
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Aisha Alsheikh Abubaker
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Caterina Visconte
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Giordano Pula
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| |
Collapse
|
20
|
Smolarkiewicz M, Skrzypczak T, Michalak M, Leśniewicz K, Walker JR, Ingram G, Wojtaszek P. Gamma-secretase subunits associate in intracellular membrane compartments in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3015-27. [PMID: 24723404 PMCID: PMC4071823 DOI: 10.1093/jxb/eru147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gamma-secretase is a multisubunit complex with intramembrane proteolytic activity. In humans it was identified in genetic screens of patients suffering from familial forms of Alzheimer's disease, and since then it was shown to mediate cleavage of more than 80 substrates, including amyloid precursor protein or Notch receptor. Moreover, in animals, γ-secretase was shown to be involved in regulation of a wide range of cellular events, including cell signalling, regulation of endocytosis of membrane proteins, their trafficking, and degradation. Here we show that genes coding for γ-secretase homologues are present in plant genomes. Also, amino acid motifs crucial for γ-secretase activity are conserved in plants. Moreover, all γ-secretase subunits: PS1/PS2, APH-1, PEN-2, and NCT colocalize and interact with each other in Arabidopsis thaliana protoplasts. The intracellular localization of γ-secretase subunits in Arabidopsis protoplasts revealed a distribution in endomembrane system compartments that is consistent with data from animal studies. Together, our data may be considered as a starting point for analysis of γ-secretase in plants.
Collapse
Affiliation(s)
- Michalina Smolarkiewicz
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Tomasz Skrzypczak
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Michał Michalak
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Krzysztof Leśniewicz
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - J Ross Walker
- Institute of Molecular Plant Sciences, University of Edinburgh, King's Buildings, Mayfield Rd, Edinburgh EH9 3JH, UK
| | - Gwyneth Ingram
- Institute of Molecular Plant Sciences, University of Edinburgh, King's Buildings, Mayfield Rd, Edinburgh EH9 3JH, UK UMR 5667 CNRS-INRA-ENSL-UCB Lyon I, Reproduction et Développement des Plantes, ENS Lyon, 46, Allée d'Italie, 69364 LYON Cedex 07, France
| | - Przemysław Wojtaszek
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
21
|
Wang L, Hu J, Zhao Y, Lu X, Zhang Q, Niu Q. Effects of aluminium on β-amyloid (1-42) and secretases (APP-cleaving enzymes) in rat brain. Neurochem Res 2014; 39:1338-45. [PMID: 24792732 DOI: 10.1007/s11064-014-1317-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 01/22/2023]
Abstract
Chronic administration of aluminium has been proposed as an environmental factor that may affect some pathological changes related to neurotoxicity and Alzheimer's disease (AD). The abnormal generation and deposition of β-amyloid (Aβ) in senile plaques are hallmark features in the brains of AD patients. Furthermore, Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. In the present study, we investigated the modulation of Aβ deposition and neurotoxicity in aluminium-maltolate-treated (0, 15, 30, 45 mmol/kg body weight via intraperitoneal injection) in experimental rats. We measured Aβ1-40 and Aβ1-42 in the cortex and hippocampus in rat brains using ELISA. Subtypes of α-secretase, β-secretase, and γ-secretase, including ADAM9, ADAM10, ADAM17 (TACE), BACE1, presenilin 1 (PS1) and nicastrin (NCT), were determined using western blotting analyses. These results indicated that aluminium-maltolate induced an AD-like behavioural deficit in rats at 30 and 45 mmol/kg body weight. Moreover, the Aβ1-42 content increased significantly, both in the cortex and hippocampus, although no changes were observed in Aβ1-40. Furthermore, ADAM9, ADAM10, and ADAM17 decreased significantly; in contrast, BACE1, PS1, and NCT showed significant increase. Taken together, these results suggest that the changes in secretases may correlate to the abnormal deposition of Aβ by aluminium in rat brains.
Collapse
Affiliation(s)
- Linping Wang
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the 'amyloid cascade' hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble 'oligomers' as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.
Collapse
Affiliation(s)
- David Allsop
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Jennifer Mayes
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, U.K
| |
Collapse
|
23
|
Rivabene R, Visentin S, Piscopo P, De Nuccio C, Crestini A, Svetoni F, Rosa P, Confaloni A. Thapsigargin affects presenilin-2 but not presenilin-1 regulation in SK-N-BE cells. Exp Biol Med (Maywood) 2013; 239:213-24. [PMID: 24363250 DOI: 10.1177/1535370213514317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Presenilin-1 (PS1) and presenilin-2 (PS2) are transmembrane proteins widely expressed in the central nervous system, which function as the catalytic subunits of γ-secretase, the enzyme that releases amyloid-β protein (Aβ) from ectodomain cleaved amyloid precursor protein (APP) by intramembrane proteolysis. Mutations in PS1, PS2, and Aβ protein precursor are involved in the etiology of familial Alzheimer's disease (FAD), while the cause of the sporadic form of AD (SAD) is still not known. However, since similar neuropathological changes have been observed in both FAD and SAD, a common pathway in the etiology of the disease has been suggested. Given that age-related deranged Ca(2+) regulation has been hypothesized to play a role in SAD pathogenesis via PS gene regulation and γ-secretase activity, we studied the in vitro regulation of PS1 and PS2 in the human neuron-like SK-N-BE cell line treated with the specific endoplasmic reticulum (ER) calcium ATPase inhibitor Thapsigargin (THG), to introduce intracellular Ca(2+) perturbations and mimic the altered Ca(2+) homeostasis observed in AD. Our results showed a consistent and significant down-regulation of PS2, while PS1 appeared to be unmodulated. These events were accompanied by oxidative stress and a number of morphological alterations suggestive of the induction of apoptotic machinery. The administration of the antioxidant N-acetylcysteine (NAC) did not revert the THG-induced effects reported, while treatment with the Ca(2+)-independent ER stressor Brefeldin A did not modulate basal PS1 and PS2 expression. Collectively, these results suggest that Ca(2+) fluctuation rather than ER stress and/or oxidative imbalance seems to play an essential role in PS2 regulation and confirm that, despite their strong homology, PS1 and PS2 could play different roles in AD.
Collapse
Affiliation(s)
- Roberto Rivabene
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Autophagy serves as the sole catabolic mechanism for degrading organelles and protein aggregates. Increasing evidence implicates autophagic dysfunction in Alzheimer's disease (AD) and other neurodegenerative diseases associated with protein misprocessing and accumulation. Under physiologic conditions, the autophagic/lysosomal system efficiently recycles organelles and substrate proteins. However, reduced autophagy function leads to the accumulation of proteins and autophagic and lysosomal vesicles. These vesicles contain toxic lysosomal hydrolases as well as the proper cellular machinery to generate amyloid-beta, the major component of AD plaques. Here, we provide an overview of current research focused on the relevance of autophagic/lysosomal dysfunction in AD pathogenesis as well as potential therapeutic targets aimed at restoring autophagic/lysosomal pathway function.
Collapse
Affiliation(s)
- Miranda E Orr
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Salvatore Oddo
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Banner Sun Health Research Institute and Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| |
Collapse
|